

Life Cycle of an Aircraft

Market Requirements

M.BEM Meshless MD Inverse MD Inverse Problem

Design
Prototype
Certification

Production

AGILE

lufedi. Spilies

Scheduling, Control and Control ation Operation

AGILE

Damage & Tolerance & Overhauls
Enhancement

*«*enance

Retirement

Structural Integrity of Rotorcraft Components (DTA?)

Aircraft Fatigue Failure: Loss of Integrity

4-28-1988 After 89,090 flight cycles on a 737-200, metal fatigue lets the top go in flight

explosive decompression in flight, but was able to land safely.

Micro Crack Level: 10⁻⁵ m DTALE: MLPG-SGBNM Alternating

Mega- to Micro-Level Multiple-Scale

Analyses

Finite volume

Finite Element

Panel Methods

Meshless Methods

BEM

MDO

IPPD

Inverse Problems

AGILE

System Level: 10²m

Component Level: 1~ 10⁻² m

Micro Crack Level: $10^{-4} \sim 10^{-6} \text{ m}$

Initial Detected Crack Level: 10⁻⁴ m AGILE Alternating Techniques

Multi-Scale Damage Tolerance for Initially Detectable Cracks

Micro-Crack Initiation? Simply using continum-stress mechanics

AGILE: Model at 10⁻⁶ Level with Continuum Details

AGILE: Boundary surface mesh only, without refining FEM mesh. Higher order boundary-elements fit curved surfaces much better!

AGILE

- Continum Damage Mechanics
- Anisotropic Damage Mechanics
- Grain Boundary Fracture Mechanics
- Gradient Theories of Material Behavior
- ______? Far in the Future
- Ab Initio.....Dislocation Dynamics
- MD
- Statistical Mechanics
- DFT.....

AGILE (LOCAL): SGBEM-FEM Alternating

(Symmetric Galerkin Boundary Element – FEM Alternating Method)

(Overall Accuracies of KI, KII, KIII, Jk are the best of any available method)

with a crack

FEM Stiffness matrix inverted only ONCE, Faster!

Why AGILE?

- Accuracy is the best:
 - -State-of-the-art advanced theories & analytical developments are used, in conjunction with the most efficient computational algorithms.
 - Most advanced closed-form mathematics, and only minimal numerics

Advanced Theories

- Solvers are developed, based on both FEM(for uncracked structure) and SGBEM(for a subdomain w/2-D or 3-D crack).
- SGBEM is developed, using the newly developed weakly-singular BIEs:
 - Support higher-order elements for curved surfaces
 - higher performance and accuracy
 - Preserve the symmetry of the matrices
- FEM & SGBEM are coupled through the Schwartz alternating method:
 - FE mesh, and the SG-BEM crack-model are totally uncoupled
 - Ease of mesh creation
 - Very Fast algorithm for automated crack growth, FE model is factorized and solved only once.

AGILE: Faster and more accurate than traditional BIE

- Weakly-singular integrals are numerically tractable, with Gaussian quadrature algorithms using lower order integrations
- Higher-order elements with curved sides can be used, because of its requirement of only C₀ continuity, which is especially useful for modeling 3D non-planar cracks with less elements.

AGILE: More applicable than pure BIE

- Built-in FE solver handles more complicated geometries, including structural elements, such as beams, plates, shells, and MPCs.
- More efficient for problems with high volume/surface ratios, for example, thinwalled structures, manifold domains, and bi-material parts.
- 2-D, 2-D/3-D transition, & 3-D modeling of structures w/ mixed-mode crack-growth

SGBEM: Fundamental Solutions

3D Problems

$$u_i^{*p}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{16\pi\mu(1-\nu)r} [(3-4\nu)\delta_{ip} + r_{i}r_{,p}]$$

$$\sigma_{ij}^{*p}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{8\pi (1 - \upsilon)r^{2}} [(1 - 2\upsilon)(\delta_{ij}r_{,p} - \delta_{ip}r_{,j} - \delta_{jp}r_{,i}) - 3r_{,i}r_{,j}r_{,p}]$$

2D Problems

$$u_i^{*p}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{8\pi\mu(1-\upsilon)} [-(3-4\upsilon)\ln r\delta_{ip} + r_{,i}r_{,p}]$$

$$\sigma_{ij}^{*p}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi(1-\upsilon)r} [(1-2\upsilon)(\delta_{ij}r_{,p} - \delta_{ip}r_{,j} - \delta_{jp}r_{,i}) - 2r_{,i}r_{,j}r_{,p}]$$

where
$$\mathbf{r} = \boldsymbol{\xi} - \mathbf{x}$$

Displacement BIE

Using the fundamental solution **u*** as the test function we obtain:

DBIE:

$$u_{p}(\mathbf{x}) = \int_{\partial\Omega} t_{j}(\boldsymbol{\xi}) u_{j}^{*p}(\mathbf{x}, \boldsymbol{\xi}) dS - \int_{\partial\Omega} u_{m}(\boldsymbol{\xi}) t_{m}^{*p}(\mathbf{x}, \boldsymbol{\xi}) dS$$

in which, displacements u are determined from

- the boundary displacements and
- the boundary tractions

Singularity $O(1/r^2)$

when differentiated directly, this leads to a Traction BIE, which is, unfortunately, hyper-singular: O(1/r ³)

New Non-hyper Singular O(1/r²) Traction BIE

Using the test function, the global weak form of solid mechanics becomes

$$\begin{split} &\int_{\partial\Omega} n_i E_{ijmn} u_{m,n} \overline{u}_{j,k} \ dS - \int_{\partial\Omega} n_k E_{ijmn} u_{m,n} \overline{u}_{j,i} \ dS + \\ &\int_{\partial\Omega} n_n E_{ijmn} u_{m,k} \overline{u}_{j,i} \ dS - \int_{\Omega} u_{m,k} (E_{ijmn} \overline{u}_{j,i})_{,n} \ d\Omega = 0 \end{split}$$

Replacing the test function with the gradients of fundamental solution, we obtain:

TBIE:

$$-\sigma_{ab}(\mathbf{x}) = \int_{\partial\Omega} t_q(\boldsymbol{\xi}) \sigma_{ab}^{*q}(\mathbf{x}, \boldsymbol{\xi}) dS + \int_{\partial\Omega} D_p u_q(\boldsymbol{\xi}) \Sigma_{abpq}^*(\mathbf{x}, \boldsymbol{\xi}) dS$$

in which, stresses are determined from

- the boundary displacements and
 - the boundary tractions

Singularity $O(1/r^2)$

De-sigularization of Symmetric Galerkin Form

Applying Stoke's Theorem to Symmetric Galerkin form

$$\frac{1}{2} \int_{\partial\Omega} \hat{t}_{p}(\mathbf{x}) u_{p}(\mathbf{x}) dS_{x} = \int_{\partial\Omega} \hat{t}_{p}(\mathbf{x}) dS_{x} \int_{\partial\Omega} t_{j}(\xi) u_{j}^{*p}(\mathbf{x}, \xi) dS_{\xi}
+ \int_{\partial\Omega} \hat{t}_{p}(\mathbf{x}) dS_{x} \int_{\partial\Omega} D_{i}(\xi) u_{j}(\xi) G_{ij}^{*p}(\mathbf{x}, \xi) dS_{\xi}
+ \int_{\partial\Omega} \hat{t}_{p}(\mathbf{x}) dS_{x} \int_{\partial\Omega} n_{i}(\xi) u_{j}(\xi) \phi_{ij}^{*p}(\mathbf{x}, \xi) dS_{\xi}$$

$$-\frac{1}{2} \int_{\partial\Omega} t_{b}(\mathbf{x}) \hat{u}_{b}(\mathbf{x}) dS_{x} = \int_{\partial\Omega} D_{a} \hat{u}_{b}(\mathbf{x}) dS_{x} \int_{\partial\Omega} t_{q}(\xi) G_{ab}^{*q}(\mathbf{x}, \xi) dS_{\xi}$$

$$-\int_{\partial\Omega} t_{q}(\xi) dS_{\xi} \int_{\partial\Omega}^{CPV} n_{a}(\mathbf{x}) \hat{u}_{b}(\mathbf{x}) \phi_{ab}^{*q}(\mathbf{x}, \xi) dS_{x}$$

$$+\int_{\partial\Omega} D_{a} \hat{u}_{b}(\mathbf{x}) dS_{x} \int_{\partial\Omega} D_{p} u_{q}(\xi) H_{abpq}^{*}(\mathbf{x}, \xi) dS_{\xi}$$

Singularity O(1/r)

Han. Z. D.; Atluri, S. N. (2003): On Simple Formulations of Weakly-Singular Traction & Displacement BIE, and Their Solutions through Petrov-Galerkin Approaches, CMES: *Computer Modeling in Engineering & Sciences*, vol. 4 no. 1, pp. 5-20.

Intrinsic Features of the SGBEM

- weak singularity of the kernel:
 O(1/r)
- symmetric structure of the global "stiffness" matrix
- the possibility of using higher-order elements with curved sides

AGILE-2D: Cracks Emanating from Fastener Holes in a Fuselage Lap-Joint

FEM Model with Boundary and Load Conditions but NO Crack

2-D Infinite body with loaded arbitrarily-shaped line cracks ONLY: Singular Integral equations

Alternating Procedure: Apply the residual tractions back on to the FEM

AGILE-2D Mixed Mode Crack Growth

AGILE-2D: Multiple Holes

2D/3D Mixed Analyses with Parametric Crack Study

Skin Thickness = 0.063"

AGILE: Mixed 2D/3D Crack Parametric Analysis

Intermediate FE Model (Joint)

3D FE model with LBCs transferred from the global shell analysis by using AGILE GUI

Local FE Model of Rivet Hole

Multiple Crack Location study

Possible Crack Development

Figure 141 3D13R

Figure 142 3D13R

Experiment Report by Air Force

AFRL-VA-WP-TR-2000-3024

EQUIVALENT INITIAL FLAW SIZE TESTING AND ANALYSIS

SCOTT A. FAWAZ

AIR VEHICLES DIRECTORATE 2790 D STREET, STE 504 AIR FORCE RESEARCH LABORATORY WRIGHT-PATTERSON AFB, OH 45433-7542

JUNE 2000

FINAL REPORT FOR 10/01/1997 - 06/15/2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

CPU Time

- Global Analysis3 Minutes
- Intermediate Analysis (Joint)
 21.5 Minutes
- Local Analysis (Rivet Hole)
 4.5 Minutes
- Crack Analysis (AGILE)
 100 Minutes for 31 cases

Total CPU Time ≈ 2 Hours in a normal lap-top! (in 2003!)

Bridge Collapse: Catastrophic Failure

Application of AGILE-3D in the Fatigue Crack-Growth Analyses of Orthotropic Deck Bridges

Orthotropic Deck Bridges

Fatigue crack at the rib-deck welded joint

dynamic load at the U-rib joint

The Computational Model (XFEM) used for the Fatigue Crack Analysis of the Rib-Deck Welded Joint

2-D Plane Strain Model

which implies that the crack at the rib-deck is "infinitely" long, across the whole span of two horizontal floor beams / stiffeners

An extremely fine mesh has to be used at the crack tip

Using AGILE-3D for the Prediction of Fatigue Life of Orthotropic Deck Bridges

The advantages of using AGILE-3D for the fatigue crack analysis of orthotropic deck bridges:

- 1) 3-D model can be used to account for the different sizes and geometries of cracks;
- 2) Computationally efficient as a coarse mesh is able to give accurate results.

Typical structural components

Multiple Level Analyses

AGILE: Non-planar 3D fatigue growth

Non-planar 3D fatigue growth of an inclined semi-circular surface crack

Nonplanar fatigue growth of an inclined semi-circular surface crack

- ASTM E740 specimen
- Mixed-mode fatigue growth

AGILE Models

Finite Body w/o Crack

2304 Elements (Hexa 20)

24 Elements along crack front (Quad 8)

Stress Intensity Factors :Initial Crack

Han. Z. D.; Atluri, S. N. (2002): SGBEM (for Cracked Local Subdomain) – FEM(for uncracked global Structure) AlternatingMethod for Analyzing 3D Surface Cracks and Their Fatigue-Growth, CMES: Computer Modeling in Engineering & Sciences, vol. 3 no. 6, pp. 699-716.

Crack in the specimen

Final Crack

Final Crack Predicted by using AGILE

Fatigue Loading Cycles

The Non-planarly Growing Crack...

Analysis of Cracks in Solid Propellant Rocket Grains

Solid Propellant Rocket Grain under tension and inner pressure

Unsymmetric BE Crack Model

Semi-Circular Crack

Crack Front Advancements

Center Line of Growing Crack

Final Crack Surface

Simulation: Growth of the Crack

Some Other Fracture Codes

- Codes based on analytical/handbook solutions
 - NASGRO, FASTRAN
- Full BEM codes
 - BEASY, FRANC3D
- Full FEM codes with specific elements
 - ABAQUS, MARC, ZenCrack, XFEM
- FEM-SGBEM Alternating Code
 - AGILE (Most Efficient & Most Accurate)

From FEM, ZenCrack to XFEM

• FEM: Enriched Singular Elements (developed in 1970's, pioneered by Atluri and his colleagues, implemented in ABAQUS, MARC, etc.)

- Confirming & adaptive Meshes.
- Accuracy dependent on the mesh quality.
- Costly labor of Meshing & Re-Meshing
- No automated crack growth.

Enrichment Elements are the KEY!

From FEM, ZenCrack to XFEM

- Zen Crack: a crack mesh generator
 - Insert a crack into a noncracked FEM Mesh
 - Create the meshes outside involving FEM Solvers.
 - Reduce labor work in creating the conforming and adaptive meshes
 - Algorithm is unstable.

Enriched Elements still play the KEY role!

From FEM, ZenCrack to XFEM

- XFEM: Split elements to match the cracks
 - Integrate the element manipulation into the FEM Solvers, and HIDE it from the users.
 - No adaptive meshes
 - Splitted elements without quality.
 - No accuracy control.

Only 2D Enriched Elements can be used.

What about XFEM 3D? (up to 2010)

- Only Tet Mesh but No Hexa Mesh.
- No 3D enrichment element for non-planar cracks.
- The accuracy is heavily dependent on the initial FEM Mesh.

FEM without Enrichment Elements!

What about XFEM 3D?

(Rabczuk, Bordas, Zi (2010): Computers and Structures 88, pp. 1391–1411)

Penny-shaped embedded crack in a tension bar

- 30x30x30=27,000 elements: Error = 3.3%
- 60x60x60=216,000 elements: Error = 2.07%
- 120x120x120=1,728,000 elements: Error = 1.21%
- AGILE: 20 elements Error = 0.3%

XFEM-3D is NOT suitable for fatigue & fracture analyses

What about XFEM 3D in Commercial Codes?

XFEM3D, without singularity enrichment, is NOT suitable for fracture analysis!

How to Reach 10⁻⁶ Level even using continuum mechanics?

FEM: Zoom-in refined localized mesh,
 => 10⁻⁵

XFEM: Splitting
 Elements without
 mesh quality control,
 => 10⁻⁵

 AGILE: Completely de-coupled FEM-SGBEM LOCAL model, Cracks can be two orders lower, => 10⁻⁶

Comparison between Codes

Codes	Modeling Time	CPU Time	Accuracy	Fully Automated Growth	3D NonPlanar Crack	Complicate Model and LBCs	Link Commercial FE Codes
AGILE	Crack only	Minutes per step	<1%	YES	YES	YES	YES
BEASY	Full BEM Model with Crack	6~10 times slower	~3%	Restriction	YES	Quad Mesh	Limited
FRANC3D	Full BEM Model with Crack	Slower	~3%	Unstable	YES	NO	NO
NASGRO	Predefined Crack only	Fast		YES	NO	NO	OO
ABAQUS MARC	Full FEM Model with Crack	Fast	~10%	NO	YES	YES	Self
ZenCrack	Full FEM Model with Crack	Fast	~10%	Unstable	YES	Unstable	NA
XFEM		-	Worse than ABAQUS	YES	NO	Not for Cracks	YES

AGILE has the BEST Accuracy & can be run on demand in a real-time fashion!

AGILE Probabilstic Prognostics Tool

Integrated Structural Health Management System

Why AGILE?

- Simple to use:
 - -Easiness of Model Creation
 - User-Friendly Graphical Interfaces
 - Least computationally intensive
 - Automatic re-solution of Intermediate model, if load-redistribution due to crack-growth occurs

What is embedded in AGILE?

Open Architecture:

- Various mixed mode loadings.
- 2-D & 3-D Mixed-Mode, Non-planar fatiguecrack-growth modeling
- Sophisticated mathematics + minimal numerics
- -Fatigue-crack-growth models.
- Probabilistic analyses.

Support multiple load cases

- Structural components are undergoing several loading cases within one flight, including take-off & landing, lifting, carrying. The load spectrums are different.
- The life of the loading components will be estimated under the combined load cases.

Easiness of Model Creation

- Simple FE mesh creation, without the crack surface in the FE model.
- Simple creation of crack model, as only a surface mesh in SGBEM
- Independence of the SGBEM and FE meshes:
 - leverage the existing FE models and results
 - Parametric crack analysis is very simple

Graphical User Interface Fully integrated into PATRAN

- The proficiency of the GUI makes AGILE userfriendly and minimizes human-errors typically associated with data preparation.
- Supporting ALL AGILE model creation.
- Seamless integration with MSC.PATRAN, minimizes user training.
- Supporting PATRAN session file, i.e. recording and playing back.
- Supporting all PATRAN FE model files for NASTRAN, MARC, ABAQUS and so on.

AGILE Architecture

Support most crack growth models

- Paris Model
- Walker Model
- NASGRO Model
- Load Spectrum
- Analytical models for plasticity-induced Crack-closure

AGILE as an Integrated Probabilistic Prognostic Tool in an SHM System

Probabilistic Analysis

- The probabilistic information on pre-crack damage and macro-crack growth will be analyzed in terms of location, size and type of damage.
- Automatic life prediction in a probabilistic sense for structures will be implemented with probabilistic information of the real environmental conditions.
- Experimental database will be used as one possible probabilistic input, as well as other theoretical and numerical models.

AGILE-2D: Demonstration

Mixed Mode Crack Growth: No Changes in FE Mesh

Dialog-based Interface

