Numerical Methods for Partial Differential
Equations with Random Data

Howard Elman
University of Maryland




Outline

|. Problem statement and discretization
« Example: diffusion equation with random diffusion
coefficient
* Discretization by stochastic Galerkin method
* Discretization by stochastic collocation method

I1. Solution algorithms
» Multigrid-style methods for various discretizations
« Comparison of solution costs for different discretizations



|. Stochastic Differential Equations with Random Data

Example: diffusion equation

-V-(avu)=f inDcR"
Uu=gy,onod,, (avu)-n=00noD, =oD\oD,

Uncertainty / randomness:
a = a(X,w) a random field
For each fixed X, a(X,w) a random variable

Other possibly uncertain quantities :
Forcing function f
Boundary data g,

Viscosity v in Navier-Stokes equations
—vVu+(u-grad)u+grad p = f
—divu=0



Depictions: Random Data on Unit Square




Diffusion Equation with Random Diffusion Coefficient

-V-(avu)=1f inD
Assumptions:
1. Spatial correlation of random field: For X,yeD:

Random field a(X,w)
Mean w(x) = E(a(x,))
Variance o(X) = E(a(x,)?) - i

Covariance function
c(xy) = E( (a(x,)- u(x)) (@ly.')- u(y)) )
IS finite
vs. white noise, where c is a o-function
2. Coercivity O<gy <a<a, <o
= Problem is well-posed 4



Monte-Carlo Simulation

Sample a(x,w) at all x e ) , solve in usual way

Standard weak formulation: find u e Hg (D) such that
a(u,v)=/£(v)

forall v e Hg (D),

a(u,v) = jaVu-Vvdx, (V) = jfvdx
D D

Multiple realizations (samples) of a(x,:) —>
Multiple realizations of u —
Statistical properties of u

Problem: convergence is slow, requires many solves




Another Point of View
-V-(avu)=1f InD

Covariance function is finite =>
random field (diffusion coefficient) has Karhunen-Loeve expansion:

a(x,0)=a,(\)+0Y. A a.(XE ()
a,(x) = (x) = E(a(x,)) mean

a. (X), A = eigenfunctions/eigenvalues of covariance operator

(Ca)(x) =4a(x), (Ca)(x)= IDC(X, y)a(y)dy

5 r (a)) = identically distributed uncorrelated random
variables with mean 0 and variance 1



Finite Noise Assumption
-V-(avu)=f inD

Truncated Karhunen-Loéeve expansion:
m
a(x,0)=a,(x)+0 Y. 4 a.(XE ()

~ Principal components analysis
Requires: m large enough so that the fluctuation of a
is well-represented, i.e. A, .1/ 4 issmall

, .. |D|02—ZT A,
More precisely: error from truncation is D S
O

Choose m to make this small



Various Ways to Use This

a(x,0)=8,(X\)+aY, " 4 a (X ()

1. Stochastic Finite Element (Galerkin) Method:
Introduce a weak formulation analogous to finite elements
in space that handles the “stochastic” component of the problem

2. Stochastic Collocation Method:
Devise a special strategy for sampling & that converges more
quickly than Monte Carlo simulation; derived from interpolation

Ghanem, Spanos, Babuska, Deb, Oden, Matthies, Keese, Karniadakis,
Xiu, Hesthaven, Tempone, Nobile, Webster, Schwab, Todor, Ernst,

Powell, Furnival, E., Ullmann, Rosseel, Vandewalle
8



Stochastic Finite Element (Stochastic Galerkin) Method

Probability space (Q2, 7 P)
L2 (Q2) = {square integrable functions wrt dP(w)}

Inner product on L2 (Q): (V,W) =E(vw) = jv(a))w(a))dP(a))

Use to concoct weak formulation on product space Hy (D) ® Lz (Q)

Find U € HZ (D) ® L2 (Q) such that

—

(@wv)={1)) [ favu-vvdxdP(o)
for all VEHEO(D)@)LZP(Q) 2

Solution u=u(x,m) is itself a random field



For Computation: Return to Finite Noise Assumption

Truncated Karhunen-Loeve expansion

a(x, () =a,(X)+a Y 2 a(X)& (o)

Stochastic weak formulation uses

(a(u,v)) = j jaVu Vv dxdP(w) = j ja(x,@Vu-deXp(g)dg

— 5(Q)D

—

Bilinear form entails

Integral over image of & plays the role of a
random variables & Require joint Cartesian coordinate

density function
assoclated with &

10



Statement of Problem Becomes

Find U e H:

J

D

forall Ve

(D)® L5 (T) such that

a(x, &)Vu-Wdx p(£)dé = [ [fvdxp(&)d&

He, (D)@ L (I (F=£(Q)

Like an ordinary Galerkin (or Petrov-Galerkin) problem on a
(d+m)-dimensional “continuous” space

d = dimension of spatial domain
m = dimension of stochastic space

11



Discretization

j ja(x E)Vu- W dx p(£)d & j [fvdxp(&)ds

Finite dimensional spaces:
- spatial discretization: S, < Hg(D), spanned by{p,}
for example: piecewise linear on triangles

ST ST 2 N
» stochastic discretization: T, cL (D), spar?ned by{gul},jL
for example: polynomial chaos = m-variate Hermite
polynomials (orthogonal wrt Gaussian measure)

Discrete weak formulation:
a(uhIO Vpp) = (V)  Torallvy, € S, ®T,

= S e, (v (€) .



Basis Functions for Stochastic Space
Underlying space: L2(T") ={v(&)| V(&) p(£)d & < oo}
p(ﬁ): P1(5)0:(52) v (Su)

Let q}k) (&) = polynomial of degree j orthogonal wrt p,

Examples: if p« ~ Gaussian measure —s Hermite polynomials
p« ~ uniform distribution—> Legendre polynomials

Any p« can be handled computationally (Gautschi)
—> Rys polynomials

T, < LA(T) spanned by {0 (&)a; (&) -0, (5,)}

Orthogonality of basis functions —s sparsity of coefficient matrix

13



Matrix Equation Au=f a(x, (@) =a,()+ay 4 a (& (@)
A=G,®A +Y, G ®A
[Ady = [a,(X) Vo, (%) Vo, (x) dx
D

[Ali =%, [e(X)a (X) Vo,(x): Vo, (x)dx

:GO]Iq = <WI ’Wq>1 [Gr]lq = <é:rWI ’l//q>
1 = [ [ ()0 (0w, (£) dx p(£)dé

Properties of A

 order = Nx X N¢ = (size of spatial basis) x (size of stochastic basis)
- sparsity: inherited from that of {G,} and {A }
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Dimensions of Discrete Stochastic Space
T, c L(T) spanned by {q;’(£)d (£,)--d} (&)}

Full tensor product basis: 0< j. <p, i=1...,m
Dimension: (p+1D)" Too large

“Complete” polynomial basis: |, + J,+:-+ ], <P

Dimension: (m+p) _ (m+p)! More
P/ mlp! manageable

Order these In a systematic way —»

l//l(é)’l//z (é)i .. '1WN§ (é)

15



Example
T, < LA(T) spanned by {q;” (&)} (&;)-+-d; (&)}

“Complete” polynomial basis: |, + J,+:-+ ], <P

P m+py _ (S) _
m=2, p=3 —> ( p)"(Z) =10

Orthogonal (Hermite) polynomials in 1D:

Ho(8) =1 H,(§) =&, H,(8) =& -1 Hy(§) =& -3¢

Gives basis set:  ;(5) =1 Ws(S) = 215
VJZ(§)=§1 W7(§):(9612_1)§2
wa(§) =& -1 ws(§) = (& - 1)
W4(§):§13_3§1 W9(§)=(522—1)§1
W5(§):§2 Wlo(§)=§§—3§z



Example of Sparsity Pattern

Block sparsity structure, m=6, p=4

For m-variate
polynomials of
total degree p:

I
N
H
(@)

0 20 40 60 80 100 120 140 160 180 200
nz =1218




Uses of the Computed Solution:

Urp = Dy 2 U (0w () = D U (X (€)
MOl

1. Moments: First moment of u (expected value):

E(Uy) =D u(¥) [ (&) p(E)dé
= U, (X) = le\l:lujlqoj (X)

using orthogonality of stochastic basis functions

Freel

Similarly for second moment / covariance
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Uses of the Computed Solution:

Urp = Dy 2 U (O () = D U (X (€)

u, (X)
2. Cumulative distribution functions

E.g.: P(up,(X,8) > ) at some point x

Sample &

Repeat

Evaluate Uy, (X, &) = Z:\zu, (X) ¥, (<)

> Precomputed

Not free, but no solves required
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Stochastic Collocation Method
Given a(x,&)=a,(x)+o Y. 2 a(X)& asabove
Let & be a specified realization (~ Monte Carlo) —>

Weak formulation:

j(ao(x) +GZL\/Z a (x)&)Vu-Vvdx = jf Vv adx

Discretize in space in usual way.

N
Stochastic collocation: choose special set f(l),f(z),...,f( 2

from considerations of interpolation

Advantage: Spatial systems are decoupled
20



Multi-Dimensional Interpolation

Given f(l),f(z),...,f('\'f), and v(&), consider an interpolant

(M) = Y V(L () ~v(&)
where L, (ﬁ(")) = 5J.k, Lagrange interpolating polynomial

If ul) solves the discrete (in space) version of

j(ao(x) +0211\/Zar(x)§r)Vu-Vvdx = jf Vv dx
D D
with & = f(k), then the collocated solution is

Uy (%€) = S UP (0L, (&)

21



To Compute Statistical Quantities

Solution Uy, (X&) = iu,ﬁk)(x) L, ($)

1. Moments

E ()0 = U0 [L D@

Not free but can be precomputed

2. Distribution functions
Obtained by sampling, cheap

22



Strategy for Interpolation
(M) = Y V)L () =v(&)
One choiceof {L }: L (§) =Ly, (étl)gk2 (S,)- Ly (Sn)

¢, = 1D interpolating polynomial

j

0<k;<p

Advantage: easy to construct

Disadvantage: “curse of dimensionality,”
dimension = (p+1jﬁn

23



Detour: Sparse Grids

Given: 1D interpolation rule (U ®y)(y™®)) = Zk:\/(yﬁk))gj(y(k))

j=1

Derived from (1D) grid Y = {y‘k) ymk}

Multidimensional rule above is induced by fully populated
multidimensional grid Y ® «Y @) x...xY M,
Y®l=m =p+1

Alternative: multidimensional sparse grid (Smolyak)

Hm+pm= [ JY®xy® x...xy)

pP—M+1<ip+ -+, <Pp

24



Sparse Grid Interpolation L e®,
o 8>00 © - o y R
o 2 Ooo o] 0800
158 © ?o D @ oS o
Example of sparse grid os] 0" g¥ 2 oq  Bag S0 o
0 ® g ©C®o & 5
for m=3, p=16 oo, 2% g ® P00
® 8 8B o O R
OO :2370.‘ d;OO OQZ)(%j
0.5 “""“:‘u, @% ©
: B

For v of the form V(&) = v, (&)V,(E,) v (&), interpolating
function takes the form

()&= FUY-UW(E)OUY U, (£)®
h+ -+, <p ®(U (i) —U(im_l))Vm(fm)

25



Sparse Grid Interpolation

Theorem (Novak, Ritter, Wasilkowski, Wozniakowski)

For & € sparse grid and V(&) a tensor product polynomial of
total degree at most p,

V(§)=0;(5)0; (&) A (&) Jutiptt Jy <P
(v)($) =V(S).

That is: sparse grid interpolation evaluates the set of complete
m-variate polynomials exactly

Overhead: number of sparse grid points to achieve this
(= # stochastic dof) is larger than for Galerkin

() ()
P P

26



Analysis (Babuska, Tempone, Zouraris, Nobile, Webster)

—————————————————————————————————

Convergence is slow wrt number of samples but
Independent of number of random variables m

Stochastic Galerkin and Collocation:

—————————————————————————————————

E(u)- E(Uhp)_'(E(U) E(uh))'+'(E(uh) E(u,))

.<ChE(|u|2) - <C,rf, r<l

Exponential in polynomial degree p
Constants (c:, r) depend on m

Rule of thumb: the same p gives the same error
(for all versions of SG and collocation)
More dof for collocation than SG 27



Recapitulating

Monte-Carlo methods:

Many samples needed for statistical quantities

Many systems to solve

Systems are independent

Statistical quantities are free (once data is accumulated)

With s realizations: E_(u,) = %Z;u,ﬁ” (X)

Convergence is slow but independent of m

Stochastic Galerkin methods:
One large system to solve

Statistical quantities are free or (relatively) cheap Similar convergence

_ _ behavior
Stochastic collocation methods: Faster than MC
Systems are independent Depends on m

Fewer systems than Monte Carlo
More degrees of freedom than Galerkin
Statistical quantities are (relatively) cheap

28



1. Computing with the Stochastic Galerkin and
Collocation Methods

For both: compute a discrete solution, a random field u, (X, $)

Stochastic Galerkin:
N N, N
uhp(X1§) = Z,jl i1 Uil ?; (X)y, (§) = Z|jlul (X)y, (@
Stochastic Collocation:

U (6, €)= 3 > U (L (€) = 3 u (XL, (€)

Postprocess to get statistics

29



Computational Issues

Stochastic Galerkin: Solve one large system of order Nx X N¢

()

Frequently cited as a problem for
this methodology

||||||||||

||||||||||

Stochastic Collocation: Solve N¢ “ordinary” algebraic systems
(of order Nx), one for each sparse grid point

. (collocation) __ ~p p| (Galerkin)
Here: N : 2" N :

Some savings possible 30



Multigrid Solution of Matrix Equation | (E. & Furnival)

Solving Au=f
A=G, ®AJ+Y " G, ®A
[Alj =2, o [a.()Ve,(x)- Vo, (x)dx

(G, = [ (E)q(£)E, p(E)de

A = Ar(h), A= A" spatial discretization parameter h

A = Ar(Zh), A= A®Y spatial discretization parameter 2h

Develop MG algorithm for spatial component of the problem

31



Multigrid Algorithm (Two-grid)

Let AW =Q-N, Q = smoothing operator
fori=0,1, ...

for j=1:k k smoothing steps

U™ (1 —QLAM)® g Lf®

end

(@) _ R ® _ AMyMy  Restriction

Solve AN _ (2h) Coarse grid correction

uM —u®™ 4 pcen Prolongation
end

Prolongation and restriction:

P =1®P, induced by natural inclusion in spatial domain
R=P"=1®R, R=P'

32



Convergence Analysis: Use “Standard” Approach
Error propagation matrix:

e(i+1) _ [(A(h))—l —?(A(Zh))_lR)] [A(h) (I _Q—lA(h))k] e(i)

Establish approximation property
[[(AD) - P(ACY)IR]y]

w SCIYl, vy
and smoothing property T
IIAT (1 =Q A Ty <n(K)|y]w VY. n(k) — 0
Analysis Is:
1% {], i I (A™) T = P(A)TR)[AT (1 -QA™) T e ||
<CII[A" (1 -Q AM) T |,
<Cn(k)lle® |

AN AN

A

33



Approximation Property

“Standard” MG analysis for deterministic problem:

_ Hu(m _y@m

H [(A(h))—l _ T(A(Zh))_lR] y A Alh)
U, — uzhHa (=a(u, —u,,,u, - u2h)1/2)

U, — uHa T Hu - UZhHa
Approximability < \/OTZ(ChHDZU ey T CZhHDzu LZ(I)))

Regularity < Ch H f

Property of mass < C HyH
matrix ’

IA

L*(D)

34



For Approximation Property in Stochastic Case

Introduce semi-discrete space Hj(D)®T, Discrete stochastic

u Space
Weak formulation

a(u,,v,)=/¢(v,) forallv,eH (D)®T,
Solution u

[L(A™) ™ —P(APY)*R]Y|

A Huhp — Uan,p

a

_|_

a

o u2h

u

P a

Approximation (in 2D):
”up Uy || < ChHDzuIO

Established using best approximation property of Uy,
and interpolant U (X;,&) =u (X;,&) V&

L2 (D)®L?(T)

Similarly for other steps used for deterministic analysis 35



Comments

- Establishes convergence of multigrid with rate independent of
spatial discretization size h

- No dependence on stochastic parameters m, p
- Applies to any basis of stochastic space

- Coarse grid operator: G =a,G +o—z_1 r\FG size O(N:)

G, derives from basis of multivariate polynomials of total
degree p, orthogonal wrt probability measure p(&)dé

Maximum eigenvalue » = max root of orthogonal polynomial,
bounded for bounded measure

=0<a -on(3, a4 ) < AG)<ar +on (3l a\4,),

CG iteration Is an option

36



Iteration Counts / Normal Distribution

# terms (m) in KL-expansion

h=1/16 m=1 m=2 m=3 m=4
Polynomial p=1 8 8 6 8
degree p=2 8 8 8 8
p=3 9 9 9 9
p=4 9 10 10 10
h=1/32
3 m=1 m=2 m=3 m=4
Polynomial p=1 y f £ £
degree p=2 8 8 8 3
p=3 8 8 9 9
p=4 9 9 9 9




Multigrid Solution of Matrix Equation |l
Solving Au=f

A=G ®AO+Z_1 QA
[Ali =%, o [a,() Ve, (x)- Ve, (x)dx

[G, 1 = [w1 (O (O p(£)dE

Preconditioner for use with CG: Q =G, ® A, (Kruger, Pellissetti,
Ghanem)

A ~ J'a (X)Ve,(X)- Ve, (X)dX  Deterministic diffusion,

from mean
G, = I

38



Analysis (Powell & E.)

Recall a(X,0)=a,(X)+0 Y. 2 & (X)& (o)
—  A=G,®A +Y G ®A

Q= Go ® Ao
Theorem : For u constant, the Rayleigh quotient satisfies
w, Aw
1—r£(’ )£1+r
(w, Qw)

r=(a/we(p)Y" 2 NIl

Consequence: K < Ly dictates convergence of PCG

39



Sketch of Proof 7= (o /) c(p) ernzl\//l_r la ..
A=G,®A +3" G ®A

In spatial domain:

(9. A9)~ /7, | 3, ()Vp(X)-Vo(x)dx
<oy Nl ll. [,Vo(x)-Vo(xdx
= (! W2 I3, 1L, (9. Ap)

From stochastic component: as above
c(p) bounded by largest root of scalar orthogonal polynomial

40



Multigrid Variant of this Idea

Replace action of Ac* with multigrid —  preconditioner
QMG = GO ® AD,MG (Le Maitre, et al.)

(w, Aw)  (w, Aw) (w,Qw)

(W, QW) (W, Qw) (W QMGW) Spectral equivalence
/' of MG approximation
S [ﬂl, B,] todiffusion operator

Analysis:

& (1‘”') P,
- (d-7) B

41



Experiment

Starting with a with specified covariance and small o (=.01):

Compare Monte-Carlo simulation with SFEM, for
-V-(avu) = f
N.B.: No negative samples of diffusion obtained in MC

# Samples s

Max SFEM 100 1000 10,000 40,000

Mean 06311 | .06361 06330 06313 06313

Variance |2.360(-5) | 2.161(-5) | 2.407(-5) | 2.258(-5) | 2.316(-5)

/ \
Solve one system

of order 210x225 Solve s systems of size 225




Comparison of Galerkin and Collocation

Recall, for stochastic collocation

Ne
Discrete solution Uy, (X,&) = Zuf‘k)(x) L (S)

k=1

Obtained by solving
j(ao(x) + aZTzl\/Zar(x)g“r)Vu -Vvdx = jf v adx
D D

For set of samples {f(k)} situated in a sparse grid

Advantage of this approach: simpler (decoupled) systems
Disadvantage: larger stochastic space for comparable accuracy
larger by factor approximately 2°

43



Dimensions of Stochastic Space

m P Galerkin | Collocation | Collocation
(#KL) Sparse Tensor
4 1 5 9 16
2 15 41 81
3 35 137 256
4 70 401 625
10 1 11 21 1024
2 66 221 59,049
3 286 1582 1,048,576
4 1001 8,801 9,765,625
30 1 31 61 1.07(9)
2 496 1861 2.06(14)
3 5456 37,941 1.15(18)
4 46,376 582,801 9.31(20)

~ size of coarse grid space _/A\\ # systems for collocation

for MG / Version 1 MG / Version |l




Experiment

(E., Miller, Phipps, Tuminaro)

* Solve the stochastic diffusion equation by both methods

« Compare the accuracy achieved for different parameter sets?

* For parameter choices giving comparable accuracy, compare
solution costs

« Spatial discretization fixed (32x32 finite difference grid)

Solution algorithm for both discretizations:
Preconditioned conjugate gradient with
mean-based preconditioning, using AMG for the
approximate diffusion solve

'Estimated using a high-degree (p=10) Galerkin solution.



Experimental Results | = caen

—&— Collocation (]

Accuracy:
for fixed m=4: similar p=
polynomial degree for SG
“level” for collocation

produces comparable errors

Performance:

—&— Galerkin 1 ;i —&— Galerkin
©— Collocation &— Collocation

—& — Galerkin: Model | — &~ Galerkin: Model

—&-— Collocation: Model { L “ . — ~ Collocation: Model |

time (non-dimensional)
time (non-dimensional)




Experimental Results: Performance

Performed on a serial machine with C code and

CG/AMG code from Trilinos
Observation: Galerkin faster, more so as number of
stochastic variables (KL terms) grows

CPU times for larger m = #KL terms:

Galerkin Collocation
P m=5 | m=10 | m=15 m=5 m=10 m=15
1 058 | .147 32- .069 163 .286
2 269 | 1.20 3.80 532 2.13 5.08
3 1.20 | 13.14 | 51.45 2.41 16.99 57.98
4 3.50 | 53.79 | 168.11 | 8.31 102.60 | 493.04
3) 6.51 |117.73 24.56 | 515.75
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More General Problems

For the problem discussed, based on a KL expansion, has
a linear dependence on the stochastic variable &

Other models have nonlinear dependence. For example

A%, &) = 8, +e - CKS) =)+
m
Nonlinear GZrzl\/Irar(X)gr

For Gaussian c, called a log-normal distribution

In particular: coercivity Is guaranteed with this choice

48



More General Problems

For stochastic Galerkin, need a finite term expansion for a

a(x,&) =a,()+a>. 4 a. (), (&)

Note: not &
—  matrix
A=G,®A+3" G, ®A
[G.]; = <I,urwiguj> Less sparse

More importantly: # terms M will be larger
perhaps as large as 2N¢

=> mvp will be more expensive

49



In Contrast

Collocation is less dependent on this expansion

A% comes from ja(x,f(k))Vu-Vvdx for each
D

sparse grid point §(k)

Many matrices to assemble, but mvp is not a difficulty

50



Concluding Remarks

 Exciting new developments models of PDEs with uncertain
coefficients

 Replace pure simulation (Monte Carlo) with finite-dimensional
models that simulate sampling at potentially lower cost

 Two techniques, the stochastic Galerkin method and the

stochastic collocation method, were presented, each with some
advantages

» Solution algorithms are available for both methods, and work
continues In this direction

o1



