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OUTLINE

* Brief introduction to principles of Cryobiology
- Model development at three length scales
» Optimal control

« Current and future directions




WHY FREEZE BIOSPECIMENS?

 Colder temperatures mean longer storage: at least 100 years in LN

» Banking, distribution and testing of cells and tissues, maybe organs in the future

- Worldwide inrtiatives to preserve genetic samples

« Millennium Seed Bank, Svalbard Seed Bank, UK Biobank (0.5M samples)

« JAX Sperm bank ( >10000 strains)

« NCRR, MMRRC, MRRRC g W
8]

« NCI-Office of Biorepositories and Biospecimine Research

* Kill unwanted cells and tissues in living systems
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Temperature

Cell at 22°C
o No Ice

Cell at -10°C
o Some Ice
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Cell at -40°C
Lots of Ice

Cell at -80°C
Almost All Ice
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» Jo reduce the effects of high salt concentrations

and to aid in “glass formation” we add cryoproteciive

agents (CPAS)
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CELL SURVIVAL
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CRITICAL CRYOBIOLOGICAL
QUANTITIES

Concentration Heat

Above 0°C these quantities govern osmotically
iInduced damage

Below 0°C these quantities govern the
ikelihood of Intracellular ice




TRANSPORT PROBLEMS
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TRANSPORT PROBLEMS

Model Selection
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All models in cryobiology are coupled systems!
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MASS TRANSFER
THE CHOICE OF 4

N;
O(T, P, N) -
i=2 !

1=2 1,]=2

Differentiating with respect to Ny or N;
and setting ;;/kT = (B; + B;)

1 n
p1 o = po — KT (Z mg + 9 Z (Bi + Bj)mimj)

i=2 i, j=2

g=1
JDB. Stability analysis of several non-dilute multiple solute transport equations. J. Math. Chem., In press.




Specific Model: set B; = 0 and M; =~ x2/x;.
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I. Katkov. A two-parameter model of cell membrane permeability
for multisolute systems. Cryobiology, 40(1):64-83, Feb 2000.

Cellular Quantities

1 = Water Volume

__Moles of permeating

o . ...
solute
- Moles of
"P nonpermeating solute
b2,...,n — Relative permeability

Extracellular Quantities

__ Nonpermeating solute
molality

M, _ Permeating solute

N )
molality

M, = Maximal zth solute
molality
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Specific Model

Cellular Quantities

X1 = Water Volume

1 k n
USRI Tnp g 755 = E M;xq1 |, 5 __Moles of permeating

o J=2 i=1 ™ solute

bo Moles of

_ 2 _ I3l — ,
L2 = T (Maay — x2), "P nonpermeating solute
b2.....n = Relative permeability
br, Extr it
acellular Quantities
In = (Mpx1 — xp), Q
1

I. Katkov. A two-parameter model of cell membrane permeability
for multisolute systems. Cryobiology, 40(1):64-83, Feb 2000.

__ Nonpermeating solute
molality

My . n= Permgatlng solute
molality

M, = Maximal zth solute
molality
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We have a system of the form 2(t) = A(x(t))f(x(t)),
where \(x(t)) = 1/x1(t) Is a positive scalar function. In
this case, we can define an invertible transformation

)= || sy ), e

and a new system w'(7) = f(w(7)) such that

w(r) = x(q(7))

meaning that we may, without any penalty, linearize the
system by removing the 1/x1 term.

JDB, C Chicone, J Critser. Exact solutions to a two parameter flux model
and cryobiological implications. Cryobiology, 50,308-316, 2005




CIan -+ ZCISJ' — ZMi(T)iCl,

1=2 1=1
bQ (MQ(T)ZL‘l — 332) ;

-5 M; 11 1
boMa(t) —by O 0
bs M5(t)




Define
D = diag(1, (baMs) "2, ..., (b, M)~ /?)

Then:

( o Zz Mz’ V b2M2 vV b3M3 R \/bnMn \
Vv ba Mo —bo 0 - 0
DA(M)D_l — Vv b3 M3 0 —b3 0

\ VB3, 0 0 —b, )

IS symmetric, negative definite, and our original
n-dimensional nonlinear system Is globally
asymptotically stable.

JDB, C Chicone, J Critser. A general model for the dynamics of cell volume, global
stability, and optimal control . J. Math Bio., In press
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MASS TRANSPORT IN SMAI

Layer

JDB, C Benson, J Critser. Submitted to J. Biomech Eng.

[ .



SOLIDIFICATION
COOLING, SMALL TISS

Monte Carlo Simulation of |IF

="y
T3

D Iremia, J Karlsson. Biophys. J. 88 647-660, 2005.
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Fig. 5. Two sample MR images, with water signal saturated, showing the increasing

EG concentration in ovaries during perfusion.
Fig. 2. The proton MR spectrum at 7 T from the sample holder loaded with two

ovaries and 40% (w/w) EG solution. The excitation frequency was centered at the 7 L J > ° L
resonance frequency for the -CH, group in EG molecules. ™Y L J
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Fig. 6. The experimental data with their fitted curve for the average EG concen-
tration change on the centric cross-section of an ovary with 1.1 mm as its identical

radius.

X Han, L Ma, A Brown, JDB, J Critser. Cryobiology, 58 (3), 2009
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MASS TRANSFER IN LARGE
TISSUES

Heat flux (mW)
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CELL SURVIVAL

COOLING RATES

WHAT CAN WE CONCLUDE
FROM THE ABOVE MODELS?







DOES MODELING IN
CRYOBIOLOGY WORK!?

Available online at www.sciencedirect.com

*.” ScienceDirect CRYOBIOLOGY

ELSEVIER Cryobiology 56 (2008) 120130

www.elsevier.com/locate/ycryo

An improved cryopreservation method for a mouse
embryonic stem cell line ™

Corinna M. Kashuba Benson, James D. Benson, John K. Critser *

Comparative Medicine Center, Research Animal Diagnostic Laboratory, College of Veterinary Medicine,
University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA

Received 15 May 2007; accepted 3 December 2007
Available online 14 January 2008

| ne——) R —

* Previous best protocol: 3 1% recovery

» “"Optimally” defined new best protocol: 64% recovery
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OPTIMAL CONTROL IN
CRYOBIOLOGY:

® control quantity to minimize cost | (e.g. .
time, energy, stress, Pir or combinations.) ’ WARMER

® subject to exact and inequality
constraints:

® exact constraints: governing physical
system, (e.g. 2P model, heat
equation, diffusion, etc).

® inequality constraints: state or

control constraints, (e.g.  cell =
| - OOLER
volume > 0). & C
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Cell Volume

L
min sy = q(tf) = / x1(7)dr
0

MeA

subject to

rK = _(Ml ‘|‘M2)x1 + To ‘|‘37np
j32 — bMQCCl — bQZQ

and

L1 —|—’7£U2—]€* Soa
ki —x1 —vx9 < 0.

Bilinear state equation (in controls and state) give:
Existence J Controllability ‘/




OPTIMAL CONTROL

H(x*,p", M™) = nax. (A(M)x + z1€e1) - p — 21

= - M M;(bip; —
]\?éaéxp ( 1T1P1 + X1 z_; (bipi — p1)

+ terms with no M)
i Ol p1 >0
- My, p1 <0

N 0, bipi—p1 <0
Mi(t) = - M;, bipi—p1 >0 °

M, (t) — <

\

Optimal controls maximize the Hamiltonian
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Boltayanskii sufficiency theorem: a “regular,
distinguished™ trajectory defined by a state

dependent control function v(x) Is optimal.

Region Scciztr:woel M; M;
o! M! M, M,
C, D, o' M 0 M,
Gl M 0 0
A, B, o M My

SUFFICIENCY




RESULTS

CPA Removal

CPA Addition
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Addition Removal

L7 -
L 2 [ -
L 130 07 30
16]- ] I
L 1
i i I
r 1425 L
151 :
r : 1.5
Q [ L
L 1 s
E L4r <320 2 K 19
= [ = [ g
3 13r 2 ofh\ 2
.g [ 04 ’, 113 E r \\ 8
= [ -~ 4 8 | \
E .0l \
2‘3 1.27 x,;[; S | \\
r "o;/ 10 | \\ 195
LN
L ,"/ [ \\
l.lj "‘C;” . \\
L '_o;¢’ [ S AN
i Rsviad -5 i — — —
10+ 3905 - o~ >
L Pt \
L _“;,¢ F \
r Rt \
09’.,_;‘"’ L -0 000 v v v 0
0 2 4 6 8 10 12 14 0.0 0.5 1.0 15 20 25 3.0
Time (min) Time

T
Costl g / Coun(t)? dt
function: 0

Solved with a direct method: parametrize system

with piecewise linear controls, minimize

constrained system with a truncated-Newton
approach to the augmented Lagrangian




OPTIMAL CONTROL

System Coupling

R - %O

All models in cryobiology are coupled systems!

Before cooling During cooling

Thermal
convection/mushy
layers/etc...

Mass & Parabolic
Heat System




EXTENSION TO TISSUES,
SYSTEMS

- Find (%) such that f(z) approximates the desired
independent control up(¢), known a priori

» Can use “Iinverse problem’ techniques to solve analytically

* This gives a tool to develop numerical schemes for

completely novel optimal control problems *A Carasso, SIAM | App. Andl, 19€




¢¢c = D (crr — %cr> (r,t) € (a,1) x |0,
In Media | d¢
E = k(Cc = C), (T, t) S {a} X [Oa OO)?
c = ¢, (rt)e{l}x]0,00),
cC = Cp, (Ta t) S [07 1] X {CL},
T = h(x,c(a,t))
In Cell ¢ = Mc(a,t)
M = MMy, My : (z,y) = x/y,

d(Msc(a,t))/dt = h(Msc(a,t),c(a,t))
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After Laplace transform, we may solve for
f(s) = h1(s)e(s) + ha(s)e(s)

where hq(s), ha(s) are modified spherical Bessel
functions*. Thus

) — /o cS(T)h1(t — 1) + c°(7)hao(t — 7) dT,
.= che —+ KQCC.

Define K = K [I — KoMyt

*DLMF: http://dImf.nist.gov/10.4/.E2




Lemma: M, M> exist and are bounded.

Lemma” K and K> are compact linear operators with
zero spectral radius and unbounded inverse.

Formally: ¢ = KKy + KO

K (KoM 4+ 1) f

which exists for f with sufficient decay.

*A Carasso, SIAM | App.Anal. 1982




Problem
Define  Ji(v) = {T : |(Mv)(T) — z%| = 0}.

Define the cost
J(c) =T+ e1|(MaKc)(T) — mdlz + €2HC€H2.

FiInd min J(c¢) subject to above PDE-ODE system

cec A
and with state constraints T'-z < 0. T € R?.

Proposition: Let &2 = 0. Then there exists an g1 such

that
() = KU KM +I)f

J
= K 'f

= argmin J(c%)




From above, we recall that f has step changes, and

thus the frequency spectrum will not exponentially
decay.

Theorem: The PDE-ODE system has no exact
optimal controls.

VWe must use approximate controls.




Define
2 D 2
Ja(v) := |le(a, t) — Kol + (=) oIl

Theorem: The unique minimizer of J2 s

/ (O (R0 +009))
V) e (ha(€) M0 (€) )

§

Pt. Solve the overdetermined system

€
Kv=c’, wv:=—v=0,

M

in the frequency domain and take inverse F1.




Define

T(c%,t) =t + e1| (MoK c®)(t) — 22 + eo|c|2.

Theorem: Fix ¢/ = J;(f). Then there exist &1 and &>
and W(Gl, €2, M27 tf)

K 'f = argmin J(c%, t7).




P

(MoK ) (t) — 2 = [(MaKc®)(t) — (MoK K™ f)(8)],
= |(M2Kc)(t) — (Maf) (@)%,

Since T is fixed, and M> and K are bounded,
there exists 3>0 (depending on T, M>), such that

| MoKc® t — Mof t |2 > es||Kc® — fl2s,

and
J(c ) =t > ere3 (||[Kc® — fI* + wa||cf|I?) > 0.

Thus, argmin J(c¢,t/) = argmin||[Kc® — f||* + wal|c®||?
= K,'f




Now note that
IMa ||| Kc® — fll72 = [(MaKc®)(t) — (Maf)(0)|%,
and thus

[ MK K™ = DIFIfIIZ M| (KK = 1) flz2
M| KK f = fliz

(MaKKSH)(t) — (Maf)(t)]°,

AVARRAVAR V]

and with || My ||| £l < k& < oo, given d(w) > 0 there
exists an w > 0 such that

0 |KK;" I

kT2 (MaeK K7 )(t) — (M2 f) ()],

AVARRAY,




NUMERICS

* PHAML: hp-adaptive
multilevel elliptic solver

* Implicit-Filtering minimization

algorithm: adaptive secant
approximation to gradient

W Mitchell, J. Par. Dist. Comp., 2007: P Gilmore, T Kelley, SIAM | Opt. 1995
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Model scaling shows where future work lies:

4
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—_— v

g Mass O Hybrid ODE/PDE ~ D)=

E \ System ) System System

Z  Heat Stochastic Large Monte  nonlinear heat

8 ODE Carlo System equation




CURRENT AND FUTURE
PROBLEMS

* Develop cost functions for entire cryo-protocol
* Extend ‘inverse’ approach to 2D and 3D systems

* Model multiphase ternary solidification and interaction with
biomaterials

* Ilterative optimization of freezing protocols

» Optimal design of counter-current dialysis devices
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