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Pacific Northwest National Laboratory: 
Battelle-managed and mission-driven 

DOE Office of Science Laboratory 
Operated by Battelle since 1965 
Outstanding science, impactful solutions 
Nearly 5,000 employees  

 

Our vision 

PNNL will be recognized 

worldwide and valued 

nationally and regionally 

for our leadership in 

science and for rapidly 

translating discoveries 

into solutions for 

challenges in energy,  

the environment, and 

national security. 



Applied Statistics and Computational 
Modeling Group 
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Applied Statistics is a 
mathematical discipline dealing 
with methods of obtaining, 
analyzing and summarizing data. 

Computational Modeling utilizes 
extensive computational 
resources to generate models to 
study the behavior of complex 
systems. 

Our Group consists of 24 
Statistical Scientists, 7 Operations 
Research Scientists, and 13 in 
other fields. 

 



Diversity of Projects 

Our group works on MANY 
diverse projects, including –  

Insider Threat 

Chemometrics 

Epidemiology 

VSP (Visual Sample Plan) 

POW clavicle identification 

RPMP (Portal Monitoring) 

. . . 

Situational Awareness and 
Alerting 



The Aviation Problem and Needs 

For many years, the aviation industry relied mainly 
on domain expertise to understand aviation safety. 

Gigabytes of data are now recorded daily. 

On-board instrumentation records hundreds of variables 
for every flight (i.e. roll, pitch, airspeed, engine 
temperature, etc). 

Thousands of flights daily. 

Aviation experts are in need of sophisticated, user-
friendly software to rapidly and effectively drill into 
the data to find insight into possible safety issues. 
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Morning Report 
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The Morning Report was developed 
to help the aviation industry use 
mathematical methods to look at 
thousands of flights a day. 
 
These analyses focused on -  

Typical patterns, that 
characterize >99% of the flights 
Atypical events, that are worthy 
of individual inspection 



Step 1: 
Download Data 

Download daily or weekly 
From tapes, disks, or solid 
state devices 
Use commercially available 
playback software 
Insert data into commercially 
vended database 

Apply knowledge-based filters 
Identify “bad” data 
Remove the “bad” data 
Inform user of QA problems 

Time 
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Step 2: 
Check the Data 
Quality 



Step 3: 
Conduct Pre-defined Exceedance Checks 

Airline experts define specific data 
comparisons to be made at specific 
routine events 

Are the gear down while altitude is 
above 18,000 ft? 
Are the flaps extended while airspeed 
is greater than 300 knots? 
Etc. 

This requires that we envision the potential problems 

before they occur. 

Time (secs) Param 1 Param 2 .  .  . Param P Routine Events

1 103.40 1 277.40 Start Takeoff

2 103.70 1 266.30

… … … … …

126 104.49 1 267.31

127 104.98 1 268.19

128 105.13 1 268.48

129 105.45 0 269.12 Gear Up

130 105.73 0 269.73

131 106.39 0 269.78

… … … … …

4021 106.82 0 270.71

4022 107.33 0 270.78

4023 107.89 0 270.85 10000 ft AFE

4024 108.40 0 271.14

4025 108.53 0 271.53

4026 109.38 0 272.03

.   .   . … … … …

N 110.68 0 273.70 Touchdown



Step 4:  
Structure the Data 

Data are parsed into flight 
segments  
Flight Segments based on Event 
Markers, e.g. 

Gear-up 
Cross outer-marker 
Descent through  
1000 ft AFE 

Customizable to each air carrier 
phase definitions 

Time (secs) Param 1 Param 2 .  .  . Param P

151

152 103.40 1 277.40

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45

337 105.73 0 105.73

… … … … …

1225 106.82 0 106.82

1226 107.89 0 107.89

1227 108.67 0 107.93

… … … … …

3236 108.77 0 108.78

3237 109.54 0 109.34

3238 109.94 0 109.77

… … … … …

6259 109.29 0 108.72

6260 109.42 0 109.64

6261 109.68 0 109.77

… … … … …

6673 110.27 0 109.97

6674 110.27 0 110.42

6675 110.96 1 110.94

… … … … …

7786 111.83 1 111.62

7787 112.24 1 112.33

7788 112.41 1 112.94

Time (secs) Param 1 Param 2 .  .  . Param P Routine Events

151

152 103.40 1 277.40 Rotate

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45 Gear Up

337 105.73 0 105.73

… … … … …

1225 106.82 0 106.82

1226 107.89 0 107.89 10000 ft AFE

1227 108.26 0 108.06

… … … … …

3236 108.42 0 108.93

3237 108.47 0 109.89 Max Altitude

3238 108.94 0 110.36

… … … … …

6259 108.93 0 108.39

6260 109.49 0 109.14 10000 ft AFE

6261 109.64 0 110.13

… … … … …

6673 109.02 0 111.15

6674 109.87 0 112.12 Gear Down

6675 109.96 1 112.40

… … … … …

7786 110.27 1 112.70

7787 111.27 1 113.20 Touchdown

7788 111.90 1 113.59

Time (secs) Param 1 Param 2 .  .  . Param P Event Marker ACR Phase

151

152 103.40 1 277.40 Rotate Takeoff

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45 Gear Up

337 105.73 0 105.73

… … … … … climb

1225 106.82 0 106.82

1226 107.89 0 107.89 10000 ft AFE

1227 108.10 0 108.07

… … … … …

3236 108.51 0 109.04

3237 109.33 0 109.12 Max Altitude Cruise

3238 110.25 0 109.74

… … … … …

6259 109.04 0 108.60

6260 109.85 0 109.57 10000 ft AFE

6261 109.87 0 110.39

… … … … … Approach

6673 110.70 0 110.53

6674 111.19 0 110.68 Gear Down

6675 111.90 1 111.29

… … … … …

7786 112.13 1 112.10 Landing

7787 112.91 1 112.43 Touchdown

7788 113.63 1 112.90
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Step 5: 
Create Derived 
Parameters to Capture 
Physics Based Insights 

Aircraft heading with respect to 
runway 
 

Aircraft location with respect to 
runway 
 

Derived Energy Parameters 
 Total energy 
 Kinetic energy 

Others 

Continuous Variable 
 Air speed, roll, altitude, vibration, 

etc. 

Discrete Variables 
 Gear position, autopilot mode, 

reversers status, etc. 
 

Data Compression Signature 
 Lossy compression for 

continuous variables  
 Lossless compression for discrete 

variables 

Step 6: 
Calculate Preliminary 
Flight Parameter 
Signatures 

Step 7: Store the Signatures into the Database 



Analysis 

The previous steps (Steps 1-7) are performed once 
for each flight. 

After many flights are collected, Steps 8-11 
compare the flights to each other and identify 

Typical patterns 

Atypical events 

The relevant information is shared with the user. 



Step 8: 
Select the Data 

Select a subset of data: 
 Aircraft type 

 Airports 

 Flight Phase 

 Time Frames 

 Other Parameters 

Transform and summarize the 
signature from the desired 
subset of data. 

Step 9:   
Transform the Signatures 

Time (secs) Param 1 Param 2 .  .  . Param P Event Marker

129 105.45 0 269.12 Gear Up

130 105.73 0 269.73

131 106.39 0 269.78

… … … … …

4021 106.82 0 270.71

4022 107.33 0 270.78

4023 107.89 0 270.85 10000 ft AFE

Time (secs) Param 1 Param 2 .  .  . Param P Event Marker

1 103.40 1 277.40 Start Takeoff

2 103.70 1 266.30

… … … … …

126 104.49 1 267.31

127 104.98 1 268.19

128 105.13 1 268.48

129 105.45 0 269.12 Gear Up

130 105.73 0 269.73

131 106.39 0 269.78

… … … … …

4021 106.82 0 270.71

4022 107.33 0 270.78

4023 107.89 0 270.85 10000 ft AFE

4024 108.40 0 271.14

4025 108.53 0 271.53

4026 109.38 0 272.03

.   .   . … … … …

N 110.68 0 273.70 Touchdown

Time (secs) Param 1 Param 2 .  .  . Param P

151

152 103.40 1 277.40

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45

337 105.73 0 105.73

… … … … …

1225 106.82 0 106.82

1226 107.89 0 107.89

1227 108.67 0 107.93

… … … … …

3236 108.77 0 108.78

3237 109.54 0 109.34

3238 109.94 0 109.77

… … … … …

6259 109.29 0 108.72

6260 109.42 0 109.64

6261 109.68 0 109.77

… … … … …

6673 110.27 0 109.97

6674 110.27 0 110.42

6675 110.96 1 110.94

… … … … …

7786 111.83 1 111.62

7787 112.24 1 112.33

7788 112.41 1 112.94

Time (secs) Param 1 Param 2 .  .  . Param P Routine Events

151

152 103.40 1 277.40 Rotate

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45 Gear Up

337 105.73 0 105.73

… … … … …

1225 106.82 0 106.82

1226 107.89 0 107.89 10000 ft AFE

1227 108.26 0 108.06

… … … … …

3236 108.42 0 108.93

3237 108.47 0 109.89 Max Altitude

3238 108.94 0 110.36

… … … … …

6259 108.93 0 108.39

6260 109.49 0 109.14 10000 ft AFE

6261 109.64 0 110.13

… … … … …

6673 109.02 0 111.15

6674 109.87 0 112.12 Gear Down

6675 109.96 1 112.40

… … … … …

7786 110.27 1 112.70

7787 111.27 1 113.20 Touchdown

7788 111.90 1 113.59

Time (secs) Param 1 Param 2 .  .  . Param P Event Marker ACR Phase

151

152 103.40 1 277.40 Rotate Takeoff

153 103.70 1 103.70

… … … … …

335 105.13 1 105.13

336 105.45 0 105.45 Gear Up

337 105.73 0 105.73

… … … … … climb

1225 106.82 0 106.82

1226 107.89 0 107.89 10000 ft AFE

1227 108.10 0 108.07

… … … … …

3236 108.51 0 109.04

3237 109.33 0 109.12 Max Altitude Cruise

3238 110.25 0 109.74

… … … … …

6259 109.04 0 108.60

6260 109.85 0 109.57 10000 ft AFE

6261 109.87 0 110.39

… … … … … Approach

6673 110.70 0 110.53

6674 111.19 0 110.68 Gear Down

6675 111.90 1 111.29

… … … … …

7786 112.13 1 112.10 Landing

7787 112.91 1 112.43 Touchdown

7788 113.63 1 112.90

e.g.; these flight 

segments combine to 

form the “Cruise” phase 



Step 10:  
Cluster the Transformed Signatures 

Typical patterns 
Clusters of similar flights 

Summarized in plain English 

Atypical flights  
Singletons, clusters of 1 or 2 

Summarized in plain English 

Performed for each user-

defined and selected flight 

phase 



Step 11:   
Find the Atypical Flights 

Atypical flights are defined to be - 
Singletons  

Very small clusters (atypical 
clusters) 

Differs from classic exceedance 
analysis which look for parameter 
values outside of pre-defined 
ranges within a flight phase 
Can be the impetus for further 
investigation 

Finds the  

unenvisioned !! 

 
End-users don’t have 

 to know what they  

are looking for !! 



Step 12: 
Present the Findings 

New flights processed overnight 

Analysis processing occurs overnight 

Morning report is ready by 7 am every morning 

Identifies most atypical flights 
Excludes flights previously reviewed and dispositioned 

Enables drill down to flight details 

Allows capture images in Microsoft PowerPoint files for 
communication ease 

 



Significant parameters explaining reasons for atypicality 

Flight ID info  

intentionally  

blocked out. 
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Flight 2064  

Typical Flights (gray band) 

Exemplar (highly typical flight) 

What made Flight 2064 Atypical? 
 



Cluster Comparison 
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Automated cluster label 



Atypical Cluster Performance Envelope 
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Automated cluster label 



Storymeister Example 

Cluster 8 contains 18 flights.  It has highly unusual values 
in the engine parameter set during the 5000 ft to 2500 ft 
approach phase.  It also has moderately unusual values in 
the flight controls parameter set during this phase. 

Cluster 8 has extremely large N1.Left (mean value of 96 
PCT) and N1.Right (mean value of 97.1 PCT) values during 
the 5000 ft to 2500 ft approach phase.  It also has 
unusually low flap.position.left (mean value of 3 degrees) 
values and extremely high noise in Airspeed.CAS (mean 
noise of 1.5 knots).   The Rudder.Position rate of change 
was moderately high (mean rate of change of 0.25 
degrees). 
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How Does This Apply to Other Domains? 

Aviation has many flights with each flight 
containing many variables being recorded over 
time.  Industry is interested in atypical events and 
typical patterns. 

Many other domains have many variables being 
recorded over time.  Examples include air traffic 
control, cyber security, finance, weather, and the 
electric power grid. 

The following slides show a few examples of how 
this has been applied to weather and power grid 
data. 
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Changes to the Morning Report System to 
Accommodate Other Domains 

Focus on time-related events (a little different 
than aircraft). 

Output converted to html web pages, so that 
most output can now be viewed in a simple web 
browser. 

All coding done in R. 
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Weather Data Analyses 

Two different data streams included in the 
analyses.   

Stream 1 has a few thousand variables 
measured every hour for about 10 years. 

Stream 2 has a few thousand variables 
measured every minute for 3 years. 



2002-03-01 to 2006-02-28 

2003-03-05 



2003-01-01 to 2003-03-31 



















2003-10-01 to 2003-12-31 

2003-11-01 



2003-10-01 to 2003-12-31 





Domain expert identified 

this as being caused by 

bad outputs by the 

weather models. 







Weather Conclusions 

It’s hard to analyze weather data with only a few 
years of data.  More data will better define the 
patterns. 

Some of the identified atypical events could have 
been detected by walking outside (i.e. storm front 
coming). 

Some of the identified atypical events are issues 
in the data, or in the output of the models.  This 
process is very good at finding bad data. 
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Power Grid Data 

Six months of PMU data was analyzed.  The data 
consists of hundreds of variables recorded 30 
times a second.   

Variables are related to frequency, current, and 
voltage and are taken from many locations. 

Variable names are blocked out due to non-
disclosure agreements. 
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Next Steps 
SitAAR  
(Situation Awareness Alerts in Real-time) 

We have demonstrated a reporting system which 
finds atypicalities and typical patterns.  Next step 
is to convert this to a real-time process. 

Process enough data within the domain to be able to 
establish typical patterns.   

Use “active learning” to refine the patterns with domain 
input. 

Convert to a classification system, using classification 
rules to identify the patterns. 

Allow for the creation of new patterns, as they develop. 

Add Shewhart and other control chart alerts. 
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Contact Information 

Brett Amidan 

b.amidan@pnl.gov 

509 375-3692 

Tom Ferryman 

tom.ferryman@pnl.gov 

509 375-3888 
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