Scott McMaster (mailto:scottmcm@cs.umd.edu)
University of Maryland - College Park
NIST -- April 24, 2009

Advances in Coverage-Based Test
Suite Reduction




About Me

Ph.D., University of Maryland, College Park
(2008).

Research interests include Software Testing,
Program Analysis, Software Tools, and
Distributed System:s.

Professional Software Developer

Microsoft, Lockheed Martin, Amazon.com, etc.

4/24/2009 NIST 2



Background

Call Stack Coverage for Test Suite Reduction
Fault Correlation and the Average Probability
of Detecting Each Fault

Other Advances and Future Directions

4/24/2009 NIST 3



Motivation for Test Suite Reduction

Automated Test Case Generation Techniques
Code-based (Parasoft, Agitar, etc.)
Model-based (GUITAR, etc.)

May generate enormous volume of tests
New Development Methodologies

Continuous integration
Rapid test cycles

=>» Automated test case generation may result in
too many tests to run in a given build/test/deploy
process.

4/24/2009 NIST 4



Test Suite Reduction

Re(cj:luce the number of test cases in a test suite,
and:

Maintain as much of the original suite’s fault
detection effectiveness as possible.

Most common approaches are basedon
maintaining coverage relative to some criterion.

Coverage Requirements are logical or program
elements that must be exercised by test cases.

Examples: Branches, lines, dynamic program
Invariants, etc.
Traditionally evaluated against conventional,
batch-oriented applications, using test suites built
using category-partition or similar methods.

4/24/2009 NIST 5



Characteristics of Modern Software

Object- and aspect-oriented

Use of reflection

Use of callbacks

Multithreading

Extensive use of libraries and frameworks
Multi-language development
Event-reactive paradigm

Handler code may be invoked from multiple contexts

=>» An effective test coverage technique should
account for these factors.

4/24/2009 NIST 6



Dissertation Contributions

Test suite reduction technique based on the call stack
coverage criterion.
Formal model of call stacks, including notion of maximum-
depth call stack.
Empirical studies of test suite reduction in modern
versus conventional software applications.
Development of new metrics for looking at the
problem of test suite reduction.
Guidance for practitioners considering test suite
reduction.
Improvements to the practice of GUI test automation.
Reusable tools and data.

4/24/2009 NIST 7



Call Stacks

Sequence of active calls associated with each
thread of a running program.
Stack where:

Methods are pushed on when they are called.

Methods are popped off when they return or
throw an exception.

4/24/2009 NIST 8



Call Stack - Example

(Ljava/lang/Object;ILjava/lang/Object;ll)V Ljava/lang/System;arraycopy
([BI)V Ljava/io/BufferedOutputStream;write

([BI)V Ljava/io/PrintStream;write

OV Lsun/nio/cs/StreamEncoder$CharsetSE;writeBytes

OV Lsun/nio/cs/StreamEncoder$CharsetSE;implFlushBuffer

(V Lsun/nio/cs/StreamEncoder;flushBuffer

(V Ljava/io/OutputStreamWriter;flushBuffer

(V Ljava/io/PrintStream;newLine

(Ljava/lang/String;)V Ljava/io/PrintStream;printin

([Ljava/lang/String;)V LHelloWorldApp;main

Full Method Signature (Canonical Representation)

4/24/2009 NIST 9



Call Stacks and Test Suite Reduction

Using call stacks as a coverage criterion addresses
challenges posed by modern software applications.
Call stacks:

Are easily collected in a multi-language and/or multi-
threaded environment.

Automatically identify and resolve reflective and virtual
method calls, woven aspects, and callbacks.

Capture differences in context when methods are called.
Note that this application only uses dynamic call
stacks.

4/24/2009 NIST 10



Capturing Call Stacks

Efficient data structure is the calling context
tree (CCT).
Nodes are methods and edges are method calls.

Traverse all paths to leaves to find maximum-
depth call stacks.

Multithreaded extension is to maintain one CCT
per thread and merge at the end.

Java CCTAg €Nt (http://sourceforge.net/projects/javacctagent)

Tool for collecting CCTs for Java programs

4/24/2009 NIST 11


http://sourceforge.net/projects/javacctagent

Calling Context Tree

java/io/PrintStream;newLine
java/io/PrintStream;printin
HelloWorldApp; main

java/io/OutputStreamWriter;flushBuffer

java/io/BufferedWriter; newlLine
java/io/PrintStream;newLine
java/io/PrintStream;printin
LHelloWorldApp;main

PrintStream; printin

java/io/PrintStream;write
java/io/PrintStream;print
java/io/PrintStream;printin
HelloWorldApp;main

OutputStrg

4/24/2009 NIST

Print Line Pri int
flushBuffer Buffe gwLine Pri ite

12



Traditional Test Suite Reduction

Metrics

% Size Reduction
100 * (1 — SizeReduced / SizeFuII)

% Fault Detection Reduction

100 * (1 — FaultsDetectedq. gy ceq /
FaultsDetected )

—> Test coverage is not explicitly used in these
metrics.

4/24/2009 NIST 13



New Test Suite Reduction Metric

One might expect a correlation between coverage

requirements and the faults exposed by test cases that

hit them.

But no existing measure explores this notion.

Proposal: Average Probability of Detecting Each Fault
Captures the likelihood that coverage-equivalent reduced

test suites will detect the same faults as their original
counterparts.

Driven by the frequency that coverage requirements get hit
by fault-detecting test cases (fault correlation).

Varies greatly by coverage criterion.

Useful for selecting the best coverage criterion for test suite
reduction.

4/24/2009 NIST 14



Fault Correlation

Intuition: Certain coverage requirements are more
likely to be associated with fault-producing program
states.

From the coverage matrix and fault matrix, we can
calculate the fault correlation.

Given:

The set of test cases.
A specific known fault.
A specific coverage requirement.

—> Fault correlation is the ratio of (test cases that hit the
coverage requirement and detect the fault) to (test cases
that merely hit the coverage requirement).

4/24/2009 NIST 15



Average Probability of Finding Each

Fault

From fault correlations, we can calculate
the...
Average the expected probability of finding
each fault across all known faults in an
experiment.

- Evaluated in the subsequent experiments.

4/24/2009 NIST 16



Experiments

Compare size and fault detection reduction of
call-stack-reduced suites to suites reduced
based on other criteria.

Compare fault detection of call-stack-reduced
suites to suites of the same size created using
other approaches.

Evaluate the impact of including coverage of
third-party library code in test suite reduction.
Compare call-stack-based reduction in
conventional versus event-driven applications.
Test whether certain coverage criteria are more
highly associated with faults.

4/24/2009 NIST 17



Coverage

Asﬂitgst?;n Test Cases Libraries / F;ti:—eesm Fault Matrix
PP Instrumentation

Replayer

Coverage b
Matrix

Reduce Test

Suite

Reduced Test
Suites

Avyg.
Expected
Probably of
Detecting

% Fault
Detection
Reduction

% Size
Reduction

4/24/2009 NIST 18



Experimental Infrastructure

Subject Applications
TerpOffice
Space
nanoxml|
Coverage Tools
Java CCTAgent
Detours-based library for CCT collection in Win32 applications
jcoverage [ Cobertura

JavaGUIReplayer
Test Suite Reduction Implementation

HGS algorithm (implemented in C#)
Custom test harnesses to tie these tools together

4/24/2009 NIST 19



Subject Applications

Application Source Execution Style Programming Test Universe Size | # Detectable
Language Style Faults (\ersions)

TerpPaint (TP) Java Event-Driven (GUI) Object-Oriented 1500 43

TerpWord (TW) Java Event-Driven (GUI) Object-Oriented 1000 18

TerpSpreadsheet (TS) | Java Event-Driven (GUI) Object-Oriented 1000 101

Space C Conventional Procedural 13585 34

nanoxml Java Conventional Object-Oriented 216 9

Good subjects are hard to find. You need:
*Test cases
*Known faults

4/24/2009 NIST 20



Subject Application Metrics

Includes | TerpPaint TerpWord | TerpSpreadsheet | Space Nanoxml
Library (TP) (TW) (TS)
Data?
# Call Stacks Yes 413166 569933 333882 453 6617
Observed
# Methods Yes 12277 12665 11103 143 1126
Observed
# Events N/A 181 219 110 N/A N/A
# Executable No 11803 9917 5381 6218 3012
Lines
# Classes No 330 197 135 N/A 25
# Methods No 1253 1380 746 123 232
4/24/2009 NIST

21



Reduction Techniques

Standard Approaches
Call Stack (CS)
Line (L)
Method (M)
Random (RAND)
Event (E1)

Event-Interaction (E2)
"Additional” Approaches (adds random cases to match CS size)

Line-Additional (LA)
Method-Additional (MA)

Event-Additional (E1A)
"Short” Approaches (excludes library methods)

Short Call Stack (5CS)
Short Method (SM)

4/24/2009 NIST 22



Size Reduction (GUI Application)

TS - % Size Reduction

100
g 90
3 80
2 —e—CS
. 10 A M
3 60 —>—L
s 50 —%—E1
S 40 —e—E2
©
& 30 —6— SCS
S o —— SM
2
< 10

0

50 100 150 200 250 300 350 400
Original Suite Size

4/24/2009 NIST 23



Size Reduction (Conventional

Application)

nanoxml - % Size Reduction
=l ——
Eo ‘/'7‘2.’—"’“'__._’:&——%{
0
T40 1 o % —— 505
=il

@f —a—p

% Reduction Over 25 Suites
=
i
i

Avy %
=

=

20 40 BO O B0 100 120 140 160
Criginal Suite Size

4/24/2009 NIST 24



Size Reduction -- Conclusions

GUI Applications

E2 displays very little size reduction (expected
because test case generation was E2-based).

Other non-CS techniques perform similarly.

CS strikes a middle ground (38-50% reduction for
largest suite size).

Conventional Applications

CS still yields less reduction than comparison
techniques.

But closer than in the GUI subjects.

4/24/2009 NIST 25



Fault Detection Reduction (GUI

Applications)

4/24/2009

TS - % Fault Detection Reduction

45
2 40 ——CS
_% —=— RAND
n
P 35 —A—M
o L
E) 30
S »5 —x—E1
_5 20 —o—FE2
S —1—LA
§ 15 —— MA
X 10 —3—E1A
2 —©— SCS
I O
—o— SM
0
50 100 150 200 250 300 350 400
Original Suite Size
NIST

26



Fault Detection Reduction (Conventional

Applications)

nanoxml - % Fault Detection Reduction

Space - % Fault Detection Reduction
40

o]
M

——5 I /A\é e
g a gttt e
20 B—R A ! e
g_ . /A/ - o %ME ——C5
— 2 —&—
M 3 W -2 RAND
15 $N1g
L .‘§ A )
z & A

15 ’
—— A . ‘W O ¥

+—SCS 0

—a
o]

Avg

M

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 500 9501000

Avg % Reduction Over 25 Suites

—— M

Original Suite Size

O

20 40 B0 80 100 120 140 16O
Original Suite Size

4/24/2009 NIST 27



Fault Detection Reduction -- Conclusions

GUI Applications

Call-Stack-based reduction (CS) loses only 0-5% of
detectable faults.

Comparable to E2, even though E2 displays almost no size
reduction.

Other techniques perform comparably to one
another.

Conventional Applications

CS performs well for space, not for Nanoxml.

Nanoxml has only g faults, and 7 are very easy to find
(allowing techniques with random selection to perform well).

4/24/2009 NIST 28



Coverage Requirements and Fault-

Revealing Test Cases

Which coverage criterion’s requirements are
best correlated with fault-revealing test cases?
Use the average probability of detecting each
fault metric against the full universe of test

cases.
TP TS TW nanoxmi
El 0.51 0.52 0.47
E2 0.92 0.88 0.96
L 0.84 0.69 0.77 1.00
M 0.80 0.69 0.72 0.81
CS 1.00 0.97 0.97 0.997
SM 0.70 0.68 0.61 0.81
SCS 0.73 0.85 0.77 0.94

4/24/2009 NIST 29



Individual Fault Probabilities

TS - Fault Probabilities

$ 01
MM
A MEDIAN

A NAK

1 _}F:_ e AT
|_'|.E S I e R
F Y
i i= .-Ell. ................... +
4 +— |}t
[ —
L e
El E2 L
4/24/2009 NIST

30



Dissertation Bibliography

S. McMaster and A. Memon. Call Stack Coverage for GUI Test-
Suite Reduction, IEEE Transactions on Software Engineering
(TSE 2008), January 2008.

S. McMaster and A. Memon. Fault detection probability analysis
for coverage-based test suite reduction. /|EEE International
Conference on Software Maintenance (ICSM 2007), Paris, France,
2007.

S. McMaster and A. Memon, Call Stack Coverage for GUI Test-
Suite Reduction, Proceedings of the 17th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2006),
Raleigh, NC, USA, Nov. 6-10 2006.

S. McMaster and A. Memon. Call stack coverage for test suite
reduction. IEEE International Conference on Software
Maintenance (ICSM 2005), pages 539-548, Budapest, Hungary,
2005.

4/24/2009 NIST 31



Other Advances and Future Directions

Automated GUI Test Case Maintenance
Using Annotations in GUI Testing

Test Oracles
Test Case Generation

4/24/2009 NIST 32



Automated GUI Test Case Maintenance

Test case replayers need to find the right
elements to act upon when GUIs are
modified.

Automated approach is based on heuristics
(same-label, same-position, etc.).

- S. McMaster and A. Memon. An Extensible Heuristic-Based
Framework for GUI Test Case Maintenance. First International
Workshop on Testing Techniques & Experimentation
Benchmarks for Event-Driven Software (TESTBEDS 2009),
Denver, CO, April 4, 20009.

4/24/2009 NIST 33



Example GUI Test Case

1. {FindTextBox, setText('GUI’)}

|& - Find =
Find: |

Whole Words Only

Case-Sensitive

2. {CaseSensitiveCheckBox, click}

4/24/2009 NIST

LT N

3. {FindButton, click}

b !

Find Mext

Cancel

4. {CancelButton, click}

34



GUI Modification

r

1% Find

Find: |

Whole Words Only

Case-Sensitive

Version 1

4/24/2009

Find Mext

Cancel

r

B Find/Replace

Find:

Replace with:

Whole Words Only
Match Case

Search Backwards

Version 2

NIST

WM b4
Find MNext
Replace
Cancel
35



What About the Test Case?

1. {FindTextBox, setText('GUI’)} 3. {FindButton, click}
rli, + Find/Replace = v oA %
Find: Find Mext
Replace with: e
Whole Words Only Cancel
Match Case
Search Backwards
2. {CaseSensitiveCheckBox, click} 4. {CancelButton, click}

=> Test Case Is BROKEN!!!

4/24/2009 NIST 36



The Fix

1. {FindTextBox, setText('GUI’)} 3. {FindButton, click}
|&| - Find/Replace = w o A v
Find: Find Mext
Replace with: e
Whole Words Only Cancel
Match Case
Search Backwards
2. {Qaseatrisil et iuabdiRoo, alilodd } 4. {CancelButton, click}

4/24/2009 NIST 37



GUI Element Identification

Classify each GUI element into one of three sets:

Created - elements which are new in the new version
of the GUI.

Deleted - elements from the old version of the GUI
which do not appear in the new version.

Maintained — elements which have been kept and
possibly modified between versions.

Calculating these sets requires heuristic
approaches.

Cannot work on arbitrary GUI modifications.

Focus is on building an accurate Maintained set for
relatively small modifications.

4/24/2009 NIST 38



GUIAnalyzer

Automated framework for GUI element
identification.

Builds GUI models from windows/dialogs in
Java Swing applications.

Performs GUI element identification using
customizable, extensible heuristic sets.

Heuristics are applied in order of definition.

Multiple passes are made until the process
converges.

4/24/2009 NIST 39



Model Reconciliation Example

Applying heuristics, pass 1

javax.swing.JLabel:Find: identified by SameTextHeuristic as javax.swing.JLabel:Find:
javax.swing.JCheckBox:Whole Words Only identified by SameTextHeuristic as
javax.swing.JCheckBox:Whole Words Only

javax.swing.JButton:Find Next identified by SameTextHeuristic as javax.swing.JButton:Find Next
javax.swing.JButton:Cancel identified by SameTextHeuristic as javax.swing.JButton:Cancel
javax.swing.JTextField:null identified by SamePreviousSiblingHeuristic as
javax.swing.JTextField:null

javax.swing.JCheckBox:Match Case identified by SamePreviousSiblingHeuristic as
javax.swing.JCheckBox:Case-Sensitive

Applying heuristics, pass 2

Done

=

“Whole Words Only” checkbox is identified by its label.

2. “Case-Sensitive” checkbox is presumed to be the same as the old
“Match Case” checkbox by its position in the element hierarchy.

3. Heuristics identify no further elements - termination.

4/24/2009 NIST 40



Research Agenda for Automated

GUI Test Case Maintenance

Evaluate the effectiveness of different heuristics,
heuristic sets and priorities.
Metrics
False Positives (misidentified elements from original version).

False Negatives (unidentified elements from original version).
Empirical studies using a variety of GUI

windows/dialogs with multiple versions and
different-sized modifications.
New techniques

Evaluate test case executability with a proposed
Maintained set.

Apply multiple heuristic sets simultaneously.

4/24/2009 NIST 41



Annotations for GUI Oracles

Oracles for GUI testing have been rather limited.

"Crash-testing”
Researchers and practitioners are leveraging
annotations (source-code-based metadata) for
program analysis and bug detection.

JSR 305, JSR 308

@Nonnull, @NullFeasible, @NonNegative, etc.
—>|dea: Define annotations for GUI state
invariants, and a framework that test case
replayers can use to verify them.

4/24/2009 NIST 42



GUI Oracle Annotation Example

CrosswordSage
Open-source application.

Has several menu items that should be disabled
but aren’t (leads to unhandled exceptions).

MainScreen.java (annotated)

private CrosswordCompiler cc;

@Enabled("cc != null"”)
JMenultem mFile Print = new JMenultem();

@Enabled('"cc !'= null")
JMenultem mAction Publish = new JMenultem() ;

4/24/2009 NIST 43



Checking GUI Invariants

JUnit/Jemmy test case that checks CrosswordSage MainScreen:

private JFrameOperator mainFrame;

@Before

public void setUp () throws Exception {
new ClassReference ("crosswordsage.MainScreen") .startApplication();
mainFrame = new JFrameOperator ("Crossword Sage");

}

private void checkGUI () throws Exception {
GUIAnnotationChecker checker = new GUIAnnotationChecker();
List<GUIInvariantViolation> result = checker.check (mainFrame.getSource())
for( GUIInvariantViolation violation : result ) {

System.err.println(violation);

}
assertTrue ("Got GUI invariant violations", result.isEmpty()); // FAILS

Prints: mFile Print was enabled but shouldn't be
mAction Publish was enabled but shouldn't be

4/24/2009 NIST 44



Annotations for GUIl Test Case

Generation

- ldea: If we have GUI element invariants
defined in annotations, we should be able to
use them to generate test cases that cover
the invariant conditions.

4/24/2009 NIST 45



Questions

Advances in Coverage-Based
Test Suite Reduction

Scott McMaster
University of Maryland — College Park

mailto:scottmcm@cs.umd.edu
mailto:smcmaster@acm.org

4/24/2009 NIST 46


mailto:scottmcm@cs.umd.edu
mailto:smcmaster@acm.org

