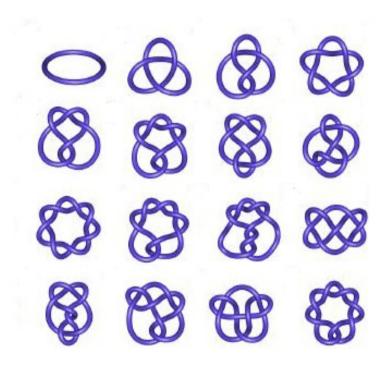
Quantum Algorithms for Topological Invariants Stephen Jordan



Wed Feb. 3, 2010

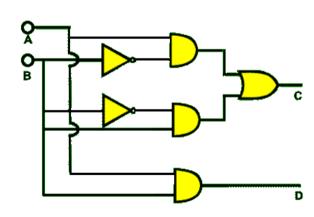
What is a quantum algorithm?

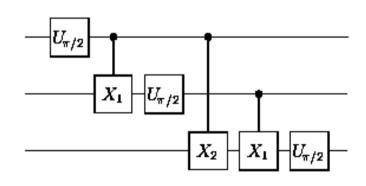
Classical

Quantum

0101101

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha(x) |x\rangle$$

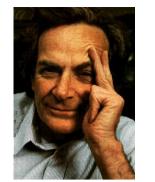




$$\begin{bmatrix} X_n \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i/2^n} \end{pmatrix}$$

• the rules:

- solve problem using sequence of local quantum gates
- the goal:
 - use fewer gates than classical algorithms



R. Feynman

Simulation

poly(n) quantum

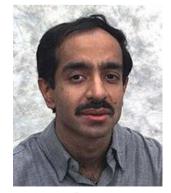
 $O(2^n)$ classical

P. Shor

Factoring (1994)

 $O(n^3)$ quantum

 $O(2^{n^{1/3}})$ classical



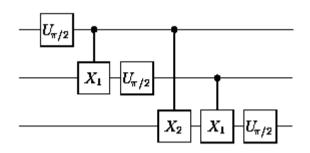
L. Grover

Search (1996)

 $O(\sqrt{N})$ quantum

O(N) classical

Despite simple rules



and some early successes

the game is hard.

We need heuristics.

Church-Turing Thesis

Alonzo Church

Alan Turing

Everything computable is computable by a Turing machine.

Modern form:

Every physical system can be efficiently simulated by a standard quantum computer.

Heuristic:

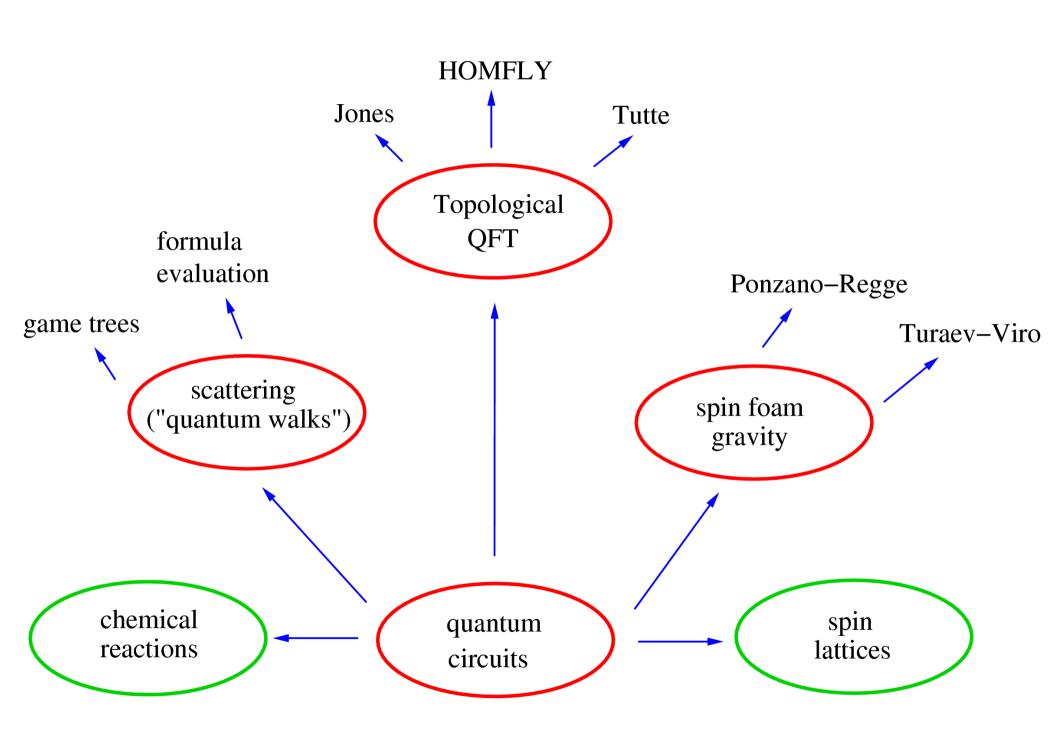
Find quantum algorithms by simulating physical systems.

Every physical system can be efficiently simulated by a standard quantum computer.

more precisely:

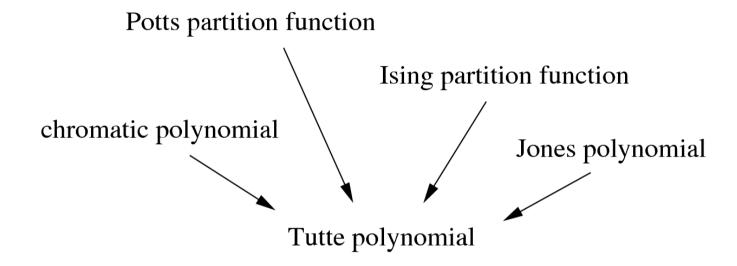
unitary time evolution of n particles for time t should be implementable by quantum circuit of poly(n,t) gates

does not cover: partition functions, ground states,



Why should we care?

reducibility



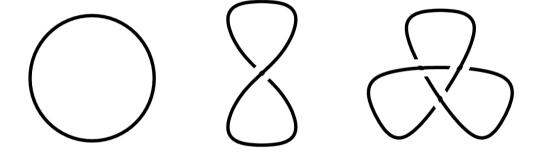
- cryptography
- unforeseen applications (e.g. Google)
- test the Church-Turing thesis

Overview

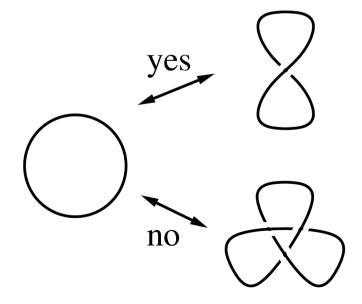
- our Church-Turing heuristic yields quantum algorithms to approximate:
 - knot invariants
 - 3-manifold invariants
- these represent exponential speedups over classical computation
- some of these algorithms can be run on modest hardware

Knot Equivalence

• A knot is an embedding of the circle into \mathbb{R}^3



Are two knots equivalent?

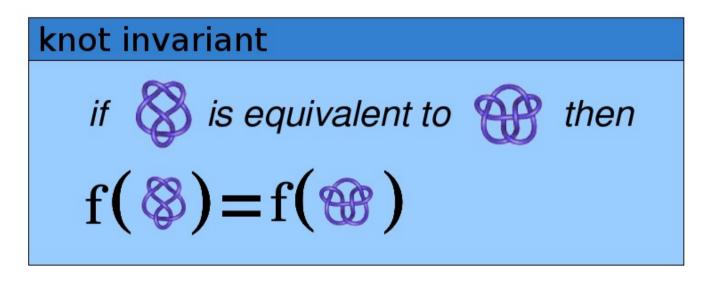


Reidemeister Moves

 Two knots are equivalent if and only if one can be reached from the other by a sequence of Reidemeister moves

 This gives us a more combinatorial way to think about knot theory.

- no polynomial time algorithm for knot equivalence is known
- partial solution:



- Jones polynomial
 - distinguishes many knots
 - exact value is hard to compute

Jones Polynomial from TQFT

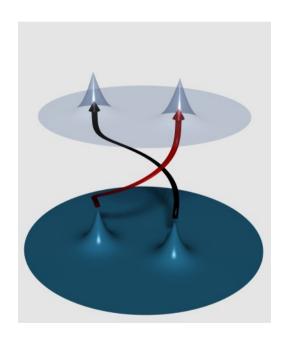
- 1985 Jones discovers Jones polynomial
- 1989 Witten discovers that Jones polynomial arises as amplitude in Chern-Simons TQFT

Every physical system can be efficiently simulated by a standard quantum computer.

 2000 Freedman, Kitaev, Larsen, Wang: quantum algorithm for Jones polynomial

Anyons

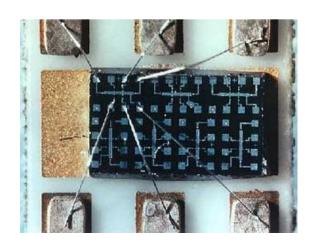
- quasiparticles confined to two dimensions
- world lines are braids

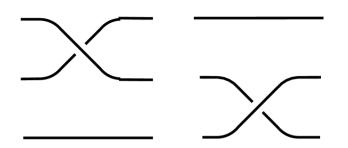


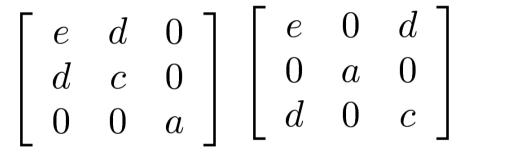
- Adiabatically drag them around
- the corresponding Berry's phases are a representation of the braid group

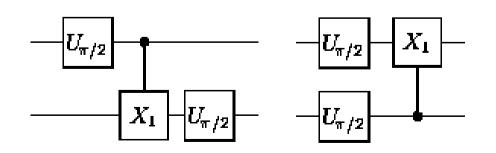
Nonabelian Anyons

- The *n*-quasiparticle eigenspace is *d*-fold degenerate.
- The Berry's "phase" is a d-dimensional unitary representation of the braid group.
- There is indirect evidence that anyons occur in fractional quantum hall systems.









composing braids

multiplying matrices

concatenating circuits

$$\sum_{j} U_{ij} V_{jk} = (UV)_{ik}$$

One Clean Qubit

- Initial state: one qubit pure, the rest maximally mixed
- Idealized model of high entropy quantum computer such as NMR [Knill & Laflamme, 1998]
- Canonical problem: estimating the trace of a quantum circuit

One Clean Qubit

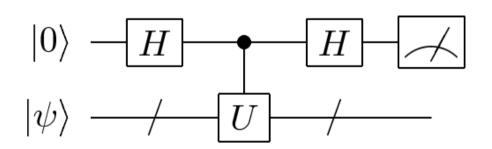
- initial density matrix: $\rho = |0\rangle\langle 0| \otimes \frac{1}{2^n}$
- entropy n out of n+1 maximum
- apply quantum circuit $ho
 ightharpoonup U
 ho U^\dagger$
- with entropy n+1 nothing would ever happen!

$$\rho = \frac{1}{2^{n+1}}$$

 apparently yields exponential speedups over classical computation

Trace Estimation

 One clean qubit computers can efficiently estimate the normalized trace of a quantum circuit to polynomial accuracy



$$p_0 = \frac{1}{2} + \frac{\operatorname{Re}(\langle \psi | U | \psi \rangle)}{2}$$

$$|0\rangle$$
 H H H

$$p_0 = \frac{1}{2} + \frac{\operatorname{Re}(\operatorname{Tr} U)}{2^{n+1}}$$

- Estimating the Jones polynomial is a "complete" problem for one clean qubit computers
 - one clean qubit computer can efficiently solve this problem
 - by solving this problem we can simulate a one clean qubit computer

```
[Shor, Jordan. Quant. Inf. Comp. (8):8/9, 681 (2008)]
```

one clean qubit computers can also efficiently estimate HOMFLY polynomials

```
[Jordan, Wocjan. Quant. Inf. Comp. (9):3/4, 264 (2009)]
```

Essence of Proof

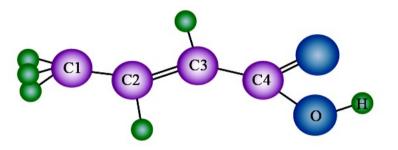
correspondence between braids and circuits

$$-iX$$

- goes both ways:
 - braids → circuits (yields algorithm)
 - − circuits → braids (proves hardness)

Experiments!

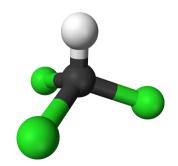
four qubits, four strands



trans-crotonic acid

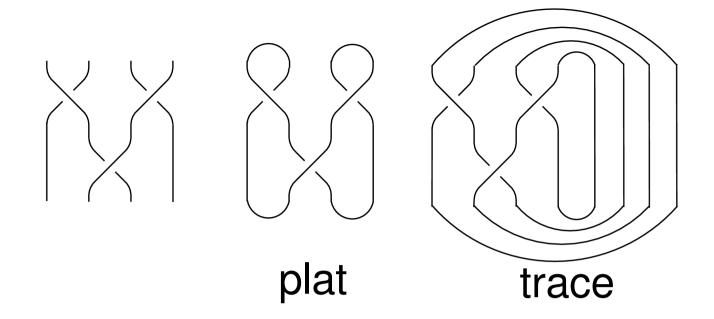
[Passante et al. PRL 103, 250501 (2009)]

two qubits, three strands



chloroform

[Marx et al. arXiv:0909.1080 (2009)]



trace closure: DQC1-complete

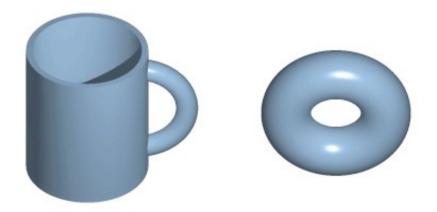
[Shor, Jordan. Quant. Inf. Comp. (8):8/9, 681 (2008)] [Jordan, Wocjan. Quant. Inf. Comp. (9):3/4, 264 (2009)]

plat closure: BQP-complete

[Freedman, Kitaev, Wang. Comm. Math. Phys (227):681 (2002)] [Freedman, Larsen, Wang, Comm. Math. Phys (227):605 (2002)] [Aharonov, Jones, Landau. STOC '06 pg. 427]

Quantum algorithms for Manifold Invariants

- *n*-manifold: topological space locally like \mathbb{R}^n
- Fundamental question: given two manifolds are they homeomorphic? ("the same")



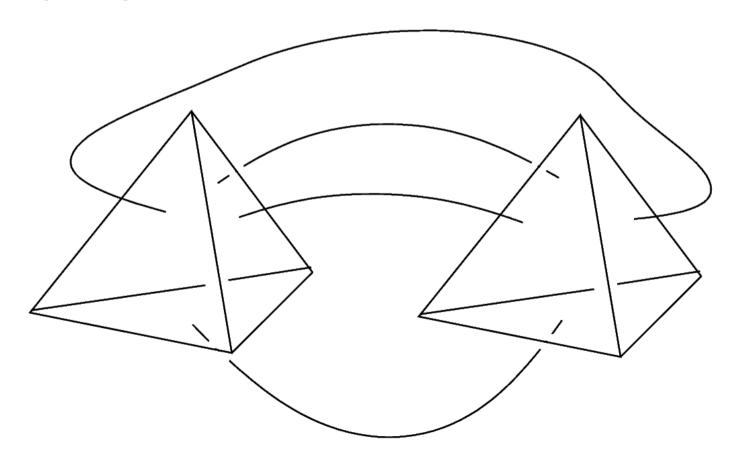
partial solution:

manifold invariant – if manifolds A and B are homeomorphic then f(A) = f(B)

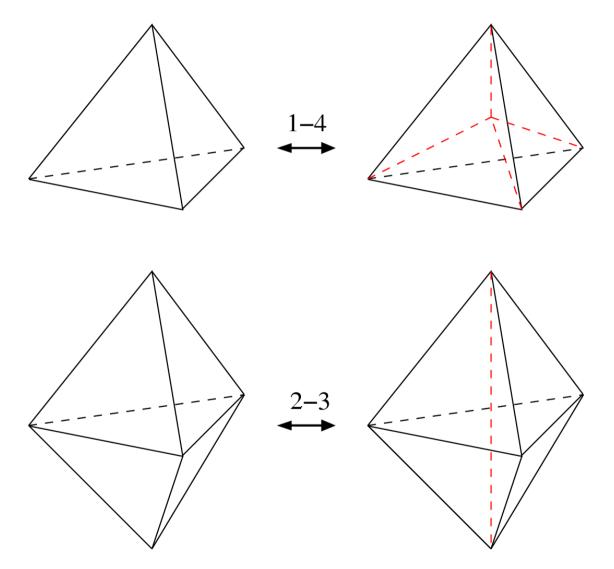
Higher Dimensions

	equivalence	invariants
knots	computable, not efficient	Jones, HOMFLY
2-manifolds	easy	Euler characteristic
3-manifolds	computable, not efficient	Turaev-Viro, Ponzano-Regge
4-manifolds	uncomputable	Donaldson

- How do we describe a 3-manifold to a computer?
- one way is to use a triangulation:
 - a set of tetrahedra
 - a gluing of the faces



 manifolds equivalent iff connected by a finite sequence of Pachner moves



sequence could be long!

Turaev-Viro invariant arises in a "spin-foam" model of quantum gravity

Every physical system can be efficiently simulated by a standard quantum computer.

We should be able to implement this process with an efficient quantum circuit.

Quantum Algorithms

- Turaev-Viro invariant
 - efficiently computable on quantum computer
 - BQP-hard: simulating a quantum computer reduces to estimating Turaev-Viro invariant
 - [G. Alagic, S. Jordan, R. Koenig, B. Reichardt, to appear]
- Ponzano-Regge invariant
 - efficiently computable on permutational computer
 - [S. Jordan, arXiv:0906.2508 (QIC, to appear)]

TV invariant is BQP-hard

what does that mean?

- given any quantum circuit we can construct a corresponding 3-manifold such that its TV invariant is \simeq 1 if circuit outputs TRUE and is \simeq 0 if FALSE
- the problem of approximating the TV invariant is at least as hard as integer factorization
- quantum algorithm for approximating TV invariant is nontrivial and cannot be duplicated classically (unless BQP = P)

Permutational Quantum Computation

- 1) prepare state spin-1/2 particles with definite total angular momenta
- 2) permute them around
- 3) measure total angular momentum of various subsets

sounds weak...but it evaluates Ponzano-Regge!

Permutational Quantum Computation

- can also compute irreps of S_n
- analogous to anyonic quantum computation
 - shares some of the favorable fault tolerances
 - but doesn't require any exotic anyons!
- possibly weaker than standard Q.C. but unlikely to be classically simulatable

[S. Jordan, arXiv:0906.2508 (QIC, to appear)]

A Moral of Our Story

- simulating physical systems by quantum computer
 - leads to other quantum algorithms
 - is useful as an end in itself
 - addresses a fundamental question: how computationally powerful is our universe

Summary

- from quantum simulation of TQFTs and spin foams we obtain quantum algorithms for
 - knot invariants (Jones, HOMFLY)

```
[Freedman, Larsen, Wang, Comm. Math. Phys (227):605 (2002)] [Shor, Jordan. Quant. Inf. Comp. (8):8/9, 681 (2008)] [Jordan, Wocjan. Quant. Inf. Comp. (9):3/4, 264 (2009)]
```

3-manifold invariants(Turaev-Viro, Ponzano-Regge)

```
[Jordan, arXiv:0906.2508 (Quant. Inf. Comp., to appear)] [Alagic, Jordan, Koenig, Reichardt, to appear]
```

many of these run on modest hardware

Outlook

- many quantum systems remain to be simulated
 - QFT (Current work with Preskill, Lee, and Shaw)
 - 3+1 dimensional spin foam models
 - three-manifold invariants with one clean qubit?