

Large-Scale Curvature of Networks: And Implications for Network Management and Security

Iraj Saniee (Joint work with Onuttom Narayan, UCSC & funded by AFOSR) Math & Computing Lab, Bell Labs, ALU 600 Mountain Ave., Murray Hill, NJ 07974

Presentation at NIST, Nov. 9th, 2010

Understanding Large-Scale Networks

• Hard to visualize due to scale

• Unclear what is essential and what is not for overall *performance*, *reliability* and *security*

• Much of the existing work on "complex networks" focuses on *local* measures such as degree distribution, clustering coefficients, etc. at the expense of *global* properties

Need more fundamental ways to
"summarize" critical network information

• A promising direction is to look at key geometric characteristics of networks: *dimension* and *curvature*

Rocketfuel dataset 7018 10152 nodes, 28638 links, diameter 12

Dimension -- Degrees of Freedom

Dimension Dimension of a Lattice & Average Shortest Path Lengths

• How fast does a "typical ball" grow? Look at circumference or volume as a function of "radius"

Circumference of Configuration (dimension D, degree d)	1-hop away	2-hops away	3-hops away	4-hops away
Square (D=2,d=4)	4=4*1 ¹	8=4*2 ¹	12=4*3 ¹	16=4*4 ¹
Hexagon (D=2,d=3)	3=3*1 ¹	6=3*2 ¹	9=3*3 ¹	12=3*4 ¹
Triangle (D=2,d=6)	6=6*1 ¹	12=6*2 ¹	18=6*3 ¹	24=6*4 ¹
Cube (D=3,d=6)	6=6*1 ²	16=4*2 ²	36=4*3 ²	64=4*4 ²
General (D,d)	d*1 ^(D-1)	d*2 ^(D-1)	d*3 ^(D-1)	d*4 ^(D-1)

Average length of a shortest path <h> of a grid in dimension D

 $\approx (D/D+1)(DN/d)^{1/D} \approx O(N^{1/D})$

Dimension Dimension of a Network & Its Average Shortest Path Length

В

D

н

G

Н

F

Start node

1 hop away 2 hops away

3 hops away 4 hops away

Measure the number of neighbors of a node X h hops away. How does this number scale with h? If roughly like $h^{\Delta-1}$ then we say Δ is the dimension of the graph in the neighborhood of X.

Node	1-hop away	2-hops away	3-hops away	4-hops away
J (NSF)	3	6		
E (NSF)	2	5	1	1
B (NSF)	5	4		
A (lattice)	3	3	2	
B (lattice)	3	3	2	

$$v(r) \sim r^{D} \Rightarrow log(v(r)) \sim D^{*}log(r)$$

All Rights Reserved © Alcatel-Lucent 2010, #####

Dimension

Data Source - Rocketfuel (Washington U, NSF 2002-05)

Look at scaling of the average shortest path length <h>

•In 2-dim grid, $<h> \sim \int N$ (or $\sim N^{1/D}$ in D-dimensional grid)

•Look at "Rocketfuel" data, [Washington University researchers' detailed connectivity data from various ISPs 2002-2003]

<h> does not scale like JN or N^{1/D}
 but are more like log(N) -- "Small
 World" like

=> RF networks do not appear to be grid-like (or flat) nor do they exhibit characteristics of finite dimensions

Network ID	Network Name	Size #node - #links	Average Shortest Path Length
1221	Telstra (Australia)	2998 - 7612	5.53
1239	Sprintlink (US)	8341 - 28050	5.18
1755	EBONE (US)	605 - 2070	6.0
2914	Verio (US)	3045 - 10726	6.0
3257	Tiscali (EU)	855 - 2346	5.3
3356	Level 3 (US)	3447 - 18780	5.0
3967	Exodus (US)	895 - 4140	5.9
4755	VSNL (India)	121 - 456	3.2
6461	Abovenet (US)	2720 - 7648	5.7
7018	AT&T (US)	10152 - 28638	6.9

Curvature -- Deviation from the Flat

Curvature Basic Geometry: Vertex Curvature of Polyhedra

Curvature Combinatorial Vertex Curvature for Planar Graphs

One could imitate the previous definition to define a *combinatorial angular defect/excess* at vertices of a planar graph (net of 2π). E.g.,

$$k(v) = 2\pi - (\frac{1}{2} * \frac{2}{4} 2\pi + \frac{\pi}{3} + \frac{1}{2} * \frac{3}{5} 2\pi + \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3})$$

In effect, assume each face is a regular *n*-gon, compute the facial angles, add up and subtract from 2π [Higuchi'01]

$$k(v) = 2\pi - \sum_{v \in f} \frac{1}{2} \frac{2\pi(f-2)}{f} = 2\pi(1 - \frac{d(v)}{2} + \sum_{v \in f} \frac{1}{f})$$

Gauss-Bonnet theorem (extension of Descartes') then states

$$\sum_{v \in G} k(v) = 2\pi \chi(G) = 2\pi (2 - 0)$$

Curvature Non-Planar Graphs Always Minimally Embed on Surfaces

What can be said about non-planar graphs? Use the fact that all finite graphs are *locally* planar.

[Ringel-Youngs '68] ("All graphs with N≥3 nodes are locally 2-dimensional.") For N≥3, any G=(N,L) can be embedded in T^g , a torus with g holes, where

 $g \le \left\lceil (N-3)(N-4)/12 \right\rceil$

The minimal g is called the genus of the graph G.

Curvature Non-Planar Graphs -- Strong Embeddings

But there is more that we need:

[Edmonds-Heffter? see Mohar-Thomassen and others]. The above embedding can always be done "strongly", i.e., where the resulting embedding on T^g has faces that are 2-cells (equivalent to disks).

Curvature Non-Planar Graphs: Combinatorial Curvature

Now with well-defined faces, the previous definition of vertex curvature can be reused:

$$k(v) = 2\pi (1 - \frac{d(v)}{2} + \sum_{v \in f} \frac{1}{f})$$

And by Gauss-Bonnet Theorem

$$\sum_{v \in G} k(v) = 2\pi \chi(G) = 2\pi (2 - 2g)$$

We get the total curvature!

12 Nov. 2010 I. Saniee

Curvature Summary (So Far)

[Exercise] What is the genus of K_7 ? Identify all faces of the strong minimal embedding of K_7 on T^1 . Compute the curvature at each vertex. Verify that $\chi(K_7)=2-2g$.

The Euler Characteristic of a graph is an intrinsic invariant that determines its total (combinatorial) curvature*. We say a graph is

- "flat" when χ(G)=0
- "spherical" when χ(G)>0
- "hyperbolic" when χ(G)<0

Note. It is not easy to compute $\chi(G)$ for large scale networks!

* There is also a similar concept of "discrete curvature" for graphs that uses actual edge lengths and angles. It results in the same $\chi(G)$.

Dimension and Curvature

So far:

Managed to define (relatively) satisfactory notions of dimension and curvature for networks but

- dimension does not appear to be finite
- curvature does not appear to be computable

Give up?

Possible alternative: Consider metric structure of networks

Other Locally 2-Dimensional Models: The Poincaré Disk *H*²

Consider the unit disk { $x \in R^2$; |x| < 1} with length metric given by

$$ds^{2} = \frac{dx^{2} + dy^{2}}{(1 - x^{2} - y^{2})^{2}}$$

the hyperbolic metric.

Advantages

•In the small scale it is 2-dimensional, but has much slower scaling of geodesics (shortest paths) than \sqrt{N}

•Has meaningful small-scale and large-scale curvatures

Relationship to graphs? The Poincaré disk comes with numerous natural "scaffoldings" or "tilings".

Scaffoldings of H²: Hyperbolic Regular Graphs

Consider $X_{p,q}$ tilings (isometries) of H^2 , that at each vertex consist of *q regular p-gons* for integers *p* & *q* with (p-2)(q-2)>4 (flat with equality)

Note. Since networks of interest to us are typically finite, we'll consider truncations of $X_{p,q}$, the part within a (large enough) radius *r* from the center. Call this $TX_{p,q}$.

16 Nov. 2010 I. Saniee

Some Key Properties of $X_{p,q}$

1. Negative local curvature. The local combinatorial curvature at each node of $X_{p,q}$ is negative a = a = 4 - (n-2)(a-2)

$$\kappa_{v} = 2\pi \{1 - \frac{q}{2} + \frac{q}{p}\} = 2\pi \{\frac{4 - (p-2)(q-2)}{2p}\} < 0$$

or $\kappa_{v} = 2\pi q (\frac{1}{p} + \frac{1}{q} - \frac{1}{2}) < 0$

- 2. Exponential growth. Number of nodes within a ball of radius r is proportional to λ^r for some $\lambda \equiv \lambda(p,q) > 1$ (e.g., for $X_{3,7}$, $\lambda = \phi$, the golden ratio) or equivalently
- 2'. Logarithmic scaling of geodesics. For (a finite truncation of) $X_{p,q}$ with N nodes, the average geodesic (shortest path length) scales like O(log(N))

Curvature in the Large: Geodesic Metric Spaces

•Computation of *total* curvature of non-flat networks with varying nodal degrees via $\sum_{\nu \in G} \kappa_{\nu}$ does not appear to be possible/easy nor does it provide information about *the large-scale* properties of networks

•A more direct definition of (*negative*) *curvature in the large* is the thin-triangle condition for a geodesic metric space (or a *CAT*(-*k*) space):

[M. Gromov's Thin Triangle Condition for a hyperbolic geodesic metric space] There is a (minimal) value $\delta \ge 0$ such that for *any* three nodes of the graph connected to each other by geodesics, each geodesic is within the δ -neighborhood of the union of the other two.

Example. For H^2 , $\delta = \ln(\sqrt{2} + 1)$. [Sketch. Largest inscribed circle must be in largest area triangle, Area_H(ABC) = π -(α + β + χ), maximized to π when α , β , χ =0 or when A, B, & C are on the boundary.]

What Can We Say About Communication Networks?

		1 3	5		
⁻ ks	Network ID	Network Name	Number of nodes	Number of links	Diameter
	1221	Telstra (Aust.)	2998	3806	12
	1239	Sprintlink (US)	8341	14025	13
	1755	EBONE (US)	605	1035	13
5	2914	Verio (US)	3045	12291	13
	3257	Tiscali (EÚ)	855	1173	14
	3356	Level 3 (US)	3447	9390	11
	3967	Exodus (US)	895	2070	13
	4755	VSNL (India)	121	228	6
	6461	Abovenet (US)	2720	3824	12
	7018	AT&T (US)	10152	14319	12
	Hyperbolic 3-7 grid	$X_{3,7}$, synthetic	4264	7511	14
uel	Barabasi-Albert	(B-A), synthetic	10000	19997	9
	Watts-Strogatz	(W-S), synthetic $(p=0.2)$	80x80	13289	20
	Triangular lattice	synthetic	469	1260	24
	Square lattice	synthetic	80x80	12640	158
etic	Erdos-Renvi	(E-R), synthetic	7992	20132	30

Extracted topologies from RF of 10 global IP networks

In RF data, a **node** is a unique IP address and a **link** is a (logical) connection between a pair of IP addresses enabled by routers, physical wires between ports, MPLS, etc.

- Communication networks are (geodesic) metric spaces via reasonable link metrics (e.g., the hop metric)
- Is there evidence for negative curvature in *real* networks?
- We consider 10 Rocketfuel networks and some prototypically flat or curved *famous* synthetic networks to test this hypothesis

Some "Famous" Synthetic Networks: E-R, W-S, B-A

21 Nov. 2010 I. Saniee

Experiments and Methodology

We ran experiments on all Rocketfuel networks plus a few prototypical flat/curved networks to test our key hypothesis:

- 1. Dimension. "Growth test" Polynomial or exponential?
 - Consider the volume V(r) as a function of radius r for arbitrary centers

[In flat graphs volume growth is typically polynomial in radius r]

2. Curvature. "Triangle test" - Are triangles are universally $\delta\text{-thin}$

- Randomly selected 32M, 16M, 1.6M triangles for networks with more than 1K nodes and exhaustively for the remainder
- For each triangle noted shortest side L and computed the δ
- Counted number of such triangles, indexed by δ and L

[In flat graphs δ grows without bound as the size of the smallest side increases]

We conduct "growth" and "triangle" tests

22 Nov. 2010 I. Saniee

1. Growth Charts

Volume (number of points within distance r) as a function of radius r from a "center" of the graph. Flattening of curves for larger r is due to boundary effects / finite size of network.

2. Triangle Test - Rocketfuel 7018 & Triangular Grid

- (a) Probability $P_L(\delta)$ for randomly chosen triangles whose shortest side is L to have a given δ for the network 7018(AT&T network) which has 10152 nodes and 14319 bi-directional links and diameter 12. The quantities δ and L are restricted to integers, and the smooth plot is by interpolation.
- (b) Similar to (a), for a (flat) triangular lattice with 469 nodes and 1260 links. (The smaller number of nodes is sufficient for comparing with (a) since the range for L is large due to the absence of the small world effect.)

24 Nov. 2010 I. Saniee

Summary of Triangle Tests for Rocketfuel Networks

The average δ as a function of L, E[δ](L), for the 10 IP-layer networks studied here, and for the Barabasi-Albert model with k = 2 and N = 10000 (11th curve) and the hyperbolic grid X3,7 (12th curve). On the other hand, a Watts- Strogatz type model on a square lattice with N = 6400, open boundary conditions and 5% extra random connections (13th curve) and two flat grids (the triangular lattice with diameter 29 and the square lattice with diameter 154) are also shown.

Where to go from here?

- OK, these ten RF datasets and some "well-known" large-scale networks exhibit
 - Exponential growth / logarithmic scaling of shortest paths
 - Negative curvature in the large

So what?

Turns out negatively-curved networks exhibit specific features that affect their critical properties -- Existence of a "core":

- O(N²) scaling of "load" (1 unit between all node pairs)
- Non-random points of critical failures
- Non-random points of security

The Downside of Hyperbolicity: Quadratic Scaling of Load ("Betweenness Centrality" and Existence of "Core")

Plot of the maximum load $L_c(N)$ -- maximal number of geodesics intersecting at a node -- for each network in the Rocketfuel database as a function of the number of nodes N in the network. Also shown are the maximum load for the hyperbolic grid X3,7, the Barabasi-Albert model with k = 2, the Watts-Strogatz model and a triangular lattice, for various N. The dashed lines have slopes of 2.0 and 1.5, corresponding to the hyperbolic and Euclidean cases respectively.

Metric Properties of RF and Other networks

- So far we worked with the unit-cost (hop) metric
- Can things change significantly through changes in the metric?
- Yes, and no! Look at toy networks again:

 $T_{3,7}$ with modified hyperbolic metric, load ~ O(N²)

 $T_{3,7}$ with hyperbolic metric load ~ O(N²)

 $T_{3,7}$ with Euclidean metric load ~ O(N²)/logN

• Metrics can change things but evidently not by that much! (Need rigorous proofs to determine by how much)

Downside of Metric Changes: Long Paths (w.r.t. the hop metric)

Even if we can eliminate $O(N^2)$ scaling of load via metric changes, we're liable to pay a (big) price:

[Bridson-Haefliger] Let X be a δ -hyperbolic geodesic metric space. Let C be a path in X with end points p and q. Let [p,q] be the geodesic path. Then for every x on [p,q]

 $d(x,C) \le \delta \|\log_2 l(C)\| + 1$

where l(C) is the length of C.

Open Question. Can paths with small deviations from geodesics decrease "load" by much? [Unlikely in the mathematical sense but perhaps yes in practice.]

Key Claims: Network Curvature -> Congestion, Reliability and Security

Numerical studies show that congestion is a property of the large-scale geometry of the networks - large-scale curvature -- and does not necessarily occur at vertices of high degree but rather at the points of high cross-section (the "core")

At the "core" -- intersection of largest number of shortest paths - load scales as quadratic as function of network size

Shortest path routings

- (Upside) Are very effective, as diameter is small compared to N, e.g., TTL of ~20 good enough for all of the Internet!
- (Downside) Lead to
 - congestion
 - non-random failure can be severe
 - certain nodes exhibit more significant security compromise

X_{3,7}

Nodal *loads* need not be related to nodal *degrees*

A Taxonomy for Large-Scale Networks

CHALLENGES: Impact of Curvature on Metrics Implications for CDNs, Cloud, Virtual Network Design

- Analysis of larger datasets
 - Communication data
 - Bio data
 - Social network data
- \bullet Scaling of algorithms for detection of hyperbolicity in much larger graphs (of ${\sim}10^9$ nodes)
- How does "negative curvature in the large" affect performance, reliability and security?
 - Speed of information/virus spread \rightarrow spectral properties of large graphs
 - Impact of correlated failures \rightarrow Core versus non-core
- How does the O(N²) scaling of load change as a function of alternative load profiles, e.g., for localization in CDNs?
- How O(N²) affect reliability and security? Does a core add or diminish robustness / security?
- How to leverage hyperbolicity for data centers / cloud / virtualization? Are there fundamental designs?
- How to leverage hyperbolicity for caching and CDNs? DHTs?

Some Recent References

[1] O. Narayan, I. Saniee, Scaling of Load in Communications Networks, Physical Review E, Sep. 2010.

[2] O. Narayan, I. Saniee, The Large Scale Curvature of Networks, arXiv:0907.1478 (July 2009)

[3] O. Narayan, I. Saniee, G. Tucci, Lack of spectral gap and hyperbolicity in asymptotic Erdos-Renyi random graphs, arXiv:1099.5700v1 (Sep 2010)

[4] Y. Baryshnikov, G. Tucci, Scaling of Load in delta-Hyperbolic Networks, arXiv:1010.3304 (March 2010)

[5] E. Jonckheere, M. Lou, F. Bonahon, Y. Baryshnikov, Euclidean versus Hyperbolic Congestion in Idealized versus Experimental Networks arXiv:0911.2538v1 (Nov. 2009)

[6] Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via Raecke decompositions. FOCS '10