Fast Methods to Find Optimal Shapes in Images

by Günay Doğan

MSCD / ITL

joint with Pedro Morin, Ricardo H. Nochetto

Image Segmentation

Goal: To capture objects & boundaries in given 2d / 3d images

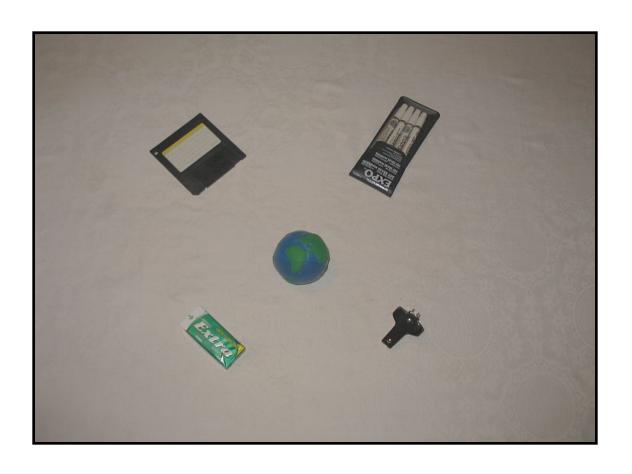
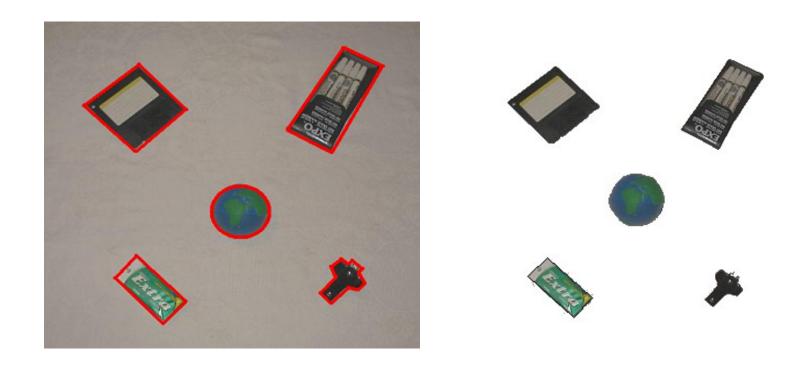


Image Segmentation

Goal: To capture objects & boundaries in given 2d / 3d images



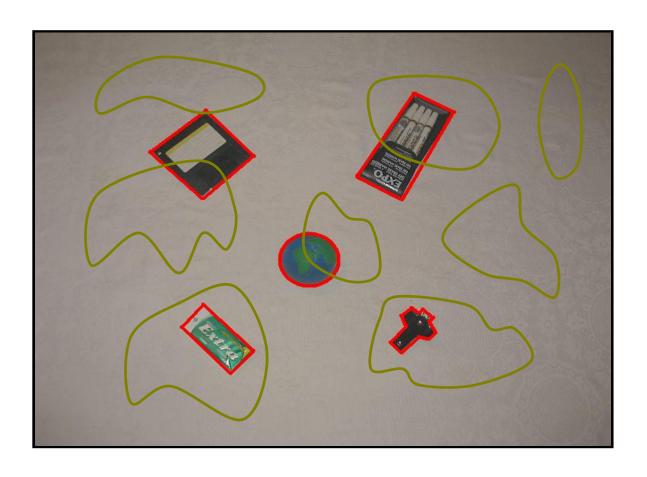
Segmentation Related

- Medical imaging
- Motion detection & tracking
- 3d scene reconstruction
- Image understanding
- Scientific visualization
- Surgery planning

• • • • • • • • •

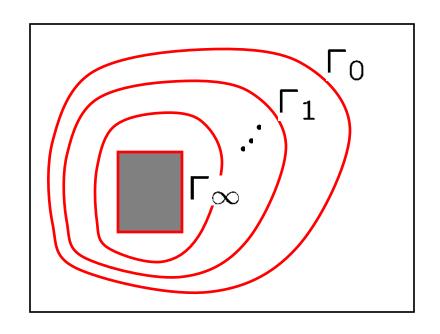
Finding the Right Curves

Q: How do we decide which are the right curves?



Shape Optimization Approach

Define shape energy $J(\Gamma)$ for given shape Γ



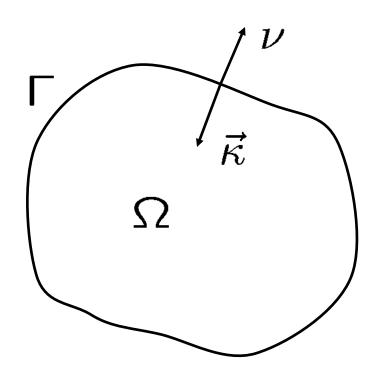
Compute a sequence

$$\Gamma_0, \, \Gamma_1, \, \ldots, \, \Gamma_{\infty}$$

such that

$$J(\Gamma_0) \geqslant \ldots \geqslant J(\Gamma_\infty)$$

Differential Geometry



\Gamma: boundary

 Ω : domain

 ν : outer unit normal

$$\kappa = \kappa_1 + \ldots + \kappa_{d-1}$$

$$\vec{\kappa} = \kappa \nu$$

Differential Geometry

For smooth f, \vec{W} extended to a neighborhood of

$$\partial_{\nu} f = \nabla f \cdot \nu$$

(normal derivative)

$$\nabla_{\Gamma} f = \nabla f - \nabla f \cdot \nu \, \nu$$

(tangential gradient)

$$\mathrm{div}_{\Gamma}\vec{W}=\mathrm{div}\vec{W}-\nu\cdot D\vec{W}\cdot \nu$$

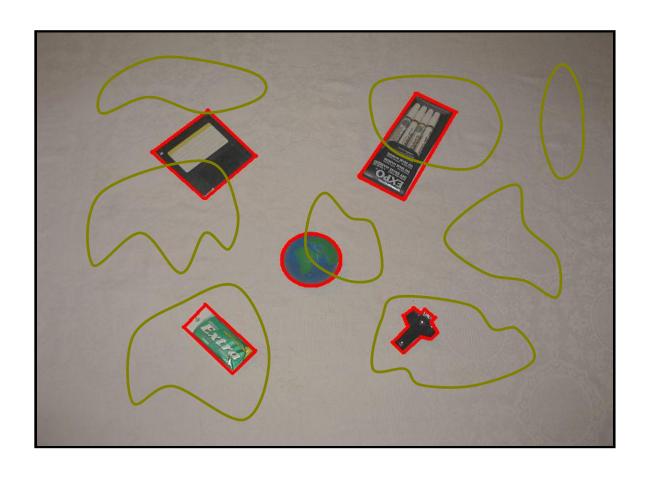
(tangential divergence)

$$\Delta_{\Gamma} f = \Delta f - \nu \cdot D^2 f \cdot \nu - \partial_{\nu} f \kappa$$

(Laplace-Beltrami)

Finding the Right Curves

Q: What are the right energies to impose on curves?



Shape Energies for Segmentation

Kass, Witkin, Terzopoulos, 88

Fue, Leclerc, 90

Caselles, Kimmel, Sapiro, 95

Caselles, Kimmel, Sapiro, Sbert, 97

Paragios, Deriche, 00

Chan, Vese, 01

Tsai, Yezzi, Willsky, 01

Aubert, Barlaud, Faugeras, Jehan-Besson, 03

Kimmel, Bruckstein, 03

Desolneaux, Moisan, Morel, 03

Hintermueller, Ring, 03

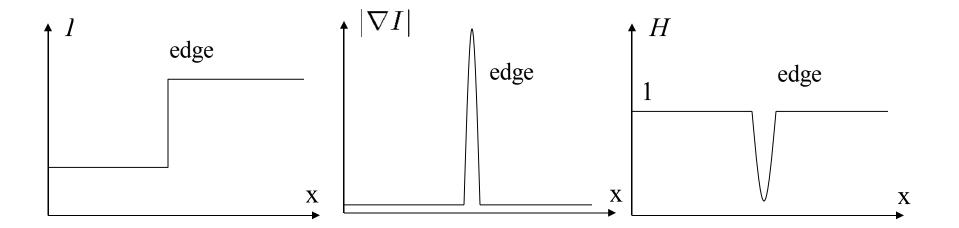
and many more ...

$$J(\Gamma) = \int_{\Gamma} \psi(x, \Gamma) dS$$

$$J(\Gamma) = \int_{\Gamma} \psi(x, \Gamma) dS$$
$$J(\Omega) = \int_{\Omega} \varphi(x, \Omega) dx$$

Edge Indicator Function

Edge indicator function:
$$H(x) = \frac{1}{1 + \frac{|\nabla I(x)|^2}{\lambda^2}}$$



Edge Indicator Function

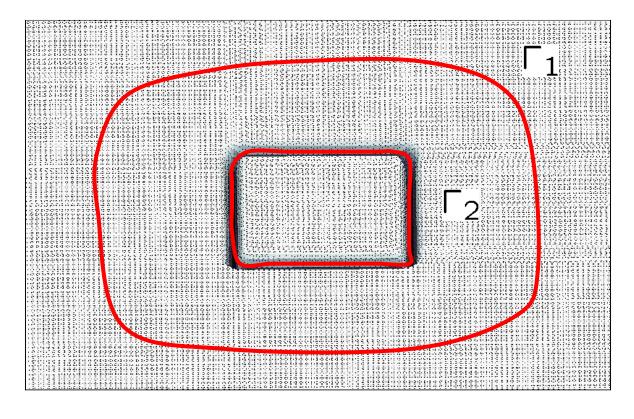
Generic form of geodesic active contour / surface energy

$$J(\Gamma) = \int_{\Gamma} H(x) dS + \gamma \int_{\Omega} H(x) dx,$$

2nd term helps with concavities, brings extra push.

(Caselles et al., 95; Caselles et al. 97)

Computing
$$J(\Gamma) = \int_{\Gamma} H(x) dS$$



 $J(\Gamma_1)$ large

 $J(\Gamma_2)$ small (local min)

The Mumford-Shah Model

Given I(x), find discontinuities K and p.w. smooth approx. u

$$\min_{u,K} \left\{ \frac{1}{2} \int_{\mathcal{U}} |u - I|^2 dx + \frac{\mu}{2} \int_{\mathcal{U} - K} |\nabla u|^2 dx + \gamma \int_K dS \right\}$$

The Mumford-Shah Model

Given I(x), find discontinuities K and p.w. smooth approx. u

$$\min_{u,K} \left\{ \frac{1}{2} \int_{\mathcal{U}} |u - I|^2 dx + \frac{\mu}{2} \int_{\mathcal{U} - K} |\nabla u|^2 dx + \gamma \int_K dS \right\}$$

Not practical in this form.

Two approaches:

- Ambrosio-Tortorelli approach: modified functional with diffuse discontinuities
- Chan-Vese approach: restrict *K* to closed curves, use curve evolution

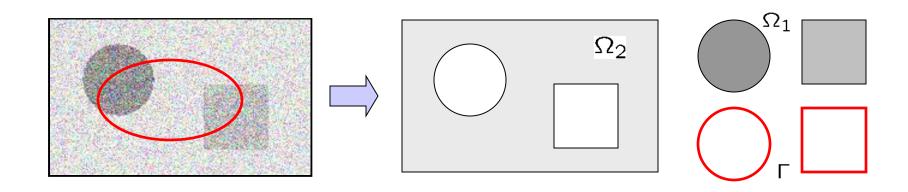
Chan-Vese Approach

$$J(\Gamma) = \sum_{i=1}^{2} \frac{1}{2} \left(\int_{\Omega_i} (u_i - I)^2 + \mu |\nabla u_i|^2 \right) dx + \gamma \int_{\Gamma} dS$$

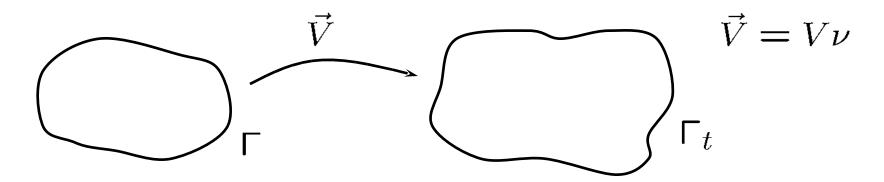
optimality cond. w.r.t u_i

$$\begin{cases} -\mu \Delta u_i + u_i &= I & \text{in } \Omega_i \\ \partial_{\nu_i} u_i &= 0 & \text{on } \partial \Omega_i \end{cases}$$

(Chan & Vese, 01; Tsai, Yezzi & Willsky, 01)



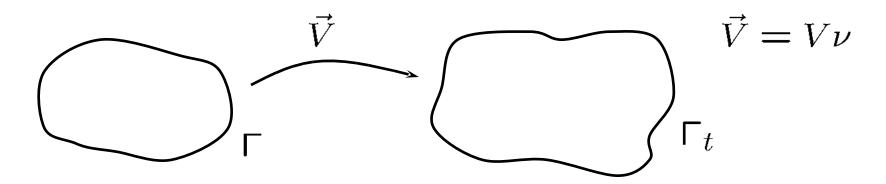
Shape Derivatives



Shape derivative of $J(\Gamma)$ in direction V:

$$dJ(\Gamma; V) = \lim_{t \to 0} \frac{J(\Gamma_t) - J(\Gamma_0)}{t}$$

Shape Derivatives



Shape derivative of $J(\Gamma)$ in direction V:

$$dJ(\Gamma; V) = \lim_{t \to 0} \frac{J(\Gamma_t) - J(\Gamma_0)}{t}$$

Second shape derivative w.r.t. *V*, *W*:

$$d^2J(\Gamma; V, W) = d(dJ(\Gamma; V))(\Gamma; W)$$

Shape Gradient

The structure of the shape derivative for $J(\Gamma)$

$$dJ(\Gamma; V) = \int_{\Gamma} GV dS$$

where G is the shape gradient.

For most cases

$$G = g(x, \Gamma)\kappa + f(x, \Gamma)$$

Shape Gradient

The structure of the shape derivative for $J(\Gamma)$

$$dJ(\Gamma; V) = \int_{\Gamma} GV dS$$

where G is the shape gradient.

For most cases

$$G = g(x, \Gamma)\kappa + f(x, \Gamma)$$

Choose
$$V = -G \Rightarrow dJ(\Gamma; V) = -\int_{\Gamma} G^2 dS \leq 0$$

$$J(\Gamma) = \int_{\Gamma} H(x) dS + \gamma \int_{\Omega} H(x) dx, \quad \gamma > 0$$

First shape derivative

$$dJ(\Gamma; V) = \int_{\Gamma} (H(x)\kappa + \gamma H(x) + \partial_{\nu} H(x))VdS$$

$$\Rightarrow G = g\kappa + f \quad \text{with} \quad g = H(x)$$

$$f = \gamma H(x) + \partial_{\nu} H(x)$$

$$J(\Gamma) = \int_{\Gamma} H(x) dS + \gamma \int_{\Omega} H(x) dx, \quad \gamma > 0$$

First shape derivative

$$dJ(\Gamma; V) = \int_{\Gamma} (H(x)\kappa + \gamma H(x) + \partial_{\nu} H(x))VdS$$

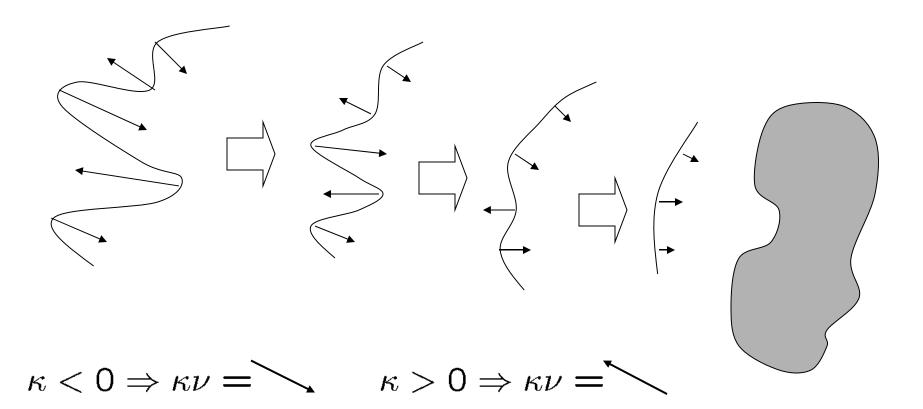
$$\Rightarrow G = g\kappa + f \quad \text{with} \quad g = H(x)$$

$$f = \gamma H(x) + \partial_{\nu} H(x)$$

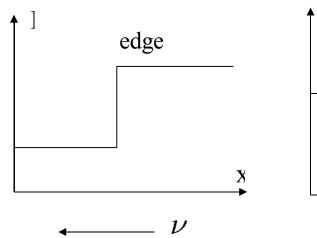
Energy-decreasing velocity

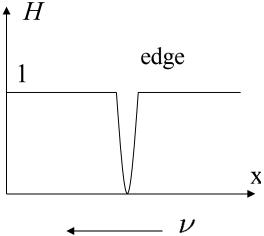
$$V = -G = -((\kappa + \gamma)H(x) + \partial_{\nu}H(x))$$

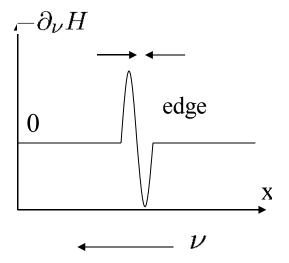
Behavior of
$$\vec{V} = V\nu$$
, $V = -H\kappa$



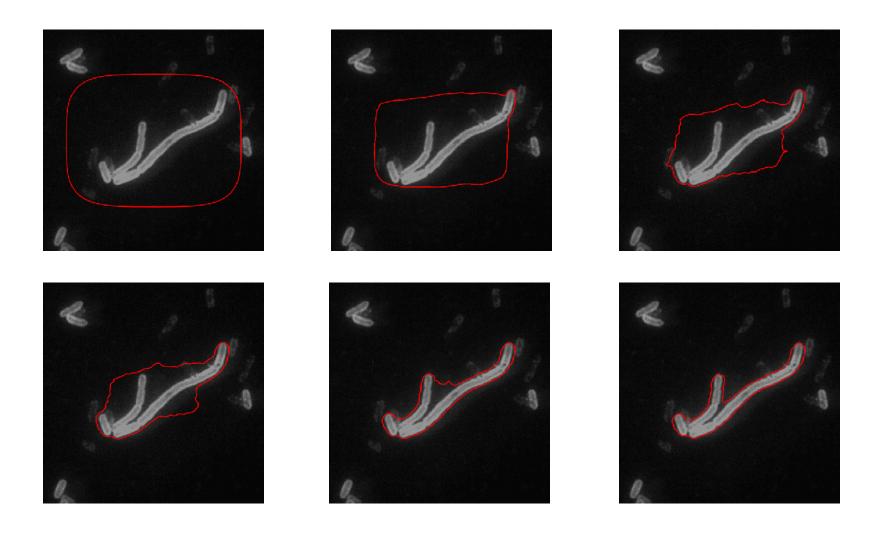
Behavior of $V = -\partial_{\nu}H$







Example: Bacteria Image



Other Descent Directions

Take a scalar product $b(\phi, \psi)$ on $B(\Gamma)$

- continuous $b(\phi, \psi) \le c_1 \|\phi\| \|\psi\|, \quad c_1 \ge 0$
- coercive $b(\phi, \phi) \ge c_2 \|\phi\|^2$, $c_2 \ge 0$

And solve

$$b(V,\phi) = -dJ(\Gamma;\phi), \quad \forall \phi \in B(\Gamma)$$

The solution V satisfies

$$dJ(\Gamma; V) = -b(V, V) \le -c_2 ||V||^2 \le 0$$

Other Descent Directions

Instead of the velocity eqn $V = -(q\kappa + f)$

$$V = -(g\kappa + f)$$

Use the more general velocity eqn with the scalar product

$$b(V,\phi) = -\langle g\kappa + f, \phi \rangle, \quad \forall \phi \in B(\Gamma)$$

For example, use weighted $H^1(\Gamma)$ scalar product

$$b(V,\phi) = \langle \alpha \nabla_{\Gamma} V, \nabla_{\Gamma} \phi \rangle + \langle \beta V, \phi \rangle$$

The general velocity eqn is

$$\langle \alpha \nabla_{\Gamma} V, \nabla_{\Gamma} \phi \rangle + \langle \beta V, \phi \rangle = -\langle g \kappa + f, \phi \rangle$$

$$J(\Gamma) = \int_{\Gamma} H(x) dS + \gamma \int_{\Omega} H(x) dx,$$

Second shape derivative

$$d^{2}J(\Gamma; V, W) = \int_{\Gamma} (\alpha \nabla_{\Gamma} V \cdot \nabla_{\Gamma} W + \beta V W) dS$$

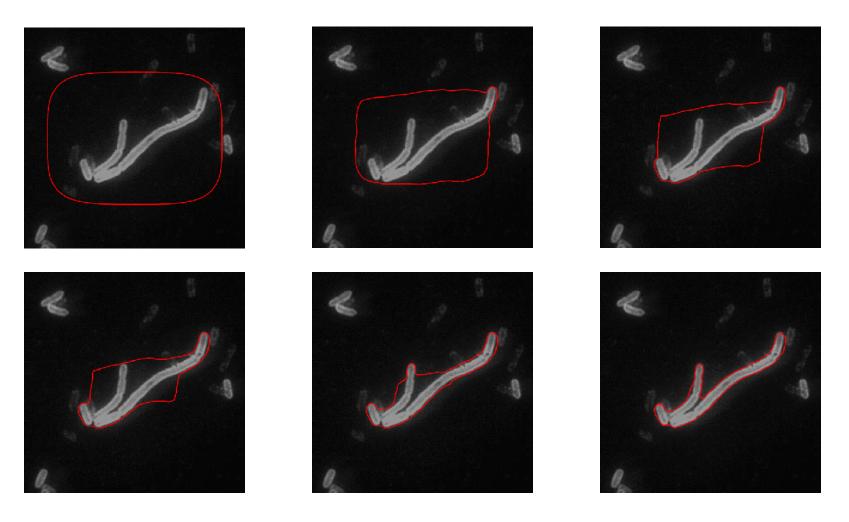
with

$$\alpha = H$$

$$\beta = \partial_{\nu\nu}H + (2\kappa + \gamma)\partial_{\nu}H + (\kappa^2 - \sum \kappa_i^2 + 2\gamma\kappa)H$$

(Hintermueller & Ring, 03)

Bacteria: H¹ Flow



H¹ flow 276 iters vs L² flow 865 iters

Solve
$$-\alpha \Delta_{\Gamma} u + u = f$$
 on surface Γ

Solve
$$-\alpha \Delta_{\Gamma} u + u = f$$
 on surface Γ

Weak form

$$\alpha \langle \nabla_{\Gamma} u, \nabla_{\Gamma} \phi \rangle + \langle u, \phi \rangle = \langle f, \phi \rangle, \quad \forall \phi \in H(\Gamma)$$

Solve
$$-\alpha \Delta_{\Gamma} u + u = f$$
 on surface Γ

Weak form

$$\alpha \langle \nabla_{\Gamma} u, \nabla_{\Gamma} \phi \rangle + \langle u, \phi \rangle = \langle f, \phi \rangle, \quad \forall \phi \in H(\Gamma)$$

Substitute
$$u = \sum_{i} u_i \phi_i$$

$$\alpha \sum_{i} u_{i} \langle \nabla_{\Gamma} \phi_{i}, \nabla_{\Gamma} \phi_{j} \rangle + \sum_{i} u_{i} \langle \phi_{i}, \phi_{j} \rangle = \langle f, \phi_{j} \rangle$$

$$-\alpha \Delta_{\Gamma} u + u = f \qquad \text{on surface } \Gamma$$

Weak form

$$\alpha \langle \nabla_{\Gamma} u, \nabla_{\Gamma} \phi \rangle + \langle u, \phi \rangle = \langle f, \phi \rangle, \quad \forall \phi \in H(\Gamma)$$

Substitute
$$u = \sum_{i} u_i \phi_i$$

$$\alpha \sum_{i} u_{i} \langle \nabla_{\Gamma} \phi_{i}, \nabla_{\Gamma} \phi_{j} \rangle + \sum_{i} u_{i} \langle \phi_{i}, \phi_{j} \rangle = \langle f, \phi_{j} \rangle$$

Linear system
$$\alpha \mathbf{A}\mathbf{u} + \mathbf{M}\mathbf{u} = \mathbf{f}$$

$$\mathbf{A}_{ij} = \langle \nabla_{\Gamma} \phi_i, \nabla_{\Gamma} \phi_j \rangle \qquad \mathbf{M}_{ij} = \langle \phi_i, \phi_j \rangle \quad \mathbf{f}_i = \langle f, \phi_i \rangle$$

Computing the Velocity

At each iteration solve the following to get \vec{V}

$$\vec{V} = V\nu$$

Obtain the new curve/surface

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Computing the Velocity

At each iteration solve the following to get \vec{V}

$$V = -\left(g\kappa + f\right)$$

$$\vec{V} = V \nu$$

Obtain the new curve/surface

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Computing the Velocity

At each iteration solve the following to get \vec{V}

$$\kappa = \vec{\kappa} \cdot \nu$$

$$V = -(g\kappa + f)$$

$$\vec{V} = V\nu$$

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Computing the Velocity

At each iteration solve the following to get V

System of PDEs

$$\vec{\kappa} = -\Delta_{\Gamma} \vec{X}$$
$$\kappa = \vec{\kappa} \cdot \nu$$

$$\kappa = \vec{\kappa} \cdot \nu$$

$$K = \kappa \cdot \nu$$

$$V = -(g\kappa + f)$$

$$\vec{V} = V\nu$$

$$\vec{V} = V\nu$$

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Computing the Velocity

At each iteration solve the following to get \vec{V}

System of PDEs

$$\vec{\kappa} = -\Delta_{\Gamma} \vec{X}$$

$$\kappa = \vec{\kappa} \cdot \nu$$

$$V = -\left(g\kappa + f\right)$$

$$\vec{V} = V\nu$$

Weak form

$$\langle \vec{\kappa}, \vec{\phi} \rangle = \langle \nabla_{\Gamma} \vec{X}, \nabla_{\Gamma} \vec{\phi} \rangle$$

$$\langle \kappa, \phi \rangle = \langle \vec{\kappa} \cdot \nu, \phi \rangle$$

$$\langle V, \phi \rangle = -\langle g\kappa + f, \phi \rangle$$

$$\langle \vec{V}, \vec{\phi} \rangle = \langle V, \nu \cdot \vec{\phi} \rangle$$

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Linear System

At each iteration solve the following to get \vec{V}

Weak form

$$\langle \vec{\kappa}, \vec{\phi} \rangle = \langle \nabla_{\Gamma} \vec{X}, \nabla_{\Gamma} \vec{\phi} \rangle$$

$$\langle \kappa, \phi \rangle = \langle \vec{\kappa} \cdot \nu, \phi \rangle$$

$$\langle V, \phi \rangle = -\langle g\kappa + f, \phi \rangle$$

$$\langle \vec{V}, \vec{\phi} \rangle = \langle V, \nu \cdot \vec{\phi} \rangle$$

Linear system

$$\vec{M}\vec{\mathbf{K}} = \vec{A}\vec{\mathbf{X}}$$

$$M\mathbf{K} = \vec{N}^T \vec{\mathbf{K}}$$

$$M\mathbf{V} = -M_q\mathbf{K} - \mathbf{f}$$

$$\vec{M}\vec{\mathbf{V}} = \vec{N}\mathbf{V}$$

$$\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$$

Other Descent Directions

Instead of the velocity eqn

$$\langle V, \phi \rangle = -\langle g\kappa + f, \phi \rangle$$

Use the more general velocity eqn with the bilinear form

$$b(V,\phi) = -\langle g\kappa + f, \phi \rangle$$

For example, use 2nd shape deriv. for Newton's method

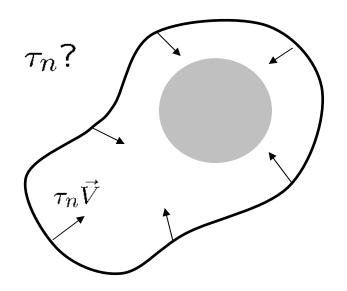
$$b(V,\phi) = \langle \alpha \nabla_{\Gamma} V, \nabla_{\Gamma} \phi \rangle + \langle \beta V, \phi \rangle$$

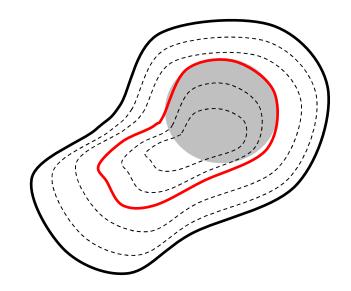
Practical Issues: Step Size

How to choose the right step τ_n in $\vec{X}^{n+1} = \vec{X}^n + \tau_n \vec{V}$

- τ_n too small \rightarrow too many iterations
- τ_n too large \rightarrow may miss the objects

Soln: perform backtracking or line search

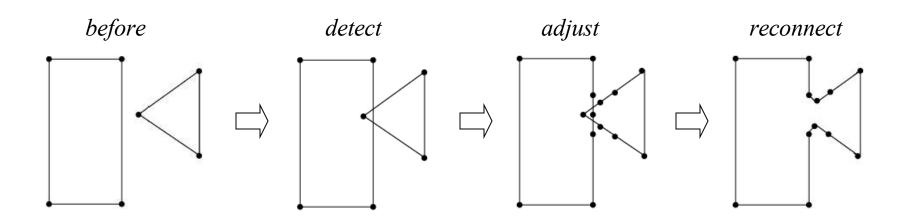




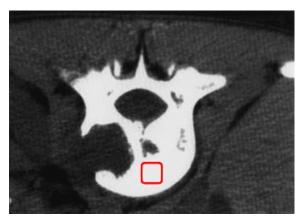
Practical Issues: Topological Changes

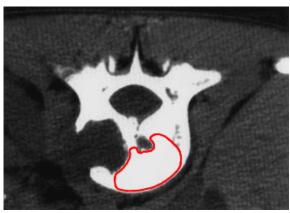
Four step procedure for topological changes in 2D

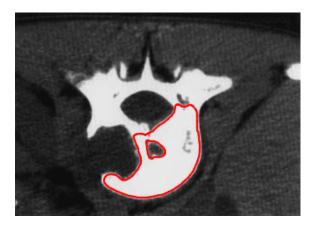
- detect element intersections
- adjust intersection locations
- reconnect elements
- clean up artifacts

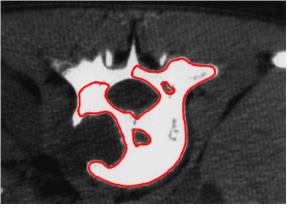


Example: Medical Image









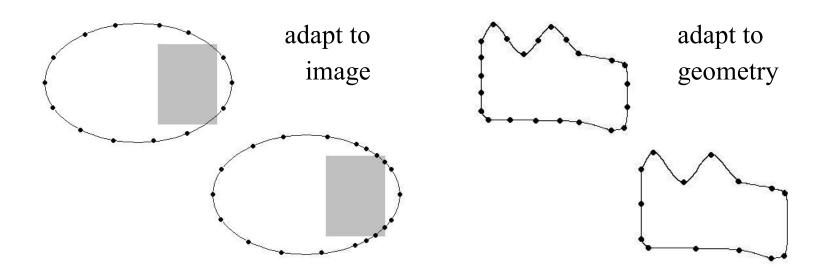


Practical Issues: Resolution

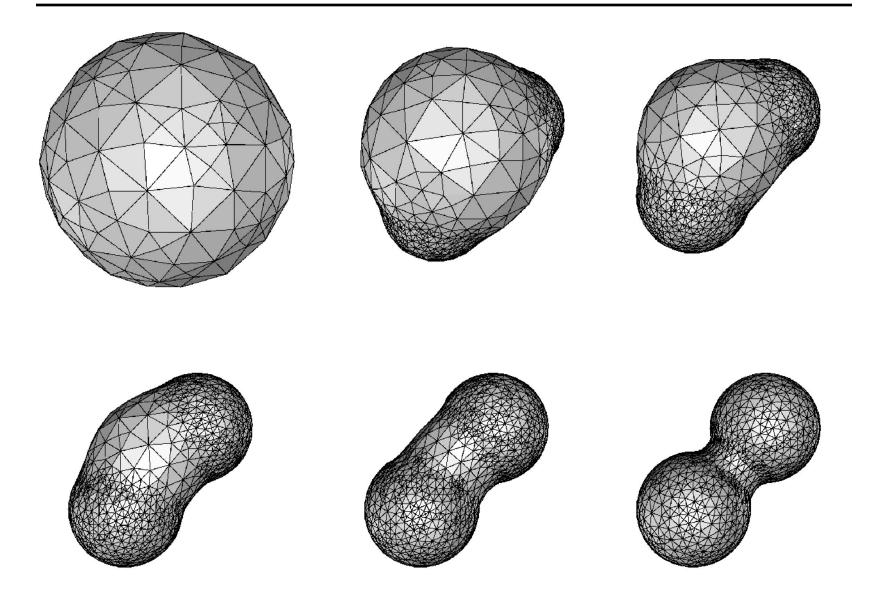
How to choose the right number of elements?

- too many elements \rightarrow too many computations
- too few elements \rightarrow may miss the objects

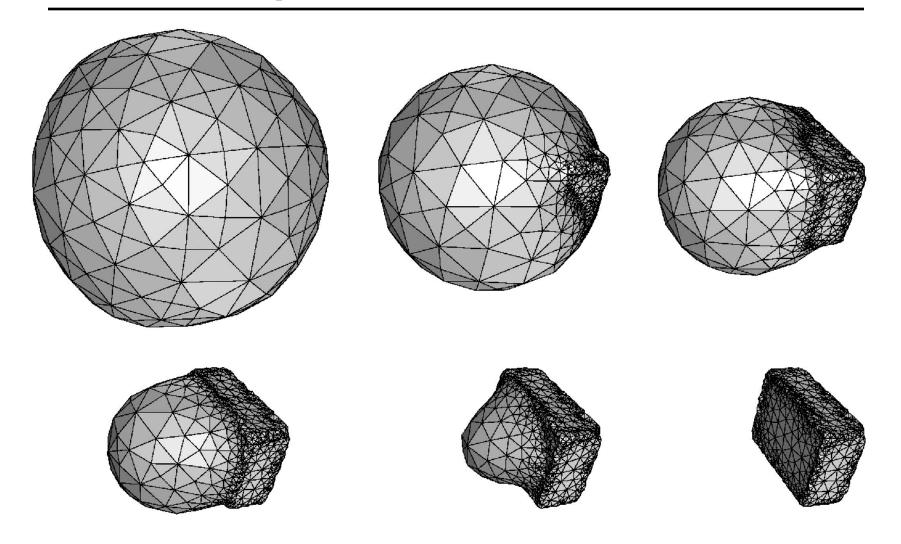
Soln: employ space adaptivity to adjust resolution



3d Example: Touching Balls



3d Example: Prism



Mumford-Shah Energy

$$J(\Gamma) = \sum_{i=1}^{2} \frac{1}{2} \left(\int_{\Omega_{i}} (u_{i} - I)^{2} + \mu |\nabla u_{i}|^{2} \right) dx + \gamma \int_{\Gamma} dS$$

subject to

$$\begin{cases} -\mu \Delta u_i + u_i &= I & \text{in} \quad \Omega_i \\ \partial_{\nu_i} u_i &= 0 & \text{on} \quad \partial \Omega_i \end{cases}$$

First shape derivative

$$dJ(\Gamma; V) = \int_{\Gamma} \left(\frac{1}{2} \left[|u - I|^2 \right] + \frac{\mu}{2} \left[|\nabla_{\Gamma} u|^2 \right] + \gamma \kappa \right) V dS$$

where $[\![f]\!] = f_1 - f_2$ jump of f across Γ

Mumford-Shah Energy

Second shape derivative

$$d^{2}J(\Gamma; V, W) = \int_{\Gamma} (\alpha \nabla_{\Gamma} V \cdot \nabla_{\Gamma} W + \beta V W) \, dS + \text{other}$$
with
$$\alpha = \gamma$$

$$\beta = \frac{\mu}{2} \left(\kappa \left[|\nabla u|^{2} \right] + \partial_{\nu} \left[|\nabla u|^{2} \right] \right)$$

$$+ \frac{1}{2} \left(\kappa \left[|u - I|^{2} \right] + \partial_{\nu} \left[|u - I|^{2} \right] \right)$$

(Hintermueller & Ring, 03)

Mumford-Shah Energy

Velocity equation

$$b(V,\phi) = -dJ(\Gamma;\phi), \quad \forall \phi \in B(\Gamma)$$

Two choices of scalar products

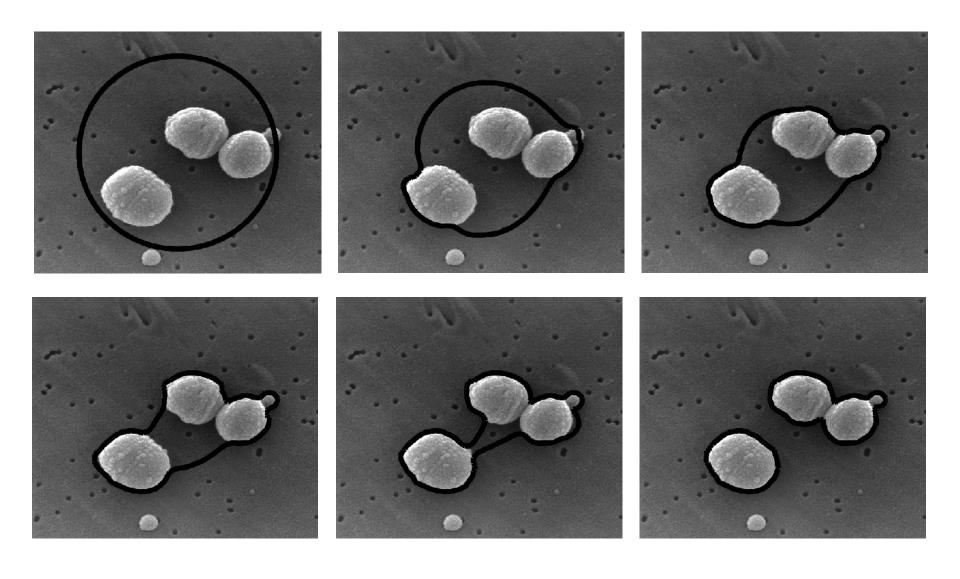
•
$$L^2$$
 flow: $b(V, W) = \int_{\Gamma} VW dS$

•
$$H^I$$
 flow: $b(V, W) = \int_{\Gamma} (\alpha \nabla_{\Gamma} V \cdot \nabla_{\Gamma} W + \beta V W) dS$

$$\alpha = \gamma,$$

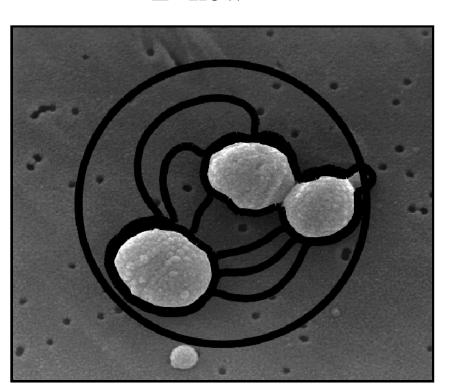
$$\beta = \frac{1}{2} \left(\mu \kappa \left[|\nabla u|^2 \right] + \kappa \left[|u - I|^2 \right] + \partial_{\nu} \left[|u - I|^2 \right] \right)_{+}$$

Bacteria: H¹ Flow

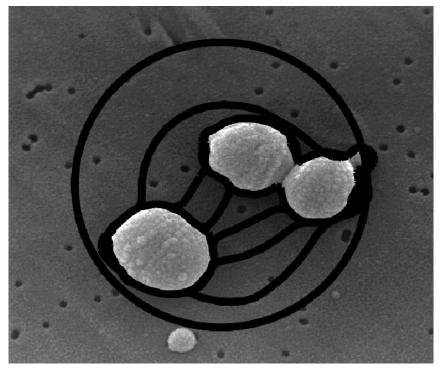


Bacteria: L² Flow vs H¹ Flow

L² flow



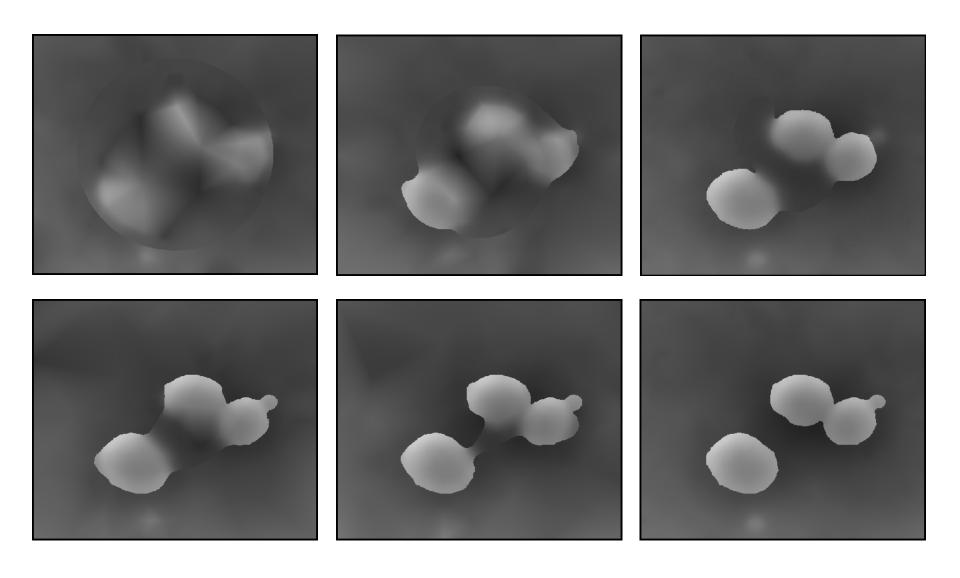
H¹ flow



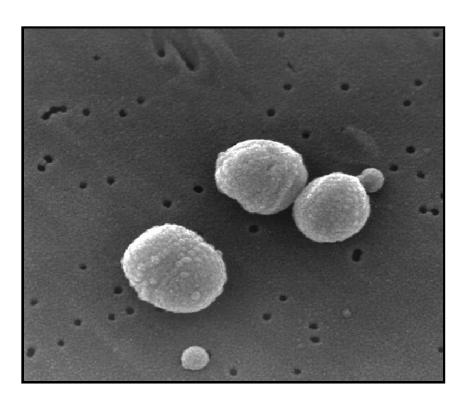
586 iters, 2m 51s

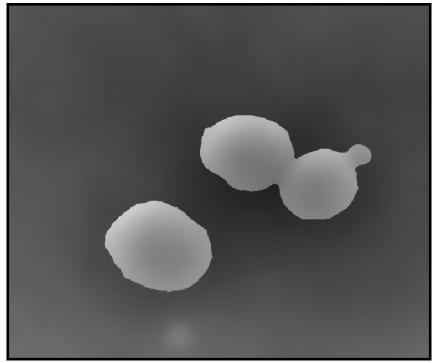
142 iters, 43s

Bacteria: Pw. Smooth Approximations

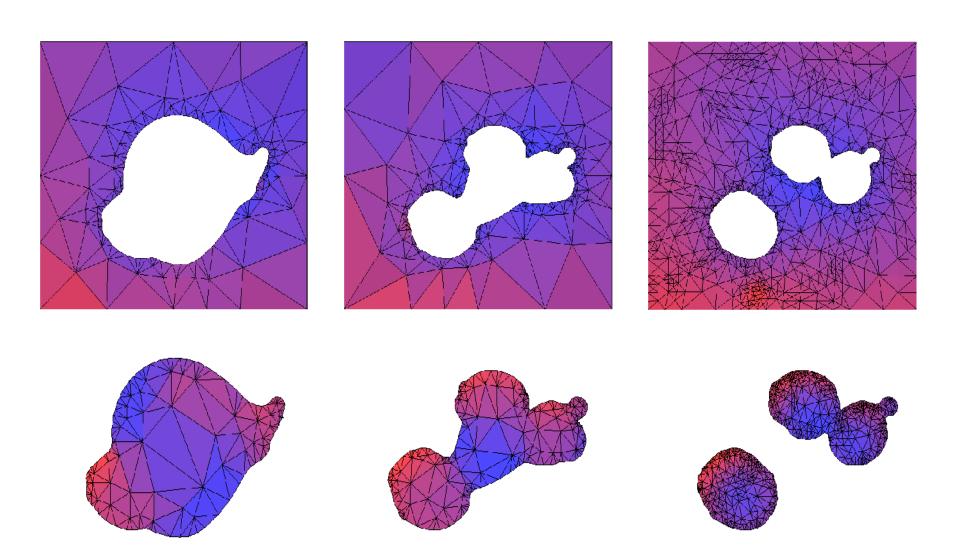


Bacteria: Pw. Smooth Approximation

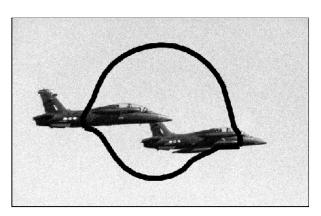


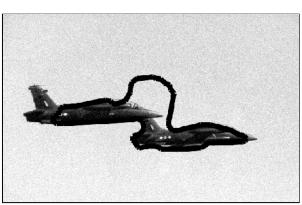


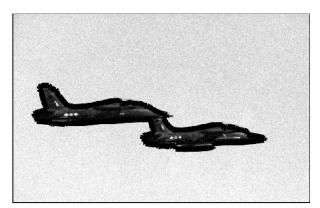
Domain Meshes

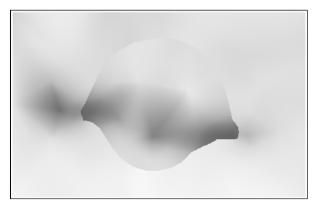


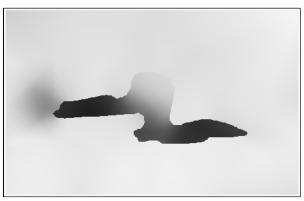
Simultaneous Segmentation & Denoising

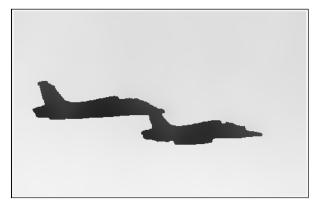






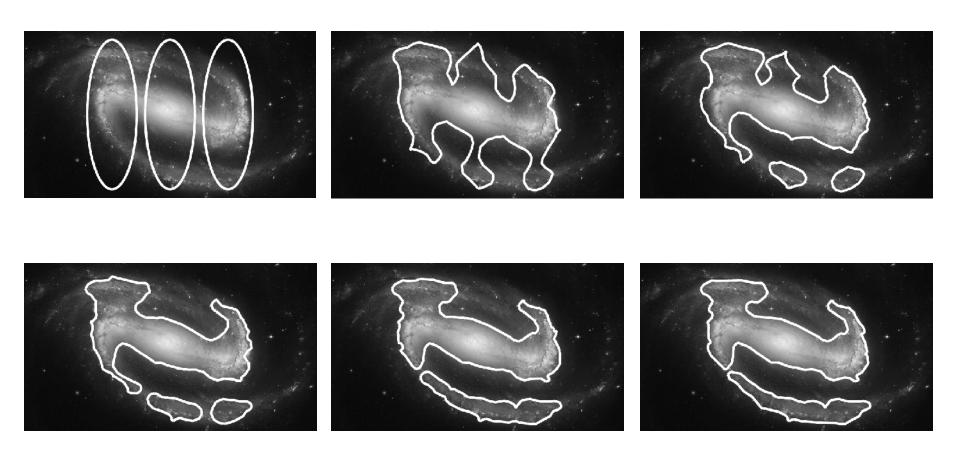






107 iters, 47s

Galaxy: No Edges



53 iters, 20s

Summary

- Introduced shape optimization for image segmentation
- Started with shape sensitivity analysis, i.e. shape derivatives
- Implemented discrete gradient flows with finite elements
- Implemented computational enhancements for robustness
- Applications: Geodesic Active Contours,
 Mumford-Shah Model