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Project participation and funding

 Interdisciplinary research project funded by US  National
Science Foundation, ITR, CMG, EAR …2001-?

 UB departments/people involved:
 mechanical engineering: A Patra, A Bauer, T Kesavadas, C

Bloebaum, A. Paliwal, K. Dalbey, N. Subramaniam, P. Nair, V.
Kalivarappu, A. Vaze, A. Chanda

 mathematics: EB Pitman, C Nichita, L. Le

 geology (volcanology group): M Sheridan, M Bursik,  E. Calder,
B.Yu, B. Rupp, A. Stinton, A. Webb, B. Burkett

 Geography (National Center for Geographic Information and Analysis): C
Renschler, L. Namikawa, A. Sorokine, G. Sinha

 CCR (UB Center for Comput. Research) M Jones, M. L. Green
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Outline of the talk

 Research Needs and a few difficulties
 Mathematical models used in TITAN2D and Numerical

solvers
 Adaptive meshing, Load balancing, Parallel

implementation
 Performance Maintenance

 Uncertainty Quantification and Hazard Maps
 Simulators and Emulators
 Adaptivity and Bayes Linear Models

 “Real Time” <=>Parallel Construction of Hazard Maps
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Geophysical  Flows

Volcan  de  Colima, MexicoMt. St. Helens, USA

Hazard map at Pico de
Orizaba  -- hazard
maps by Sheridan et.
al. based on past
flow data and expert
intuition
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What do we need to know and What do we have?
Q1: Given a location x and time T -- what is the hazard of a
catastrophic event? e.g. P(flow >1m in T) ~ 0.000001?
Q2: Given a jurisdiction what is the hazard of an event in the next
T time period of all locations?

Models of the Physics of individual flows (PDE based)

Data on past events -- detailed and precise for some aspects,
sparse and poor for most aspects

Expert belief and intuition

Methodology for quantifying ucertainty
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What do we need to know and How do we get it?
Q1: Given a location x and time T -- what is the hazard of a catastrophic
event? e.g. P(flow >1m in T) ~ 0.000001?
Q2: Given a jurisdiction what is the hazard of an event in the next T time
period of all locations?

Approach 1: Given a simulator with “well defined input data uncertainties” --
use well chosen ensemble (Latin Hypercube, Quadrature driven …) to
propagate uncertainty and use simple expectation computations to make
hazard map. [Dalbey et. al. 2008, J. Geophys. Res.]

Approach 2: Given a location and sparse data create estimates of predictions
and associated uncertainty using Bayesian methodology by using simulator to
create emulator and use emulator in appropriate statistical
methodology.[Bayarri et. al. in review, Dalbey et. al. in prep.]
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Hazard Map Construction
Historical flow data and
expert belief converted
into recurrence
probability of largest
events

Probability of flow
exceeding 1m for initial
volume ranging from
5000 to 108 m3 and
basal friction from 28 to
35 deg at Colima and
Pico de Orizaba
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a few difficulties
Complex unpredictable physics

Flows are hazardous mixture of soil, rocks, clasts with
interstitial fluid present -- many models Johnson ‘70, Savage -
Hutter ‘89, Iverson ‘97, Pitman-Le ‘05 …– complex physics is
still not perfectly represented
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h: flow depth; hv: depth averaged momentum; g : gravity; φ: friction
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Numerics
 High order slope-limiting upwinding two dimensional Godunov solver,

second order predictor-corrector in time
Toro, 1997, 2001, Cockburn 2001, Hartmann and Houston 2003, Patra et. al.
2005, 2006.

 Runge Kutta Discontinuous Galerkin Formulation –
 Patra et. al. 2006 Comp. Geosc

 Drying and Wetting Areas: System of equations loses strict hyperbolicity near
the front (where h=0). Need front tracking algorithms

 solve exactly the Riemann problem in the primitive variables near the front (ref.
Toro-”Shock Capturing Methods for Free Surface Flows”-2001)
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a few difficulties
Uncertain Inputs based on sparse data

1. φbed
2. φint

3. Initial  location
4. Initial  volume
5. Initial velocity
6. Terrain  elevation

Expensive simulators
Ensemble computations needed for hazard map
constructions are EXPENSIVE!
Single calculation -- 20 minute on 64 proc => Monte Carlo
type computation needs 217 days
Data dependence issues -- parallel efficiency beyond 64
cores is limited
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Single Thread Performance
http://www.amd.com/us-en/assets/content_type/
DigitalMedia/43264A_hi_res.jpg

AMD Phenom

http://www.intelstartyourengines.com/images/Woodcrest
%20Die%20Shot%202.jpg

Intel Woodcrest

Heterogeneous,
Hierarchic,
Computer
Architectures --
O(100K) Compute
cores, I/O nodes,
communications
subsystems,
accelerators, vector
units …

a  few  recent  difficulties!
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Adaptivity and Parallelism

Computational Cost of simulations is a big obstacle in meaningful
use of physical model based statistical methods

l Adaptivity to minimize simulation cost of each instance

l Adaptivity is crucial in accurate front capture

l Adaptivity used in construction of the emulators

l Parallelism needs to be used to maximize throughput
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Motivation for Mesh Adaptivity
 Flow path cannot be predicted
 Flow at any time covers less than

20% of entire run-out region
 Capturing flow boundaries correctly

! 

v "
hv

h
;h# 0;v#$

Mesh refinement every 10 time steps
Refine the top 20% of elements with the largest change in cell fluxes
Refine ahead of the front of the pile to capture front
 Flow needs to enter only smallest cells

Mesh coarsening when the pile height is very small
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Adaptivity for Wet Dry Front Capture
3 types of cells -- empty, full, buffer layer at front

Buffer Cell 
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Load-Balancing and Data Management

Load-balancing constraints
 Minimize interprocess communication

 Minimize load-balance time

 Minimize objects assigned to new processes (incrementality)

Introduced integrated data management using Hilbert Space
Filling Curve (SFC) based indexing of objects (cells and nodes),

distributed Hash tables and SFC based mesh partitioning

Patra et. al, ‘94,’01,’03,’05
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Space-Filling Curves for Load-
Balancing

The Space-Filling Curves load-
balancing algorithm is basically
dividing up a weighted line
 Need to assign some type   of

computational weight to each
load-balancing object

For dynamic load-balancing, need
incremental partitions
 Space-Filling Curves does this

intrinsically
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Data Driven Model Based Dynamic
Load Balancing

3 types of cells -- empty, full, buffer layer at front -- use weighed
partitioning using SFC with 3 different weights
Performance Model Based: goal is to minimize communication
time

Collect timing data for all MPI calls and total wall clock
Use previous 100 time steps data and least squares to obtain weights that
minimize MPI time
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Computational Efficiency

Cell updates per second 
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Time step synchronization based on
one time step previous data

Efficiency drops rapidly after 256
procs!
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A way out!
Scale the science -- not the code!

             Scale the construction of the hazard map!

Accelerate quantification of uncertainty

Monte Carlo/ Quasi Monte Carlo -- “too expensive!”

Stochastic Galerkin -- “hard to use with hyperbolic 
systems”

Bayesian Emulation with adaptive construction -
method of choice!



2/17/09 20

A Serendipitious Benefit

Erratic results for 1 processor
Processor dies after two days

Experiment where one processor was overloaded
with another process running at high priority

Dynamic load balancing moves most cells out of
processor as weights adjust
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Difficulties  with MC, LHS & SG?
• MC

•  Error = σ/NMC
0.5

•  NMC = 106  required  for  3  sig.  fig.  of  accuracy
•  NMC = 106  only  feasible  if  run  time  is small!

• LHS
• Non-trivial  to  generate  good  high  dimensional  sample  designs
• Not  valid  for  quite  as  many  problems  as  plain  MC,  ok  for  input

uncertainty
• SG

• For  polynomial  nonlinear  systems,  work  is  binomial  in  #  of  random
dimensions  and  degree  of  polynomial  series

• Non-polynomial  nonlinear  systems  =  infinite  degree  polynomial
systems

• Truncating  polynomial  series  adds  error  each  time  step
• Implementation  can  be  prohibitively  difficult  depending  on  system  of

equations
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Bayes Linear Emulator
• Statistical  model  of  a  process,  can  be  built

from  multiple  sources  of  different  fidelity
(coarse/fine  simulator  output,  expert  belief,
experiments,  etc.)  data

• Emulator  is  essentially  a  “best  fit”  of  the  data
µ(x) plus  a  pointwise model of error ε(x) usually
Gaussian

! 

s(x)BL = µ(x) + "(x)

= gi(x)#i + "(x)

Unlike full Bayesian this only needs Expectations and Variance to be specified.

Acts  as  a  fast  surrogate  for  simulator  &  can  be  used  by  MC  or  LHS  to
generate  very  robust  statistics AND

CAN BE CONSTRUCTED IN PARALLEL!
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A  spatial  correlation  of  “error”  with  solution  at  known  points
is  used  to  (non-linearly)  adjust/correct  the  emulator’s  mean
and  variance,  which  measures  uncertainty

Bayes  Linear  Emulator
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"1
(sy " E(sBL (y)))

! 

Var(sBL (x) | sy ) =Var(sBL (x)) "Cov(sBL (x),sy )Var(sy )
"1
Cov(sy,sBL (x))

! 

Cov sBL x( ),sy( ) " Cov
! 
# (x),

! 
# (y)

$ 

% 
& 

' 

( 
) =* r x + y( )

! 

r x " y( ) = exp " #i
i=1

Nin

$ xi " yi( )
2

% 

& 
' ' 

( 

) 
* * 

+ y( ) = sy " E(sBL (y))Error  covariance  model
must  be  positive  definite



2/17/09 24

Interpretation of Bayes Linear Emulator

C ={X1,X2, …} X1, X2 : possibilities
Χ: vector space is span [C]= {c0X0+c1X1 …}

Inner product and Norm

 (X,Y) = Cov(X,Y) ||X||=Var(X)

Let {C} = {B1,B2, …, D1,D2 …}

PD orthogonal projection from [B] to [D] i.e. ED(X) = PD(X)

…
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Bayes  Linear  Sequential  Design
 From  a  set  of  known  sample  points/runs construct  a  Bayes

linear  emulator

 Evaluate  the  emulator  at  every  member  of  a  set  of  candidate
points;  simulate  at  the  candidate  with  largest  adjusted
Variance

 Rebuild  emulator  to  include  the  new sample;  if  you  have  enough
samples,  increase  the  order  of  polynomial  basis  functions

Repeat  steps  2  &  3  as  needed

But how do we run this in parallel?
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Results: Geophysical  Mass  Flow
Starting  location  normally  distributed  about  peak  of
Colima  Volcano:  σEast/North=150 [m]
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Results: Geophysical  Mass  Flow
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Method

Results: Geophysical  Mass  Flow
Results  Summary
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Piecewise Multi-level  Emulator   construction
Piecewise Multilevel
construction allows
parallel computation of
emulator!

Use correlation lengths
to “cut off”
contributions to a point
from data at a distance

Hierarchical
parallelism -- should
be a good match for
multi-core …
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Hazard Map Using Emulators

Hazard Map at Montserrat generated
by using simulator evaluations to
construct multi-level emulator which is
then sampled to generate the
probability of flow exceeding a critical
threshold in the next T time period.

128 procs running ensembles of 4
proc. simulator runs -- evaluation of
hazard map by using emulator so
constructed takes ~1 day.
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Performance speedup of three stages of the hazard map workflow: Stage 1 is generation of  direct simulation
inputs, Stage 2 is emulator construction, and Stage 3 is emulator evaluation (only Stage 3 needs to be redone
to produce a new hazard map based on the range covered by the initial direct simulations)
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Current work

Parallel adaptive construction of emulator and
MCMC process to generate hazard maps

Efficient access to GIS data from multiple cores

Multi-threaded implementations …


