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The Big Questions

® Given a large amount of data on neuronal connectivity, can
we use statistical properties of these data to determine

neuronal classes? (Everyone agrees they exist)

® How do any of these findings drive experimental efforts to
collect this data: for example, can we estimate how many or
what percentage of neuronal connections in a rat
hippocampus are required in order to make an estimate about

the entire hippocampus?

The numbers are huge: 10! neurons in the human

brain; with a conservative estimate on connectivity

(1%), this amounts to 10*° connections




Premise: Neurons are connected
according to a directed graph

e A directed graph has vertices and directed edges representing

neurons and axonal-dendritic communication.

® Definition: A brain is a directed graph (V, E) and a map
7l W | e {1

We say that (V, E, ’7' is

equivalent to(V, E, 7’

there exists a permutatlon

0 suchthat o7’ = T. OD
We call T a block assign en




Some Mathematical Assumptions

® An axon either connects, or does not connect, to a dendrite.
We do not keep track of number of connections, or any

properties of synapses between them

® Neurons can be classified as a first approximation according
to their connectivity behavior, rather than other properties

(such as morphology).

® Classification forms a partition of the neurons; each neuron is

in exactly one neuronal class




If the data were In...
What would we do with it?

Put the data into a large adjacency matrix. Each neuron corresponds
to one row and one column. A 0 or a [ is placed in the ij* entry,
according to whether the axon in the i row connects to the dendrite

in the jtb column.

0 01 0 0 --- - 0 0 01 00 0O
0 0 0 0 0 --- - 0 01 0 0 0 0O
0 000 O0 -+ --- 0 0 1 0 0 0 0O
10 000 -+ .- 0 0 0 0 0 01 1
0O 000 0 «-- .- 0 0 0 0 0 0 0O
0 0 01O
0 0 0 0 O
1 0 0 0O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 01 0O
0 0 0 0 O




Observed Data
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Random Dot Product Model

We consider simple random graphs with
directed edges: G=(V E, X,Y), where we
assume:

Vi=n,ECV xV —{(v,v)}
o |10 ¥ e | ALl simplex. Could choose

these in a ball if we want.

* The vertices and edges are observed

pertectly

* The attributes (X,Y) are latent
(unobserved)

* The edge probabilities are given by
Plu —v e E] = XY,




Constrained RDPG Model

Constrain the model to have  To fit the model,

k distinct pairs of vectors, o Determine the number k of

one for each neural group. classes

In oth ds iti
I OUNET WO, * Partition the neurons

7(u) = 7(v) implies according to class
X, =X, and Y, =Y, membership (up to
permutation)
O > @ * Assign to each group an in-
=X 2 }/. and out- vector X and Y,

respectively.




Analyze the data

Use singular value decomposition to identify the most important

dimensions of the data.

Use cluster analysis to identify the classes of neurons according to

these most important dimensions.




Simulation Design
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Producing simulated data

Neuronal types (secret)

15768 CA1 Pyramidal Cells: Principal output neurons of the
hippocampus. Excitatory. Constitute one of the most studied and best

characterized neuron types in the brain.

4000 CA1 Oriens/Lacunosum-Moleculare Cells: local inhibitory
neurons. Dendrites are in the oriens layer and their axons start in the

oriens and go up to Lacunosum-Moleculare .

1000 CA1 Basket Cells: local peri-somatic inhibitory interneurons.
Axons target pyramidal and basket cells. Their dendrites span all
layers of CA1.

3000 CA1 Perforant Pathway-Associated Cells: local inhibitory
interneurons with dendrites and axons confined to the Lacunosum-

Moleculare layer.

2000 CA1 Oriens Cells: Local inhibitory interneurons. Dendrites and
axons confined to the oriens layer.

2500 Entorhinal Cortex Layer 5 Pyramidal Cells: play the role of
deep layer 'input’ neurons. They are excitatory and have dendrites and

axons through the deep and superficial layers of the entorhinal cortex.

2500 Entorhinal Cortex Layer 3 Pyramidal Cells: One of the
superficial excitatory layer 'output' neurons. Dendrites through the
deep and superficial layers of the EC. Axons starting in layer
3,projecting to CATLM.

2000 Entorhinal Cortex GABAergic Cells: Inhibitory local
interneurons of the EC, with axons and dendrites through the deep

and superficial layers of the entorhinal cortex.

Generating matrix (secret)
000 e e 0

0.02|0.02 09959 0.00| 0.02| 0.04| 0.04| 0.02

0.02|0.000-9%59 0.020.00 | 0.00|0.00{0.00

0.02|0.000-9%59 0.00( 0.00{ 0.00| 0.00{ 0.00

0.02|0.00 029556 0,02 0.00 0.00 0.00/ 0.00

0.02|0.02 995 0.00/ 0.02 0.00{ 0.00| 0.00

0.00{0.00{0.00{0.00(0.00(0.04|0.04|0.02

0.04|0.00 091333 0.04| 0.00| 0.02| 0.02 0.01

0.00{0.00{0.00{0.00{0.00{0.02|0.02|0.01

0000 e 0 e e :-

v = (15768, 4000, 1000, 3000, 2000, 2500, 2500, 2000)
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to a specified proportion of vertices
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Probability matrix P in each class.

5 ® From such a graph, simply write
i down the adjacency matrix.
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Singular Value
Decomposition

We take the adjacency
matrix A and we
change the diagonal
slightly. Use Singular
Value Decomposition
to break this matrix
into a unitary times a
diagonal times a

unitary matrix.




Singular Value Decomposition in 2 Dimensions

Thanks to Wikimedia!




The adjacency matrix is approximately equal to the product:

( Ui11 Ui2 Ui1s Ui4 \
Uu21 U22 U23 U24
st 0 0 O V11 V12 *** Vin—1 Vin
0 s, 0 O V21 V22 -+ V2p_1 U2n
0 0 s3 O V31 V32 °* V3 n—1 Usn
0 0 O s4 V41 Va2 *** Vanp—1 UVan
Unp—-1,1 Un—-1,2 Un—-1,3 Un—1,4

Un1 Un2 Un3 Una

Singular Value Decomposition

Break a matrix down into its most important components. The size of the matrix in the middle is
a parameter; we did this for varying size of the matrix in the middle. The larger the dimension,

the better an approximation we get.




On the embeddings (SVD)

Before clustering, it may
“look” like obvious clusters

® As the dimension of data
recorded increases, the closer

Observed Data we get to A.

0.02

® As the dimension of data goes
up, the clustering we do

subsequently gets more time

0.00 0.01

consuming.

X2

® For every fixed dimension,

the time to carry out the

—-0.02

SVD increases approximately

0005 0010 0.015 linearly with In(n).
X;




Cluster Analysis: What to cluster?

~

( Ui1 Ui2 U3 U4 \
U21 U22 U23 U24
s1 0 0 O V11 V12 Vi,n—1 Vin
0 s 0 O V21 V22 V2.n—1 V2n
) 0 0 s3 O V31 V32 V3,n—1 Usn
0 0 0 s4 Va1 V42 Van—1 Van
Un—-1,1 Un—-1,2 Up—-1,3 Un—-14

\

Un1 Un2 Un3 Una /

The colors corresponded to specific dimensions of the data. The number
of rows correspond to the number of data points.

Think of the (length 4) rows of the left-most matrix, and (length 4)
columns of the right-most matrix, as vectors. The row ( U;; Uip Uss
U;4) records the vectors connecting to the i neuron while the
column (V;; U,: Us; U,;) records those vertices to which the i
neuron connects. There are n vectors total, where n is the number of
vertices in the graph we began with.

Apply cluster analysis to these n (length 8) vectors.




Estimating the dimension

One way to estimate the ideal dimension (the number of diagonal entries in
our estimate) is to consider the singular values, and looking for the point at

which the difference between successive singular values is small (< 0.1).

From this, we decide to pick d = 4 throughout, although for n greater than
100,000, the data suggests that d=5 might be useful.




Embeddings (n=8192)

The colors illustrate the clusters in order to visualize the
embeddings more clearly.




Embeddings (n=8192)
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Embeddings: n=65536
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On Cluster Analysis

P 00 e o e 0
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Estimating the Block Structure

® Using SVD on the adjacency
matrix, we choose a number

d of dimensions to keep track
of. After this ch01ce Xand Y
are embedded in ]R

The product XYTis a best
rank-d approximation of the
adj acency matrix A.

Now we can cluster the

length-2d vectors of [X|Y].

We clustered using both k-
means and also model-based
clustering.

We select the best number of
classes k using the Bayesian
Information Criterion (BIC).

X,Y are only detined up to
rotation. We apply rotation
invariant clustering to them.

The k latent vectors are the
centers of the k clusters.




Cluster analysis

Cluster analysis is highly dependent on the model

The goal of cluster analysis is to try to separate the data into
groups; the model should penalize the computer for making
too many clusters, as well as penalize the computer for

putting distant vectors into the same group.

There are several ways to determine the penalty (BIC, AIC)
There are several ways to determine closeness (spherical,
elliptical).

Model-based clustering is computationally expensive but it
can handle elliptical data, whereas k means clustering is

cheaper but only handles spherical clusters.




Clustering: k-means

® The idea is to cluster based on Euclidean distance.

® Works best when the clusters are spherical

e Given I1,...,%Tn € R¢ . initialize with C1,...,Cy € R4
® Find the closest center: let 7; = arg I<nl£k d(Cj, )
1<j<
And also i ZZ in{Tz’ Ll ]}
J

l > T =J}
* Return {7;} and {C}}

® Repeat until convergence.
® Finds the closest center and recompute the mean.
® Repeat several times with different random starts.

® Assumes round and well-separated groups.




Model-based clustering

° Given x1,...,Zn, € R?  the model is
k

= | Mlf — W e vl 3243
. i

® We initialize the constants 7}, 11, ¥ ;and then recursively
define new constants based on the initial choice, repeating
until convergence.

i ?((xz)) i Z il

ZTZj E i ZTZJ _:uj)T

® Like assuming that cach point x, is in the jth group a little
bit, described by the probablhty Tij

* Handles elliptical clusters




Limits on class size

Bayesian Information Penalize the creation of too
Criterion many classes

* Define the log likelihood, [ — arg mm{ 20(0x) + pr In(n) .

glven a model f(x; 9) as:
Z [ (1 (e where 0}, is the maximum

likelihood estimate for the

* BIC penaﬁzes GOt terms, true values of the parameters

* If p, is the number of given the data of x1,...,xy,
parameters in a k cluster and how they split into
model on n points, groups.




Comparing the original block
assignment to an estimated one

Let 7:V —>A{1, ..., k} be ablock assignment, and
suppose that 7 is obtained by embedding using random dot
product graphs, and then clustering using k-means. Then
under some reasonable conditions, almost always

miSn H{u eV :7(u) # w(7(u))} < Cln(n)

TEDE

(Sussman, Tang, Fishkind, Priebe).

This means that for all but a small number of points, we
obtain the correct clustering. It guarantees that the estimated
number of clusters is correct, i.e. £ = k as long as we insist

that there are an order of magnitude of In(n) points in each

gl’Ollp.




Experimental Design: the Setup

Assume that k=8, that the proportion of neurons of each type is
given by a vector v (of length 8) and that the probability that a
neuron of any one type will connect to any other type is given

by a probability matrix P

® We generate graphs of vertices, where the size of the vertex
set varies from about 8,000 to 256,000. We use n=2"3, 214,
|2

¢ Fit the RPDG model to the graph
e (Cluster using k-means or model based clustering

e Evaluate performance.




After cluster

( U1 13 u
U21 U23 U24
Un—1,1 Unp—1,3 Unpn—1.,4
K Un1 Un3 Una

entry is given by

ing..

st 0 0 O V11 V12 V1,n—1
0 0O O

0 0 s3 O V31 V32 V3,n—1
0O 0 0 s4 V41 Va2 Va,n—1

® We estimate the probability matrix P by the matrix P~ whose ab'

Vin

V3n
V4n

Pab = Ug1S1V1b +

+ Uq3S3V3p + UgaS4V4b

STEP 1: Unprincipled Correction: We correct the
clustering by 10 percent of the minimal distance among

rows and columns in P.




Results (Correction)

The probabilities differed
from true probability (in
Euclidean norm, square
root of sum of squares of
differences in matrices)
on the order of 10”7 for
d>2. Classes were
assigned correctly 100
percent of the time for
d>1. For smaller n and/
or for d=1, class
assignment was not

perfect.

Log of Error From P Matrix
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Results

We ran 50 simulations
(adjacency matrices)

with different random
seeds for 32,678

vertices; this results in
500 experiments as we
change the SVD analysis>2‘
(d=1,...,10.)

We analyzed the data
for different values of d.
After cluster analysis,
the correct number of
classes was found 100

percent of the cases for
d>1.

Estimated and True Classes
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Principled Fits (No ad-hoc correction of
class assignment)

Model |_n k> 7 | 8 | 9 | 10 | 1 >=i2
MB 82

8192 18
KM 5 12 14 19 6
MB 16384 46 54
KM 1 9 25 30 26 9
MB 32768 63 37
KM 1 6 31 36 16 10
MB 65536 94 6
KM 1 8 19 36 22 14
MB 131072 100
KM 3 8 29 19 26 15
MB 262144 100
KM 3 13 16 2719 27 14

~




Principled Fits (No ad-hoc correction of
class assignment)

Model |_n k> 7 | 8 | 9 | 10 | 1 >=i2
MB 82

8192 18
KM 5 12 14 19 6
MB 16384 46 54
KM 1 9 25 30 26 9
MB 32768 63 37
KM 1 6 31 36 16 10
MB 65536 94 6
KM 1 8 19 36 22 14
MB 131072 100
KM 3 8 29 19 26 15
MB 262144 100
KM 3 13 16 2719 27 14

~




What about the class assignment,
rather than the number of classes

e When k = 8 the class assignment is almost perfect. There
were very few (under .1%) vertices placed in the wrong
class, and that happened in fewer than 5% of the

experiments.

® Whenk = 9 there was almost always two groups that split
fairly evenly in the estimate.




Robustness: Work in Progress

® Vary the probabﬂity matrix
® Vary the vector of proportions of true class membership

® Introduce noise: after generating a graph, randomly delete

and/or add some edges.

® Introduce noise: before generating a graph, randomly change

some of the assignments of vertices to groups.




The Forest Rather Than the Trees

<>Robustness tests need to be implemented.

< Spatial position (or other properties) of the neurons could be

considered to affect connection probabilities.

<In the simulations, connections are formed by sampling a binomial
distribution for each probability (Erdos-Renyi graphs). Other

distributions may be more appropriate to describe brain networks.

<>Dependence among connections could be considered.




Conclusions

<>Large quantities of connectivity data can be analyzed to obtain a
meaningful interpretation of neuronal class. Suitable data include
dense electron microscopy reconstructions (identified synapses) and

light microscopy (potential synapses).
< This work may direct data collection methods, indicating whether

experimental data from a large number of preparations, each with
small samples, or a large sample of from fewer preparation would

yield better statistical results.

<Determination of neuronal classes has the prospect of becoming

rigorous, verifiable and reproducible.
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