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I.  Problem statement and discretization

II. Solution algorithms

• Example:  diffusion equation with random diffusion

coefficient

• Discretization by stochastic Galerkin method

• Discretization by stochastic collocation method

• Multigrid-style methods for various discretizations

• Comparison of solution costs for different discretizations



Forcing function  f

Boundary data

Viscosity ν in Navier-Stokes equations 

I. Stochastic Differential Equations with Random Data
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Example:  diffusion equation

a = a(x,ω) a random field

For each fixed x, a(x,ω) a random variable

Uncertainty / randomness:

Other possibly uncertain quantities :
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Depictions:  Random Data on Unit Square

3



1.  Spatial correlation of random field:  For

Diffusion Equation with Random Diffusion Coefficient

Random field    a(x,ω)

Mean                 μ(x) = E(a(x,·))

Variance

Covariance function    

c(x,y) = E( (a(x,·)- μ(x)) (a(y,·)- μ(y)) )

is finite     

:, Dyx
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vs. white noise, where c is a δ-function
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210 a2.  Coercivity

Problem is well-posed

Assumptions:



Monte-Carlo Simulation

Sample a(x,ω) at all x          , solve in usual way

Standard weak formulation:  find                        such that
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for all 

Multiple realizations (samples) of a(x,·)

Multiple realizations of u 

Statistical properties of u

Problem:  convergence is slow, requires many solves
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= identically distributed uncorrelated random 

variables with mean 0 and variance 1

Another Point of View
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Covariance function is finite          

random field (diffusion coefficient) has Karhunen-Loève expansion:
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= eigenfunctions/eigenvalues of covariance operator
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Requires: m large enough so that the fluctuation of a

is well-represented, i.e.                is small11 /m

Finite Noise Assumption

~ Principal components analysis

m
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Truncated Karhunen-Loève expansion:
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More precisely:  error from truncation is
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Choose m to make this small



1.  Stochastic Finite Element (Galerkin) Method:

Introduce a weak formulation analogous to finite elements 

in space that handles the “stochastic” component of the problem

2.  Stochastic Collocation Method:

Devise a special strategy for sampling ξ that converges more 

quickly than Monte Carlo simulation; derived from interpolation 
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Various Ways to Use This
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Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, 

Xiu, Hesthaven, Tempone, Nobile, Webster, Schwab, Todor, Ernst, 

Powell, Furnival, E., Ullmann, Rosseel, Vandewalle



Stochastic Finite Element (Stochastic Galerkin) Method

Probability space (Ω,F, P)

)(2

PL {square integrable functions wrt dP(ω)}

Inner product on              : )(2

PL

Use to concoct weak formulation on product space )()( 21

PE LH D

Find                                       such that
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Solution u=u(x,ω) is itself a random field
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For Computation:  Return to Finite Noise Assumption 

Truncated Karhunen-Loève expansion

m

r rrr xaxaxa
10 )()()())(,(

Stochastic weak formulation uses 
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DD

ddxvuxadPdxvuavua

ξ plays the role of a 

Cartesian coordinate

Bilinear form entails 

integral over image of

random variables ξ Require joint

density function

associated with ξ
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Statement of Problem Becomes

DD

ddxfvddxvuxa )()(),(

Find                                       such that
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0 PE LHv Dfor all 
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Like an ordinary Galerkin (or Petrov-Galerkin) problem on a

(d+m)-dimensional “continuous” space

d  = dimension of spatial domain

m = dimension of stochastic space
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Discretization
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Finite dimensional spaces:

• spatial discretization:

for example:  piecewise linear on triangles  

• stochastic discretization:

for example: polynomial chaos = m-variate Hermite

polynomials (orthogonal wrt Gaussian measure)
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Discrete weak formulation:
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Basis Functions for Stochastic Space
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Underlying space:
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Let                     polynomial of degree j orthogonal wrt)()(

k

k
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Examples:  if ρk ~ Gaussian measure            Hermite polynomials

ρk ~ uniform distribution          Legendre polynomials

Any ρk can be handled computationally (Gautschi)

Rys polynomials
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Orthogonality of basis functions          sparsity of coefficient matrix



Matrix Equation Au=f
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Properties of A:

• order = Nx x Nξ = (size of spatial basis) x (size of stochastic basis)

• sparsity:  inherited from that of { } and {  }rG rA
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Dimensions of Discrete Stochastic Space
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Full tensor product basis:  ,m, ipji 1    ,0

Dimension:  mp )1(

“Complete” polynomial basis:  pjjj m21

Dimension:  (   )m+p

p
=

(m+p)!

m! p!

Too large

)(,),(),( 21 N

More 

manageable

Order these in a systematic way 
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Example
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Orthogonal (Hermite) polynomials in 1D:

“Complete” polynomial basis:  pjjj m21
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p ( )52= =10

Gives basis set:
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Example of Sparsity Pattern

Nξ=
(m+p)!

m!p!

10!

6!4!
=

=   210

For m-variate

polynomials of

total degree p:



using orthogonality of stochastic basis functions
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Uses of the Computed Solution:
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First moment of u (expected value):  

Free!

Similarly for second moment / covariance

1.  Moments:
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Uses of the Computed Solution:
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2.  Cumulative distribution functions

at some point x

Sample ξ
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l llhp xuxuEvaluate

PrecomputedRepeat

Not free, but no solves required



Given                                                                  as above
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Stochastic Collocation Method
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Let ξ be a specified realization (~ Monte Carlo)

Weak formulation:

DD

dxvfdxvuxaxa r

m

r rr ))()((
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Discretize in space in usual way.

Stochastic collocation:  choose special set

from considerations of interpolation 
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Advantage:  Spatial systems are decoupled



Given                                       and v(ξ), consider an interpolant
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Multi-Dimensional Interpolation
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To Compute Statistical Quantities

dLxuxuE k

N
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1.  Moments

Not free but can be precomputed

2. Distribution functions

Obtained by sampling, cheap
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1D interpolating polynomial

pk j

k j
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Strategy for Interpolation
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Advantage:  easy to construct

Disadvantage:  “curse of dimensionality,”  

dimension = (p+1)
m



Detour: Sparse Grids

Given:  1D interpolation rule )()())(( )(

1
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Multidimensional rule above is induced by fully populated

multidimensional grid                                       .

Derived from (1D) grid },,{ )()(
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Alternative:  multidimensional sparse grid (Smolyak)
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Sparse Grid Interpolation

Example of sparse grid

for   m=3, p=16

For v of the form                                                       interpolating 

function takes the form
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Sparse Grid Interpolation

For        sparse grid and           a tensor product polynomial of

total degree at most p,   

)(v

).())(( vvI

Theorem (Novak, Ritter, Wasilkowski, Wozniakowski)

That is:  sparse grid interpolation evaluates the set of complete

m-variate polynomials exactly 

Overhead:  number of sparse grid points to achieve this

(= # stochastic dof)  is larger than for Galerkin
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Analysis 

Monte-Carlo:

 ))()((  ))()(()()( hphhhp uEuEuEuEuEuE

  ,  rrc p 12  uEhc )|(| 21

  uEhc )|(| 21

 ))()((  ))()(()()( hshhhs uEuEuEuEuEuE

  s1~

(Babuška, Tempone, Zouraris, Nobile, Webster)

Convergence is slow wrt number of samples but

independent of number of random variables m

Stochastic Galerkin and Collocation:

Rule of thumb:  the same p gives the same error

(for all versions of SG and collocation) 

More dof for collocation than SG

Exponential in polynomial degree p

Constants (c2 , r) depend on m
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Recapitulating

Monte-Carlo methods:

Many samples needed for statistical quantities

Many systems to solve

Systems are independent

Statistical quantities are free (once data is accumulated)

Stochastic Galerkin methods:

One large system to solve

Statistical quantities are free or (relatively) cheap

Stochastic collocation methods:

Systems are independent

Fewer systems than Monte Carlo

More degrees of freedom than Galerkin

Statistical quantities are (relatively) cheap

s

r

r

hhs xu
s

uE
1

)( )(1)(With s realizations:

Convergence is slow but independent of m

Similar convergence

behavior

Faster than MC

Depends on m

28



II. Computing with the Stochastic Galerkin and 

Collocation Methods 

For both: compute a discrete solution, a random field
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Stochastic Galerkin:
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Stochastic Collocation:

Postprocess to get statistics
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Computational Issues 

Stochastic Galerkin:  Solve one large system of order Nx x Nξ

m+p

pNξ=(    )

Frequently cited as a problem for 

this methodology

Stochastic Collocation:  Solve Nξ “ordinary” algebraic systems 

(of order Nx), one for each sparse grid point

Here:  )()( 2~ Galerkinpncollocatio NN

Some savings possible 30



spatial discretization parameter h,     , )()( hh
rr AAAA
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Multigrid Solution of Matrix Equation  I (E. & Furnival)

,     , )2()2( hh
rr AAAA spatial discretization parameter 2h

Solving   Au=f
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Develop MG algorithm for spatial component of the problem



32

Multigrid Algorithm (Two-grid)

)(1)()(1)( )( hhhh fQuAQIu

for i=0,1,…

for j=1:k   k smoothing steps

end

Restriction

Solve                                            Coarse grid correction

Prolongation

end

)( )()()()2( hhhh uAfr R
)2()2()2( hhh rcA

)2()()( hhh cuu P

Prolongation and restriction:

TT PRRI
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 P induced by natural inclusion in spatial domain

Let                                    Q = smoothing operator,)( NQA h
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Convergence Analysis:  Use “Standard” Approach

)()(1)(1)2(1)()1( ])([)]))[( ikhhhhi eAQIAAAe RP(
Error propagation matrix:
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Analysis is:
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Approximation Property
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Approximability

Property of mass 

matrix

Regularity

“Standard” MG analysis for deterministic problem:
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For Approximation Property in Stochastic Case

Introduce semi-discrete space 
pTH )(1

0 D

Weak formulation 

p
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Solution  
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Similarly for other steps used for deterministic analysis

Discrete stochastic

space
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Approximation (in 2D):

Established using best approximation property of 

and interpolant
hpu
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• Establishes convergence of multigrid with rate independent of

spatial discretization size h

Comments 

• Coarse grid operator:                                               size O(Nξ )

• No dependence on stochastic parameters m, p

• Applies to any basis of stochastic space

derives from basis of multivariate polynomials of total

degree p, orthogonal wrt probability measure ρ(ξ)dξ
rG

,
m

1r00 rrr GaGaG

Maximum eigenvalue η = max root of orthogonal polynomial,

bounded for bounded measure

CG iteration is an option

),()()(0 x11x111x1x11 m

1r0

m

1r0 rrrr aaGaa
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Iteration Counts / Normal Distribution 

Polynomial 

degree

# terms (m) in KL-expansion

m=1 m=2 m=3 m=4

p=1 8 8 8 8

p=2 8 8 8 8

p=3 9 9 9 9

p=4 9 10 10 10

h=1/16

Polynomial 

degree

m=1 m=2 m=3 m=4

p=1 7 7 8 8

p=2 8 8 8 8

p=3 8 8 9 9

p=4 9 9 9 9

h=1/32
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Multigrid Solution of Matrix Equation  II

Solving   Au=f

Preconditioner for use with CG: 00 AGQ
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(Kruger, Pellissetti, 

Ghanem)

Deterministic diffusion,

from mean
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Analysis (Powell & E.)

Theorem :  For μ constant, the Rayleigh quotient satisfies

1
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Consequence:                     dictates convergence of PCG
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Sketch of Proof ||||)()(
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c(p) bounded by largest root of scalar orthogonal polynomial
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In spatial domain:

From stochastic component:  as above



Multigrid Variant of this Idea

Replace action of          with multigrid preconditioner
1

0A

MGMG AGQ ,00
(Le Maitre, et al.)

Analysis:
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MGMG Spectral equivalence 

of MG approximation 

to diffusion operator],[ 21

1

2
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Experiment

fua )(-

Starting  with a with specified covariance and small σ (=.01): 

# Samples s

Max SFEM 100 1000 10,000 40,000

Mean .06311 .06361 .06330 .06313 .06313

Variance 2.360(-5) 2.161(-5) 2.407(-5) 2.258(-5) 2.316(-5)

Compare Monte-Carlo simulation with SFEM, for 

N.B.:  No negative samples of diffusion obtained in MC

Solve one system

of order 210x225 Solve s systems of size 225 42



Comparison of Galerkin and Collocation

Recall, for  stochastic collocation

43
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hhp LxuxuDiscrete solution

Obtained by solving 

DD

dxvfdxvuxaxa r
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For set of samples             situated in a sparse grid}{
)(k

Advantage of this approach:  simpler (decoupled) systems

Disadvantage:  larger stochastic space for comparable accuracy

larger by factor approximately p2



Dimensions of Stochastic Space

m

(#KL)

p Galerkin Collocation

Sparse

Collocation

Tensor

4 1

2

3

4

5

15

35

70

9

41

137

401

16

81

256

625

10 1

2

3

4

11

66

286

1001

21

221

1582

8,801

1024

59,049

1,048,576

9,765,625

30 1

2

3

4

31

496

5456

46,376

61

1861

37,941

582,801

1.07(9)

2.06(14)

1.15(18)

9.31(20)

~ size of coarse grid space

for MG / Version 1
# systems for collocation

MG / Version II



Experiment

• Solve the stochastic diffusion equation by both methods

• Compare the accuracy achieved for different parameter sets¹

• For parameter choices giving comparable accuracy, compare 

solution costs

• Spatial discretization fixed (32x32 finite difference grid)

Solution algorithm for both discretizations:  

Preconditioned conjugate gradient with

mean-based preconditioning, using AMG for the

approximate diffusion solve

¹Estimated using a high-degree (p=10) Galerkin solution.

(E., Miller, Phipps, Tuminaro)
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Experimental Results 

46

polynomial degree for SG 

“level” for collocation

produces comparable errors

p=1

p=2

p=3

p=4

p=5

Accuracy:

for fixed m=4:  similar p=

p=3

p=5
p=4

p=2

p=1

p=4

p=5

p=6

p=3
p=2

p=1

Degrees of freedom

Performance:

M=3

ErrorError
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Experimental Results: Performance

4747

p m=5 m=10 m=15 m=5 m=10 m=15

1 .058 .147 .32- .069 .163 .286

2 .269 1.20 3.80 .532 2.13 5.08

3 1.20 13.14 51.45 2.41 16.99 57.98

4 3.50 53.79 168.11 8.31 102.60 493.04

5 6.51 117.73 24.56 515.75

CPU times for larger m = #KL terms:

Galerkin Collocation

Performed on a serial machine with C code and 

CG/AMG code from Trilinos

Observation:  Galerkin faster, more so as number of

stochastic variables (KL terms) grows



More General Problems
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min),( xceaxa

Nonlinear

48

For the problem discussed, based on a KL expansion, has

a linear dependence on the stochastic variable ξ

Other models have nonlinear dependence.  For example

m

r rrr xa

xaxc

1

0

)(            

)(),(

In particular:  coercivity is guaranteed with this choice

For Gaussian c, called a log-normal distribution



More General Problems
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)()( )(),(
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M
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For stochastic Galerkin, need a finite term expansion for a

Note:  not  ξr

 
M

1r00 rr AGAGA

matrix

 ][ jirijrG Less sparse

More importantly:  # terms M will be larger 

perhaps as large as 2Nξ

mvp will be more expensive



comes from                                         for each

sparse grid point 

In Contrast

50

Collocation is less dependent on this expansion

D

dxvuxa
k

),(
)()(kA

)(k

Many matrices to assemble, but mvp is not a difficulty 



Concluding Remarks
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• Exciting new developments models of PDEs with uncertain

coefficients

• Replace pure simulation (Monte Carlo) with finite-dimensional

models that simulate sampling at potentially lower cost

• Two techniques, the stochastic Galerkin method and the

stochastic collocation method, were presented, each with some 

advantages

• Solution algorithms are available for both methods, and work 

continues in this direction


