
Scott McMaster (mailto:scottmcm@cs.umd.edu)
University of Maryland - College Park
NIST -- April 24, 2009

 Ph.D., University of Maryland, College Park
(2008).

 Research interests include Software Testing,
Program Analysis, Software Tools, and
Distributed Systems.

 Professional Software Developer

 Microsoft, Lockheed Martin, Amazon.com, etc.

24/24/2009 NIST

 Background
 Call Stack Coverage for Test Suite Reduction
 Fault Correlation and the Average Probability

of Detecting Each Fault
 Other Advances and Future Directions

34/24/2009 NIST

Automated Test Case Generation Techniques
Code-based (Parasoft, Agitar, etc.)
Model-based (GUITAR, etc.)
May generate enormous volume of tests

New Development Methodologies
Continuous integration
Rapid test cycles

 Automated test case generation may result in
too many tests to run in a given build/test/deploy
process.

44/24/2009 NIST

 Reduce the number of test cases in a test suite,
and:

 Maintain as much of the original suite’s fault
detection effectiveness as possible.

 Most common approaches are based on
maintaining coverage relative to some criterion.
 Coverage Requirements are logical or program

elements that must be exercised by test cases.
 Examples: Branches, lines, dynamic program

invariants, etc.
 Traditionally evaluated against conventional,

batch-oriented applications, using test suites built
using category-partition or similar methods.

54/24/2009 NIST

Object- and aspect-oriented
Use of reflection
Use of callbacks
Multithreading
Extensive use of libraries and frameworks
Multi-language development
Event-reactive paradigm
Handler code may be invoked from multiple contexts

An effective test coverage technique should
account for these factors.

64/24/2009 NIST

 Test suite reduction technique based on the call stack
coverage criterion.
 Formal model of call stacks, including notion of maximum-

depth call stack.
 Empirical studies of test suite reduction in modern

versus conventional software applications.
 Development of new metrics for looking at the

problem of test suite reduction.
 Guidance for practitioners considering test suite

reduction.
 Improvements to the practice of GUI test automation.
 Reusable tools and data.

74/24/2009 NIST

 Sequence of active calls associated with each
thread of a running program.

 Stack where:

 Methods are pushed on when they are called.

 Methods are popped off when they return or
throw an exception.

84/24/2009 NIST

9

(Ljava/lang/Object;ILjava/lang/Object;II)V Ljava/lang/System;arraycopy

([BII)V Ljava/io/BufferedOutputStream;write

([BII)V Ljava/io/PrintStream;write

()V Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes

()V Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer

()V Lsun/nio/cs/StreamEncoder;flushBuffer

()V Ljava/io/OutputStreamWriter;flushBuffer

()V Ljava/io/PrintStream;newLine

(Ljava/lang/String;)V Ljava/io/PrintStream;println

([Ljava/lang/String;)V LHelloWorldApp;main

Full Method Signature (Canonical Representation)

4/24/2009 NIST

 Using call stacks as a coverage criterion addresses
challenges posed by modern software applications.

 Call stacks:

 Are easily collected in a multi-language and/or multi-
threaded environment.

 Automatically identify and resolve reflective and virtual
method calls, woven aspects, and callbacks.

 Capture differences in context when methods are called.

 Note that this application only uses dynamic call
stacks.

104/24/2009 NIST

 Efficient data structure is the calling context
tree (CCT).

 Nodes are methods and edges are method calls.

 Traverse all paths to leaves to find maximum-
depth call stacks.

 Multithreaded extension is to maintain one CCT
per thread and merge at the end.

 JavaCCTAgent (http://sourceforge.net/projects/javacctagent)

 Tool for collecting CCTs for Java programs

114/24/2009 NIST

http://sourceforge.net/projects/javacctagent

12

java/io/OutputStreamWriter;flushBuffer
java/io/PrintStream;newLine
java/io/PrintStream;println
HelloWorldApp;main

HelloWorldApp;main

PrintStream;println

PrintStream;newLine

OutputStreamWriter;flushBuffer

java/io/BufferedWriter;newLine
java/io/PrintStream;newLine
java/io/PrintStream;println
LHelloWorldApp;main

BufferedWriter;newLine

java/io/PrintStream;write
java/io/PrintStream;print
java/io/PrintStream;println
HelloWorldApp;main

PrintStream;print

PrintStream;write

4/24/2009 NIST

 % Size Reduction
 100 * (1 – SizeReduced / SizeFull)

 % Fault Detection Reduction
 100 * (1 – FaultsDetectedReduced /

FaultsDetectedFull)

 Test coverage is not explicitly used in these
metrics.

134/24/2009 NIST

 One might expect a correlation between coverage
requirements and the faults exposed by test cases that
hit them.

 But no existing measure explores this notion.
 Proposal: Average Probability of Detecting Each Fault
Captures the likelihood that coverage-equivalent reduced

test suites will detect the same faults as their original
counterparts.

Driven by the frequency that coverage requirements get hit
by fault-detecting test cases (fault correlation).

Varies greatly by coverage criterion.
Useful for selecting the best coverage criterion for test suite

reduction.

144/24/2009 NIST

 Intuition: Certain coverage requirements are more
likely to be associated with fault-producing program
states.

 From the coverage matrix and fault matrix, we can
calculate the fault correlation.

 Given:
1. The set of test cases.
2. A specific known fault.
3. A specific coverage requirement.

 Fault correlation is the ratio of (test cases that hit the
coverage requirement and detect the fault) to (test cases
that merely hit the coverage requirement).

154/24/2009 NIST

 From fault correlations, we can calculate
the…

 Average the expected probability of finding
each fault across all known faults in an
experiment.
 Evaluated in the subsequent experiments.

164/24/2009 NIST

1. Compare size and fault detection reduction of
call-stack-reduced suites to suites reduced
based on other criteria.

2. Compare fault detection of call-stack-reduced
suites to suites of the same size created using
other approaches.

3. Evaluate the impact of including coverage of
third-party library code in test suite reduction.

4. Compare call-stack-based reduction in
conventional versus event-driven applications.

5. Test whether certain coverage criteria are more
highly associated with faults.

174/24/2009 NIST

184/24/2009 NIST

 Subject Applications
 TerpOffice
 Space
 nanoxml

 Coverage Tools
 Java CCTAgent
 Detours-based library for CCT collection in Win32 applications
 jcoverage / Cobertura

 JavaGUIReplayer
 Test Suite Reduction Implementation
 HGS algorithm (implemented in C#)

 Custom test harnesses to tie these tools together

194/24/2009 NIST

20

Application Source

Language

Execution Style Programming

Style

Test Universe Size # Detectable

Faults (Versions)

TerpPaint (TP) Java Event-Driven (GUI) Object-Oriented 1500 43

TerpWord (TW) Java Event-Driven (GUI) Object-Oriented 1000 18

TerpSpreadsheet (TS) Java Event-Driven (GUI) Object-Oriented 1000 101

Space C Conventional Procedural 13585 34

nanoxml Java Conventional Object-Oriented 216 9

Good subjects are hard to find. You need:

•Test cases

•Known faults

4/24/2009 NIST

21

Includes

Library

Data?

TerpPaint

(TP)

TerpWord

(TW)

TerpSpreadsheet

(TS)

Space Nanoxml

Call Stacks

Observed

Yes 413166 569933 333882 453 6617

Methods

Observed

Yes 12277 12665 11103 143 1126

Events N/A 181 219 110 N/A N/A

Executable

Lines

No 11803 9917 5381 6218 3012

Classes No 330 197 135 N/A 25

Methods No 1253 1380 746 123 232

4/24/2009 NIST

 Standard Approaches
 Call Stack (CS)
 Line (L)
 Method (M)
 Random (RAND)
 Event (E1)
 Event-Interaction (E2)

 “Additional” Approaches (adds random cases to match CS size)
 Line-Additional (LA)
 Method-Additional (MA)
 Event-Additional (E1A)

 “Short” Approaches (excludes library methods)
 Short Call Stack (SCS)
 Short Method (SM)

224/24/2009 NIST

23

TS - % Size Reduction

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s

CS

M

L

E1

E2

SCS

SM

4/24/2009 NIST

244/24/2009 NIST

 GUI Applications
 E2 displays very little size reduction (expected

because test case generation was E2-based).

 Other non-CS techniques perform similarly.

 CS strikes a middle ground (38-50% reduction for
largest suite size).

 Conventional Applications
 CS still yields less reduction than comparison

techniques.

 But closer than in the GUI subjects.

254/24/2009 NIST

26

TS - % Fault Detection Reduction

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350 400

Original Suite Size

A
v
g

 %
 R

e
d

u
c
ti

o
n

 O
v
e
r

2
5
 S

u
it

e
s CS

RAND

M

L

E1

E2

LA

MA

E1A

SCS

SM

4/24/2009 NIST

274/24/2009 NIST

 GUI Applications
 Call-Stack-based reduction (CS) loses only 0-5% of

detectable faults.
▪ Comparable to E2, even though E2 displays almost no size

reduction.

 Other techniques perform comparably to one
another.

 Conventional Applications
 CS performs well for space, not for Nanoxml.

▪ Nanoxml has only 9 faults, and 7 are very easy to find
(allowing techniques with random selection to perform well).

284/24/2009 NIST

 Which coverage criterion’s requirements are
best correlated with fault-revealing test cases?

 Use the average probability of detecting each
fault metric against the full universe of test
cases.

29

TP TS TW nanoxml

E1 0.51 0.52 0.47 --

E2 0.92 0.88 0.96 --

L 0.84 0.69 0.77 1.00

M 0.80 0.69 0.72 0.81

CS 1.00 0.97 0.97 0.997

SM 0.70 0.68 0.61 0.81

SCS 0.73 0.85 0.77 0.94

4/24/2009 NIST

304/24/2009 NIST

1. S. McMaster and A. Memon. Call Stack Coverage for GUI Test-
Suite Reduction, IEEE Transactions on Software Engineering
(TSE 2008), January 2008.

2. S. McMaster and A. Memon. Fault detection probability analysis
for coverage-based test suite reduction. IEEE International
Conference on Software Maintenance (ICSM 2007), Paris, France,
2007.

3. S. McMaster and A. Memon, Call Stack Coverage for GUI Test-
Suite Reduction, Proceedings of the 17th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2006),
Raleigh, NC, USA, Nov. 6-10 2006.

4. S. McMaster and A. Memon. Call stack coverage for test suite
reduction. IEEE International Conference on Software
Maintenance (ICSM 2005), pages 539-548, Budapest, Hungary,
2005.

314/24/2009 NIST

 Automated GUI Test Case Maintenance
 Using Annotations in GUI Testing

 Test Oracles

 Test Case Generation

324/24/2009 NIST

 Test case replayers need to find the right
elements to act upon when GUIs are
modified.

 Automated approach is based on heuristics
(same-label, same-position, etc.).

334/24/2009 NIST

 S. McMaster and A. Memon. An Extensible Heuristic-Based

Framework for GUI Test Case Maintenance. First International

Workshop on Testing Techniques & Experimentation

Benchmarks for Event-Driven Software (TESTBEDS 2009),

Denver, CO, April 4, 2009.

2. {CaseSensitiveCheckBox, click}

1. {FindTextBox, setText(„GUI‟)} 3. {FindButton, click}

4. {CancelButton, click}

4/24/2009 34NIST

Version 1

Version 2

4/24/2009 35NIST

2. {CaseSensitiveCheckBox, click}

1. {FindTextBox, setText(„GUI‟)} 3. {FindButton, click}

4. {CancelButton, click}

=> Test Case is BROKEN!!!

4/24/2009 36NIST

2. {CaseSensitiveCheckBox, click}

1. {FindTextBox, setText(„GUI‟)} 3. {FindButton, click}

4. {CancelButton, click}2. {MatchCaseCheckBox, click}

Can the fix be automated?

4/24/2009 37NIST

 Classify each GUI element into one of three sets:
1. Created - elements which are new in the new version

of the GUI.
2. Deleted - elements from the old version of the GUI

which do not appear in the new version.
3. Maintained – elements which have been kept and

possibly modified between versions.
 Calculating these sets requires heuristic

approaches.
 Cannot work on arbitrary GUI modifications.
 Focus is on building an accurate Maintained set for

relatively small modifications.

4/24/2009 38NIST

 Automated framework for GUI element
identification.

 Builds GUI models from windows/dialogs in
Java Swing applications.

 Performs GUI element identification using
customizable, extensible heuristic sets.

 Heuristics are applied in order of definition.

 Multiple passes are made until the process
converges.

4/24/2009 39NIST

4/24/2009 NIST 40

Applying heuristics, pass 1

javax.swing.JLabel:Find: identified by SameTextHeuristic as javax.swing.JLabel:Find:

javax.swing.JCheckBox:Whole Words Only identified by SameTextHeuristic as

javax.swing.JCheckBox:Whole Words Only

javax.swing.JButton:Find Next identified by SameTextHeuristic as javax.swing.JButton:Find Next

javax.swing.JButton:Cancel identified by SameTextHeuristic as javax.swing.JButton:Cancel

javax.swing.JTextField:null identified by SamePreviousSiblingHeuristic as

javax.swing.JTextField:null

javax.swing.JCheckBox:Match Case identified by SamePreviousSiblingHeuristic as

javax.swing.JCheckBox:Case-Sensitive

Applying heuristics, pass 2

Done

1. “Whole Words Only” checkbox is identified by its label.

2. “Case-Sensitive” checkbox is presumed to be the same as the old

“Match Case” checkbox by its position in the element hierarchy.

3. Heuristics identify no further elements  termination.

 Evaluate the effectiveness of different heuristics,
heuristic sets and priorities.
 Metrics

1. False Positives (misidentified elements from original version).

2. False Negatives (unidentified elements from original version).

 Empirical studies using a variety of GUI
windows/dialogs with multiple versions and
different-sized modifications.

 New techniques
 Evaluate test case executability with a proposed

Maintained set.

 Apply multiple heuristic sets simultaneously.

4/24/2009 NIST 41

 Oracles for GUI testing have been rather limited.
 “Crash-testing”

 Researchers and practitioners are leveraging
annotations (source-code-based metadata) for
program analysis and bug detection.
 JSR 305, JSR 308

 @Nonnull, @NullFeasible, @NonNegative, etc.
 Idea: Define annotations for GUI state

invariants, and a framework that test case
replayers can use to verify them.

424/24/2009 NIST

 CrosswordSage

 Open-source application.

 Has several menu items that should be disabled
but aren’t (leads to unhandled exceptions).

434/24/2009 NIST

private CrosswordCompiler cc;

@Enabled("cc != null")

JMenuItem mFile_Print = new JMenuItem();

@Enabled("cc != null")

JMenuItem mAction_Publish = new JMenuItem();

MainScreen.java (annotated)

4/24/2009 NIST 44

private JFrameOperator mainFrame;

@Before

public void setUp() throws Exception {

new ClassReference("crosswordsage.MainScreen").startApplication();

mainFrame = new JFrameOperator("Crossword Sage");

}

private void checkGUI() throws Exception {

GUIAnnotationChecker checker = new GUIAnnotationChecker();

List<GUIInvariantViolation> result = checker.check(mainFrame.getSource());

for(GUIInvariantViolation violation : result) {

System.err.println(violation);

}

assertTrue("Got GUI invariant violations", result.isEmpty()); // FAILS

}

JUnit/Jemmy test case that checks CrosswordSage MainScreen:

Prints: mFile_Print was enabled but shouldn't be

mAction_Publish was enabled but shouldn't be

  Idea: If we have GUI element invariants
defined in annotations, we should be able to
use them to generate test cases that cover
the invariant conditions.

4/24/2009 NIST 45

46

Advances in Coverage-Based

Test Suite Reduction

Scott McMaster
University of Maryland – College Park

mailto:scottmcm@cs.umd.edu

mailto:smcmaster@acm.org

4/24/2009 NIST

mailto:scottmcm@cs.umd.edu
mailto:smcmaster@acm.org

