C. R. Hogg

November 16, 2011

Outline

Overview

Bayesian Analysis

Gaussian Processes

Scattering Curves

Conclusions

•0

•0

Ernest Rutherford (1871-1937)

"If your experiment needs statistics,
you ought to have done a better experiment"

"If your experiment needs statistics, you ought to have done a better experiment"

(Or: use better statistics!)

Goals for the talk

1. Explain **Bayesian analysis** at *conceptual* level

Goals for the talk

Uncertainty in single quantity:

- 1. Explain **Bayesian analysis** at *conceptual* level
- 2. Discuss *quantifying* uncertainty in **continuous functions**

Goals for the talk

Uncertainty in single quantity:

- Explain Bayesian analysis at conceptual level
- 2. Discuss *quantifying* uncertainty in **continuous functions**

Goals for the talk

Uncertainty in single quantity:

...in continuous functions:

- 1. Explain **Bayesian analysis** at *conceptual* level
- 2. Discuss *quantifying* uncertainty in **continuous functions**

Goals for the talk

Uncertainty in single quantity:

...in continuous functions:

- 1. Explain **Bayesian analysis** at *conceptual* level
- 2. Discuss *quantifying* uncertainty in **continuous functions**

Goals for the talk

Overview

Uncertainty in single quantity:

...in continuous functions:

- 1. Explain **Bayesian analysis** at *conceptual* level
- 2. Discuss *quantifying* uncertainty in **continuous functions**

NIST's mission:

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST's vision:

NIST will be the world's leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

NIST's core competencies:

- Measurement science
- Rigorous traceability
- Development and use of standards

 Measurement is extremely important at NIST

NIST's mission:

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST's vision:

NIST will be the world's leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

NIST's core competencies:

- Measurement science
- Rigorous traceability
- Development and use of standards

- Measurement is extremely important at NIST
- *Must* quantify uncertainty:
 - "A measurement result is complete only when accompanied by a quantitative statement of its uncertainty."a

NIST's mission:

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST's vision:

NIST will be the world's leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

NIST's core competencies:

- Measurement science
- Rigorous traceability
- Development and use of standards

- Measurement is extremely important at NIST
- Must quantify uncertainty:
 - "A measurement result is complete only when accompanied by a quantitative statement of its uncertainty."
- Which language to discuss uncertainty?

NIST's mission:

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST's vision:

NIST will be the world's leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

NIST's core competencies:

- Measurement science
- Rigorous traceability
- Development and use of standards

- Measurement is extremely important at NIST
- *Must* quantify uncertainty:
 - "A measurement result is complete only when accompanied by a quantitative statement of its uncertainty."a
- Which language to discuss uncertainty?
 - If "probabilities": Bayesian analysis

 θ : what we **care** about

y: data

(fullest possible

information about θ ,

in light of y)

 θ : what we **care** about

y data

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
Bayes' Theorem

(Rev. Thomas Bayes, c. 1701 – 1761)

 θ : what we **care** about

y: data

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
Bayes' Theorem

(Rev. Thomas Bayes, c. 1701 – 1761)

- 2 questions for every guess (i.e. every θ)
 - 1. How **likely** does it make the actual data?
 - 2. How plausible is it?

 θ : what we **care** about y: data

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$ **Bayes' Theorem**

(Rev. Thomas Bayes, c. 1701 – 1761)

- 2 questions for every guess (i.e. every θ)
 - 1. How **likely** does it make the actual data?
 - 2. How plausible is it?
- Combine them to answer the *main question*:
 - 1. What is your *new* probability, now that you've seen the data?

 θ : what we **care** about

y: data

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
Bayes' Theorem

(Rev. Thomas Bayes, c. 1701 – 1761)

- 2 questions for every guess (i.e. every θ)
 - How likely does it make the actual data? "LIKELIHOOD"
 - 2. How **plausible** is it? "PRIOR"
- Combine them to answer the *main question*:
 - 1. What is your *new* probability, now that you've seen the data? "POSTERIOR"

function f: what I care about y data

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)}$$
Bayes' Theorem

(Rev. Thomas Bayes, c. 1701 – 1761)

- 2 questions for every guess (i.e. every θ)
 - How likely does it make the actual data? "LIKELIHOOD"
 - 2. How **plausible** is it? "PRIOR"
- Combine them to answer the *main question*:
 - 1. What is your *new* probability, now that you've seen the data? "POSTERIOR"

- Example: artificial dataset
- Noise model: Poisson

$$p(y|f) = \frac{f^y e^{-f}}{y!}$$

- · Example: artificial dataset
- Noise model: Poisson

$$p(y|f) = \frac{f^y e^{-f}}{y!}$$

- Example: artificial dataset
- Noise model: Poisson

$$p(y|f) = \frac{f^y e^{-f}}{y!}$$

- Example: artificial dataset
- Noise model: Poisson

$$p(y|f) = \frac{f^y e^{-f}}{y!}$$

- Example: artificial dataset
- Noise model: Poisson

$$p(y|f) = \frac{f^y e^{-f}}{y!}$$

- Assume independent pixels
- Problem: not plausible
 - (What makes a function "plausible"?)

- Assume smooth and continuous
- No functional form assumed

- Assume smooth and continuous
- No functional form assumed

- Assume smooth and continuous
- No functional form assumed

- Assume smooth and continuous
- No functional form assumed

- Assume smooth and continuous
- No functional form assumed

- Assume smooth and continuous
- No functional form assumed

"Plausibility" of function p(f)

- Assume smooth and continuous
- No functional form assumed

"Plausibility" of function p(f)

- Assume smooth and continuous
- No functional form assumed
- · Naturally: unrelated to data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data

- "Best of both worlds":
 - a Plausible curves, which
 - b fit the data
- To represent uncertainty: show *many guesses*
 - (Or, summarize them...)

Quantitative uncertainty visuals

Quantitative uncertainty visuals

Recap: Bayesian denoising

Recap: Bayesian denoising

Recap: Bayesian denoising

Plausible curves which fit the data

- Random variable F: an uncertain quantity
 - calculate probabilities for its values

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

- Random variable F: an uncertain quantity
 - calculate probabilities for its values
 - take "random draws" (roll the die, flip the coin...)
- Random function F(x)?

 Function: a collection of individual values

 Function: a collection of individual values

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - 2. correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - 2. correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - variance
 - 2. correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - 2. correlation

(weak)

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - 2. correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - 2. correlation

 $\overset{(\times)}{\times}$ correlation (strong) (weak)

- Function: a collection of individual values
- Every value is a random variable, with...
 - variance
 - 2. correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - variance
 - correlation

- Function: a collection of individual values
- Every value is a random variable, with...
 - variance
 - correlation
 - **correlation** × **variance**: covariance

- Function: a collection of individual values
- Every value is a random variable, with...
 - 1. variance
 - correlation
 - **co**rrelation × **variance**: **covariance**
- Gaussian Process:
 - Every point is a Random Variable
 - Any (finite) subset has Gaussian joint distribution

How to read the matrix?

- How to read the matrix?
 - 1. By individual entries

- How to read the matrix?
 - 1. By individual entries

- How to read the matrix?
 - 1. By individual entries

- How to read the matrix?
 - 1. By individual entries
 - 2. As a whole (central stripe)
 - Intensity: height of features
 - Width: width of features

- How to read the matrix?
 - 1. By individual entries
 - 2. As a whole (central stripe)
 - Intensity: height of features
 - Width: width of features

- How to read the matrix?
 - 1. By individual entries
 - 2. As a whole (central stripe)
 - Intensity: height of features
 - Width: width of features

Example 1: Hydrocarbon combustion

(Dave Sheen and Wing Tsang, NIST, Div. 632)

Hydrocarbon burning simulations

- Need (many!) reaction rate constants
 - Measured individually
 - Predictions are precise, quantitative

Example 1: Hydrocarbon combustion

(Dave Sheen and Wing Tsang, NIST, Div. 632)

Fig. 6 of: Ji et al. Combustion and Flame, 2011 (in press) Model Predictions 50 40 30 Experimental 20 Results

Hydrocarbon burning simulations

- Need (many!) reaction rate constants
 - Measured individually
 - Predictions are precise, quantitative, wrong

Datapoints (from several experiments)

- Datapoints (from several experiments)
- Model: lengthscales ℓ and σ_f

- Datapoints (from several experiments)
- **Model**: lengthscales ℓ and σ_f
- $\pm 1\sigma$ range

- Datapoints (from several experiments)
- Model: lengthscales ℓ and σ_f
- $\pm 1\sigma$ range
- See also: individual curves

- Datapoints (from several experiments)
- Model: lengthscales ℓ and σ_f
- $\pm 1\sigma$ range
- See also: individual curves
- But where did this model. come from...?

- William of Occam
 c. 1288 c. 1348
- Gave us Occam's Razor

Choose the simplest model which describeth thy data.

- William of Occam
 c. 1288 c. 1348
- Gave us Occam's Razor
 - (slightly paraphrased in the name of science)

Choose the simplest model which describeth thn data.

- William of Occam
 c. 1288 c. 1348
- Gave us Occam's Razor
 - (slightly paraphrased in the name of science)
- Claim: use probability, get this automatically
 - (And, quantitative, too!)

Choose the simplest model which describeth thn data.

- William of Occam
 c. 1288 c. 1348
- Gave us Occam's Razor
 - (slightly paraphrased in the name of science)
- Claim: use probability, get this automatically
 - (And, quantitative, too!)
- Example: 3 models...

MODEL 1:

Choose the simplest model which describeth thn data.

- William of Occam
 c. 1288 c. 1348
- Gave us Occam's Razor
 - (slightly paraphrased in the name of science)
- Claim: use probability, get this automatically
 - (And, quantitative, too!)
- Example: 3 models...

Choose the simplest model which describeth thn data.

- c. 1288 c. 1348
- Gave us Occam's Razor
 - (slightly paraphrased in the name of science)
- Claim: use probability, get this automatically
 - (And, quantitative, too!)
- Example: 3 models...

William of Occam

Possible Datasets

Some models can explain more datasets

Possible Datasets

Some models can explain more datasets

Possible Datasets

- Some models can explain more datasets
- Each model is probability distribution:
 - Same total probability to distribute

Possible Datasets

- Some models can explain more datasets
- Each model is probability distribution:
 - Same total probability to distribute

- Some models can explain more datasets
- Each model is probability distribution:
 - Same total probability to distribute
- Which data actually observed?

 9 models, varying complexity

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - Fit too poor
 - Fit too good
 - 3. Just right

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - 1. Fit too poor
 - Fit too good
 - 3. Just right

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - Fit too poor
 - 2. Fit too good
 - 3. Just right

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - Fit too poor
 - Fit too good
 - 3. Just right

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - Fit too poor
 - Fit too good
 - 3. Just right
 - Clear winner

- 9 models, varying complexity
 - Few datapoints (2): simple models preferred
 - New data, some models can't explain
 - Three tiers
 - Fit too poor
 - Fit too good
 - 3. Just right
 - Clear winner

Example 2: Metal Strain

(Adam Creuziger and Mark Iadicola, NIST, Div. 655)

- Testing stress/strain of steels (auto parts, etc.)
- Clamp flat plate; push upwards on middle
- Measure:
 - 1. **Stress:** X-ray diffraction
 - 2. Strain: Digital imaging of spray-paint pattern

Example 2: Metal Strain

(Adam Creuziger and Mark ladicola, NIST, Div. 655)

(Figures courtesy of Mark ladicola)

- Testing stress/strain of steels (auto parts, etc.)
- Clamp flat plate; push upwards on middle
- Measure:
 - 1. Stress: X-ray diffraction
 - Strain: Digital imaging of spray-paint pattern
 - Can't paint everywhere!

Spheres represent datapoints

- Spheres represent datapoints
- Continuous surface

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$
 - See also animations

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$
 - See also animations
- Competing model: anisotropic

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$
 - See also animations
- Competing model: anisotropic
 - Occam's razor lets us choose!
 - $\Delta \log(ML) = +183.4$

- Spheres represent datapoints
- Continuous surface
- Uncertainty bounds $\pm 1\sigma$
 - See also animations
- Competing model: **an**isotropic
 - Occam's razor lets us choose!
 - $\Delta \log(ML) = +183.4$
- Suggestions for experimental design

Need to extend the model

- Recall: how to read covariance matrices "as a whole"
 - Intensity: height of features
 - Width: width of features

Need to extend the model

- Recall: how to read covariance matrices "as a whole"
 - Intensity: height of features
 - Width: width of features
- Not flexible enough for real data!

Two extensions

• Two main extensions...

Two extensions

- Two main extensions...
 - 1. Varying Feature widths
 - $\ell \to \ell(X)$

Two extensions

- Two main extensions...
 - 1. Varying Feature widths
 - $\ell \to \ell(X)$
 - 2. Multiple contributions
 - Background everywhere
 - Localized "peak" regions

- Core/shell structure
 - Shell atoms vibrate more
 - Correlated thermal motion (Signature: hi-Q oscillations)

- Core/shell structure
 - Shell atoms vibrate more
 - Correlated thermal motion (Signature: hi-Q oscillations)

Q (1/A)

23 24 25 26 27 28 29 30

Core/shell structure

- Shell atoms vibrate more
- Correlated thermal motion (Signature: hi-Q oscillations)

- Core/shell structure
 - Shell atoms vibrate more
 - Correlated thermal motion (Signature: hi-Q oscillations)
- Problem: Poisson noise swamps these oscillations!

Q (1/A)

28 29 30

23 24 25

- Core/shell structure
 - Shell atoms vibrate more
 - Correlated thermal motion (Signature: hi-Q oscillations)
- Problem: Poisson noise swamps these oscillations!
- Changing feature widths: use ℓ(Q)

 AWS: jagged; loses signal at Q = 26A⁻¹

- AWS: jagged; loses signal at Q = 26A⁻¹
- Wavelets: smooth, but still lose signal

- AWS: jagged; loses signal at Q = 26A⁻¹
- Wavelets: smooth, but still lose signal
- Bayes: also smooth, but keeps signal
 - Uncertainty bounds capture true function

- AWS: jagged; loses signal at Q = 26A⁻¹
- Wavelets: smooth, but still lose signal
- Bayes: also smooth, but keeps signal
 - Uncertainty bounds capture true function

Need: global fidelity measure

- Need: global fidelity measure
- Mean square residuals . . .
 - 1. vs. noisy data
 - AWS looks best

- Need: global fidelity measure
- Mean square residuals ...
 - 1. vs. noisy data
 - AWS looks best
 - 2. vs. true curve
 - Bayes is best
 - AWS "good" score: was overfitting noise!

TiO₂ nanoparticles

NIST SRM 1898:

(Ohno et al., J. Catalysis, 2011)

- X-ray powder diffraction from 20 nm TiO₂ nanoparticles
- Motivations:
 - Real-world example (Violates our assumptions)
 - More difficult data (contains feature-free background regions)

- All handle sharp peaks
- Every technique misses a few features: AWS, wavelets, even Bayes

- All handle sharp peaks
- Every technique misses a few features: AWS, wavelets, even Bayes

- All handle sharp peaks
- Every technique misses a few features: AWS, wavelets, even Bayes

- All handle sharp peaks
- Every technique misses a few features: AWS, wavelets, even Bayes

- All handle sharp peaks
- Every technique misses a few features: AWS, wavelets, even Bayes

 Bayes single-curve comparable to benchmarks

- Bayes single-curve comparable to benchmarks
- Cross-validation: (Checking for overfitting)
 Bayes is best...
 - 1. In both categories
 - 2. For both training sets

Recap: Bayesian Concepts

- Bayesian analysis: using probabilities to describe uncertainty
 - choose answers with both plausibility and data fit
 - a natural framework for model selection concepts (Occam's razor)

Recap: Uncertainty in continuous functions

- Gaussian Processes: can stipulate smoothness, without worrying about functional form
- Open-source software package
- Very flexible: can help a variety of projects

Acknowledgements

- Team members: Igor Levin, Kate Mullen
- Collaborators:
 - · Flame speed: Dave Sheen, Wing Tsang
 - Metal Strain: Adam Creuziger, Mark ladicola
- WERB readers: Victor Krayzmann, Adam Pintar
- Statistical guidance: Antonio Possolo, Blaza Toman