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A process B = {Bt : t ≥ 0} taking values in R
d is called a

d-dimensional Brownian motion if (1) B0 = 0; (2) B has independent
increments, that is, for any t , s > 0, Bt+s − Bt is independent of Bt ; (3)
for any t , s > 0, Bt+s − Bt is a normal random variable with mean zero
and covariance matrix

√
2t I.

We will use P to denote the law of B and E to denote expectation wrt
P. For any x ∈ R

d , we will use Px to denote the law of the process
x + B = {x + Bt : t ≥ 0} and Ex to denote expectation wrt Px .

The characteristic function of Bt is given by

Eeiξ·Bt = e−t|ξ|2 , ξ ∈ R
d .
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If we use p(t , x , y) to denote the transition density of a d-dimensional
Brownian motion, then by definition,

p(t , x , y) = (4πt)d/2 exp(−|y − x |2
4t

).

The generator of Brownian motion is the Laplacian ∆. In other words,
for any y ∈ R

d , (t , x) 7→ p(t , x , y) is a solution of the (Fokker-Planck)
equation:

∂u(t , x)
∂t

= ∆u(t , x).

Brownian motion has many appealing statistical features: (1) It has
finite moment of all orders; (2) it has continuous sample paths (or
trajectories); and (3) it satisfies a self-similarity (or scaling property):
for any a > 0, a−1/2Bat has the same distribution as Bt .
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Because of appealing statistical properties and its amenability to
mathematical analysis, Brownian motion has been THE model for
continuous time motion and noise.

However, Brownian motion is obviously inadequate in a lot complex
systems: (1) lots of real world data exhibit heavy tail behavior; (2)
many systems does not evolve continuously.

A Lévy process is a generalization of Brownian motion. A Lévy
process may have heavy tails and its sample paths are discontinuous
in general.
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A process X = {Xt : t ≥ 0} taking values in R
d is called a Lévy

process in R
d if (1) X0 = 0; (2) X has independent increments, that is,

for any t , s > 0, Xt+s − Xt is independent of Xt ; (3) for any t , s > 0,
Xt+s − Xt has the same distribution as Xs.

Brownian motion is an example of Lévy process.

Lévy processes are widely applied nowadays in various fields:
physics, finance, operational research, economics, etc.
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The simplest Lévy process is the Poisson process. For any λ > 0, a
Poisson process of intensity λ can be described as follows: the
process starts at the origin, it stays there an random amount (exp(λ))
of time and then jumps to 1, it stays at 1 an random amount (exp(λ),
independent of the stay at 0) of time and then jumps to 2, etc.

Another way to describe a Poisson process N = {Nt : t ≥ 0} of
intensity λ is that it is a Lévy process such that Nt is a Poisson
random variable with parameter λt .

The characteristic function of a Poisson process N = {Nt : t ≥ 0} of
intensity λ is given by

EeiθNt = exp
(

−tλ(1 − eiθ)
)

, θ ∈ R.
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The simplest Lévy process is the Poisson process. For any λ > 0, a
Poisson process of intensity λ can be described as follows: the
process starts at the origin, it stays there an random amount (exp(λ))
of time and then jumps to 1, it stays at 1 an random amount (exp(λ),
independent of the stay at 0) of time and then jumps to 2, etc.

Another way to describe a Poisson process N = {Nt : t ≥ 0} of
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Brownian Motion Lévy Processes Subordinators Subordinate Brownian motions Pure jump subo rdinate Brownian motions Subordinate BMs with

Another example of a Lévy process is the compound Poisson
process. Suppose that λ > 0 is a constant and ν is a distribution on
R

d \ {0}. A compound Poisson process with intensity λ and step
distribution F can be described as follows: It starts at the origin, stays
there an random amount (exp(λ)) of time and then jumps according
to the distribution ν; it stays at the new position an random amount
(exp(λ), independent of the stay at 0) of time and then jumps
(independent of the previous jumps) according to ν, etc.
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Another way to describe a compound Poisson process with intensity
λ and step distribution ν is as follows. Suppose that N = {Nt : t ≥ 0}
is a Poisson process with intensity λ. Suppose that Y1,Y2, · · · are iid
random variables with common distribution F and independent of N.
Then the process X = {Xt : t ≥ 0} defined by

Xt =

Nt
∑

k=1

Yk , t ≥ 0

is a compound Poisson process with intensity λ and step distribution
ν.
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The characteristic function of a compound Poisson process with
intensity λ and step distribution ν is given by

EeiθXt = exp
(

−tλ
∫ ∞

−∞

(1 − eiθs)ν(ds)
)

, θ ∈ R.

A Poisson process with intensity λ is a compound Poisson process
with intensity λ and step distribution ν(ds) = δ1(ds).
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A Lévy process {Xt : t ≥ 0} on R
d can be described by its

characteristic function

E[exp{iξ · (Xt − X0)}] = exp(−tΨ(ξ)), ξ ∈ R
d , t > 0,

where Ψ, called the characteristic exponent or Lévy exponent of the
process, is given by the Lévy-Khintchine formula

Ψ(ξ) = ia · ξ + 1
2
ξ · Qξ +

∫

Rd

(

1 − eiξ·x + iξ · x1{|x|<1}

)

Π(dx).

Here a is a vector in R
d , Q is a non-negative definite d × d matrix, Π

is a measure on R
d \ {0} such that

∫

(1 ∧ |x |2)Π(dx) <∞. a is called
the linear coefficient, Q the diffusion matrix and Π the Lévy measure
of the process. (a,Q,Π) is called the generating triplet of X .
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The infinitesimal generator of the above Lévy process is given by

Af (x) = −a · ∇f (x) +
1
2

∑

i,j

Qij fij(x)

+

∫

Rd
(f (x + y)− f (x)− 1{|y |<1}y · ∇f (x))Π(dx).

Or equivalently, for any bounded continuous function f , the function
u(t , x) = Ex f (Xt ) is the solution of the equation

∂u(t , x)
∂t

= Au(t , x).
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For any a ∈ R
d , any non-negative definite d × d matrix Q and any

measure Π on R
d \ {0} such that

∫

(1 ∧ |x |2)Π(dx) <∞, there is a
Lévy process X with generating triplet (a,Q,Π). Here is a way of
constructing such a Lévy process:

Let X (1) be the following BM with drift:

X (1)
t =

√
QBt + at .

Let X (2) be a compound Poisson process with intensity Π(B(0, 1)c)
and step distribution Π(B(0, 1)c)−1Π(·)|B(0,1)c .
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For any n ≥ 1, let Y (n) be a compound Poisson process with intensity
Π(B(1/n, 1)) and step distribution Π(B( 1

n , 1))
−1Π(·)|B(1/n,1). Let Z (n)

be defined by
Z (n)

t = Y (n)
t − tΠ(B(1/n, 1)).

Then it can be shown that, as n → ∞, Z (n) has a limit and we call this
limit X (3).

If X (1),X (2),X (3) are independent, then

Xt = X (1)
t + X (2)

t + X (3)
t

is a Lévy process with generating triplet (a,Q,Π).
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When a = 0, Q = 0, Π(dx) = c|x |d+α for some α ∈ (0, 2), we have
Ψ(ξ) = c1|ξ|α. The corresponding process is called a symmetric
α-stable process on R

d . Its generator is the fractional Laplacian
−(−∆)α/2.

The transition density p(t , x , y) of a symmetric α-stable process X
satisfies

p(t , x , y) ≍
(

t−d/α ∧ t
|x − y |d+α

)

.

X has infinite variance and, when α ≤ 1, it also has infinite mean.

A symmetric α-stable process satisfies the following self-similarity
(scaling property): for any c > 0, c−1/αXct has the same distribution
as Xt .
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Lévy processes form a very rich class of processes. However,
general Lévy processes are not very tractable. Subordinate Brownian
motions are obtained from Brownian motion by replacing its time
parameter t by an independent subordinator, i.e., an increasing Lévy
process starting from 0. Subordinate BMs form a very large class of
Lévy processes. Yet, they are much more tractable.

Before we define subordinate Brownian motions, we first say a few
things about subordinators.
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general Lévy processes are not very tractable. Subordinate Brownian
motions are obtained from Brownian motion by replacing its time
parameter t by an independent subordinator, i.e., an increasing Lévy
process starting from 0. Subordinate BMs form a very large class of
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A subordinator is a just a nonnegative Lévy process starting from 0,
which is necessarily increasing. A subordinator S = (St : t ≥ 0) is
usually characterized by its Laplace transform

E

[

e−λSt

]

= e−tφ(λ), ∀ t , λ > 0.

The function φ is called the Laplace exponent of the subordinator.

The Laplace exponent of a subordinator can be written in the form

φ(λ) = bλ+

∫

(0,∞)

(1 − e−λt)µ(dt)

where b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞)
(1 ∧ t)µ(dt) <∞. b is called the drift coefficient and µ the Lévy

measure of the subordinator.
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For any b ≥ 0 and any measure on (0,∞) satisfying
∫

(0,∞)(1 ∧ t)µ(dt) <∞, the function

φ(λ) = bλ+

∫

(0,∞)

(1 − e−λt)µ(dt)

is the Laplace exponent of some subordinator.

A function φ : (0,∞) → (0,∞) is the Laplace exponent of some
subordinator if and only if φ(0+) = 0 and

(−1)nφ(n)(t) ≤ 0, t > 0, n = 1, 2, . . . .

A function satisfying the properties above is called a Bernstein
function.
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For technical reasons, we will sometimes assume that the Lévy
measure µ of φ has a completely monotone density µ(t), i.e.,
(−1)nDnµ ≥ 0 for every non-negative integer n ≥ 1. (This is
equivalent to saying that φ is a complete Bernstein function.)

When the assumption above is satisfied, the mean occupation time
measure of S

U(A) = E

∫ ∞

0
1A(St )dt , A ⊂ [0,∞)

has a density u and u is completely monotone.
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Brownian Motion L évy Processes Subordinators Subordinate Brownian motions Pure jump subordinate Browni an motions Subordinate BMs with

φ(λ) = λα/2, where α ∈ (0, 2];

φ(λ) = (λ + 1)α/2 − 1, where α ∈ (0, 2];

φ(λ) = λ+ λα/2, where α ∈ (0, 2);

φ(λ) = λα/2 + λβ/2, where 0 < β < α < 2;

φ(λ) = λα/2(log(1 + λ))γ/2, where α ∈ (0, 2), γ ∈ (0, 2 − α];

φ(λ) = λα/2(log(1 + λ))−β/2, where where α ∈ (0, 2), β ∈ (0, α].
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Let B = (Bt : t ≥ 0) be a d-dimensional Brownian motion, and let
S = (St : t ≥ 0) be an independent subordinator. The process
X = (Xt : t ≥ 0) defined by Xt := BSt , t ≥ 0 is called a subordinate
Brownian motion.

Subordinate Brownian motions form a large class of symmetric Lévy
processes, yet it is much more tractable than general symmetric Lévy
processes. Subordinate Brownian motions are used in mathematical
finance, as the subordintaor can be thought of as the “operational
time” or “intrinsic time”.
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If the Laplace exponent of S is φ, then the Lévy exponent of the
subordinate Brownian motion X is given by Φ(ξ) = φ(|ξ|2). The
infinitesimal generator can be written as −φ(−∆).

When φ(λ) = λα/2, the resulting subordinate Brownian motion turns
out to be a symmetric α-stable process. The infinitesimal generator of
this process can be written as −(−∆)α/2.

When φ(λ) = (λ+ m2/α)α/2 − m, the resulting subordinate Brownian
motion turns out to be a relativistic α-stable process with mass m.
The infinitesimal generator of this process can be written as
m − (−∆+ m2/α)α/2.
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The linear coefficient a of X is always 0, and the diffusion matrix of X
is b I.

The Lévy measure of the process X has a density J , called the Lévy
density, given by

J(x) =
∫ ∞

0
(4πt)−d/2e−|x|2/(4t)µ(t)dt , x ∈ R

d .

Thus J(x) = j(|x |) with

j(r) =
∫ ∞

0
(4πt)−d/2e−r2/(4t)µ(t)dt , r > 0.

Note that the function r 7→ j(r) is continuous and decreasing on
(0,∞).
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X has a transition density given by

p(t , x , y) =
∫

[0,∞)

p0(s, x , y)P(St ∈ ds)

where

p0(s, x , y) = (4πs)−d/2 exp(−|x − y |2
4s

).

Analytically, p(t , x , y) is the fundamental solution of ∂tu = −φ(−∆),
so it is also called the heat kernel of −φ(−∆).
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For any open subset D ⊂ R
d , we use XD to denote the subprocess of

X killed upon exiting D. The infinitesimal generator of XD is
−φ(−∆)|D .

XD has a continuous transition density pD(t , x , y) with respect to the
Lebesgue measure. Analytically, pD(t , x , y) is the fundamental
solution of ∂tu = −φ(−∆)|D . Recently we have succeeded in
establishing sharp two-sided estimates on p(t , x , y) and pD(t , x , y) for
a few classes of subordinate Brownian motions. We are working to
deal with the general case.
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The function

GD(x , y) =
∫ ∞

0
pD(t , x , y)dt

is called the Green function of XD . Analytically, GD(·, y) is the solution
of φ(−∆)|Du = δy .

In the remainder of this talk, I will present some recent results on
sharp estimates on GD(x , y).
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In the remainder of this talk, I will always assume that S is a complete
subordinator with Laplace exponent φ and that X is a subordinate
Brownian motion via S. There are two classes of subordinate
Brownian motions: pure jump (without Brownian compnent)
subordinate Brownian motions and subordinate Brownian motions
with Brownian components.

These two classes of subordinate Brownian motions requires different
techniques. I will first deal with pure jump subordinate Brownian
motions
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In this part, we will always assume that the Laplace exponent φ of S
is a complete Bernstein function satisfying

φ(λ) ≍ λα/2ℓ(λ) , λ→ ∞

where ℓ is a slowly varying function at infinity, 0 < α < 2 ∧ d . This is
just an assumption on the asymptotic behavior of φ at infinity.

It is easy to check that, when d ≥ 3, the subordinate Brownian motion
is transient. When X is transient, the Green function G(x , y) of X

G(x , y) =
∫ ∞

0
p(t , x , y)dt

makes sense.



Brownian Motion L évy Processes Subordinators Subordinate Brownian motions Pure jump subordinate Brownian motions Subordinate BMs with

In this part, we will always assume that the Laplace exponent φ of S
is a complete Bernstein function satisfying

φ(λ) ≍ λα/2ℓ(λ) , λ→ ∞

where ℓ is a slowly varying function at infinity, 0 < α < 2 ∧ d . This is
just an assumption on the asymptotic behavior of φ at infinity.

It is easy to check that, when d ≥ 3, the subordinate Brownian motion
is transient. When X is transient, the Green function G(x , y) of X

G(x , y) =
∫ ∞

0
p(t , x , y)dt

makes sense.
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When d ≤ 2, X may not be transient. However, under the following
assumption, X will be also transient for d ≤ 2.

H: there exists γ ∈ [0, d/2) such that

lim inf
λ→0

φ(λ)

λγ
> 0.

By spatial homogeneity we may write G(x , y) = G(x − y) where the
function G is given by the following formula

G(x) =
∫ ∞

0
(4πt)−d/2e−|x|2/(4t)u(t)dt , x ∈ R

d ,

where u is the potential density of S. Using this formula we see that
G is radially decreasing and continuous in R

d \ {0}.
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By using our standing assumption, we can apply the Tauberian
theorem and the monotone density theorem to get asymptotic
behaviors of u and µ at 0. Using these, one can get the following
asymptotic behaviors of G and J at the origin.

Theorem(Song and Vondracek)

G(x) ≍ 1
|x |dφ(|x |−2)

, |x | → 0

j(r) ≍ φ(|x |−2)

|x |d . r → 0
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Using the results above and some very complicated analysis, we can
prove the following result.

Theorem (Kim, Song and Vondracek)

Let D a bounded C1,1 domain in R
d with characteristics (R,Λ). Then

there exists C = C(diam(D),R,Λ) > 1 such that

C−1

(

1 ∧ φ(|x − y |−2)
√

φ(δD(x)−2)φ(δD(y)−2)

)

1
|x − y |d φ(|x − y |−2)

≤ GD(x , y) ≤ C

(

1 ∧ φ(|x − y |−2)
√

φ(δD(x)−2)φ(δD(y)−2)

)

1
|x − y |d φ(|x − y |−2)
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Theorem (Chen-Song, Kulczycki)

Suppose that d ≥ 2 and α ∈ (0, 2). Let D be a bounded C1,1 domain
in R

d and let GD be the Green function of the symmetric α-stable
process in D. Then

GD(x , y) ≍
(

1 ∧ (δD(x)δD(y))α/2

|x − y |α
)

1
|x − y |d−α

, x , y ∈ D.

Theorem (Chen-Song, Ryznar)

Suppose that d ≥ 2, α ∈ (0, 2) and m > 0. Let D be a bounded C1,1

domain in R
d and let GD be the Green function of the Lévy process

with Lévy exponent Φ(ξ) = (|ξ|2 + m2/α)α/2 − m in D. Then

GD(x , y) ≍
(

1 ∧ (δD(x)δD(y))α/2

|x − y |α
)

1
|x − y |d−α

, x , y ∈ D.
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In this part, we will always assume that the Laplace exponent φ of S
is a complete Bernstein function with a positive drift and, without loss
of generality, we shall assume that the drift of S is equal to 1. Thus
the Laplace exponent of S can be written as

φ(λ) = λ+ ψ(λ),

where

ψ(λ) =

∫

(0,∞)

(1 − e−λt)µ(t)dt .

The only other assumption is some control on the behavior of Lévy
density µ near the origin: for any K > 0, there exists c = c(K ) > 1
such that

µ(r) ≤ c µ(2r), ∀r ∈ (0,K ).
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For d ≥ 3, we define

gD(x , y) =
1

|x − y |d−2

(

1 ∧ δD(x)δD(y)
|x − y |2

)

, x , y ∈ D,

for d = 2 we define

gD(x , y) = log
(

1 +
δD(x)δD(y)
|x − y |2

)

, x , y ∈ D,

and for d = 1, we define

gD(x , y) =
(

(δD(x)δD(y))1/2 ∧ δD(x)δD(y)
|x − y |

)

, x , y ∈ D.

Theorem (Kim, Song and Vondracek)

For any bounded C1,1 open set D ⊂ R
d , there exists C = C(D) > 1

such that for all x , y ∈ D

C−1 gD(x , y) ≤ GD(x , y) ≤ C gD(x , y).
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Thank you!
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