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Combinatorics
n! = the number of ways to arrange 1, 2, ... n.

(
n

k

)
=

n!

k!(n− k)!

= number of size k subsets of {1, 2, . . . , n}
= row n column k entry of Pascal’s triangle.



Example: n = 4

counts subsets of {1, 2, 3, 4}
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4

)

1 4 6 4 1

size 0 1 2 3 4
     ∅ 1 12 123 1234

2 13 124
3 14 134
4 23 234

24
34



Pascal’s Triangle

Row 0
1
2
3
4
5
6

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
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Patterns in Pascal’s Triangle

Row 0
1
2
3
4
5
6

Row Sum
1 1
1 1 2
1 2 1 4
1 3 3 1 8
1 4 6 4 1 16
1 5 10 10 5 1 32
1 6 15 20 15 6 1 64

(
6
0

)
+

(
6
1

)
+

(
6
2

)
+

(
6
3

)
+

(
6
4

)
+

(
6
5

)
+

(
6
6

)
= 64 = 26

6∑

k=0

(
6
k

)
= 26.



n∑

k=0

(
n

k

)
= 2n.Identity: For n ≥ 0,

Combinatorial Identities
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Pythagorean Theorem

cos2 x + sin2 x = 1

1 + tan2 x = sec2 x
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cos(2x) = 2 cos2 x− 1

cos(3x) = 4 cos3 x− cos x

sin(2x) = 2 sin x cos x
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Combinatorial Proof:
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= 1 + 0x + 0x2 + 0x3 + 0x4 + · · · = 1.

Why?



cos2 x + sin2 x =

(1− x2

2!
+

x4

4!
− · · · )(1− x2

2!
+

x4

4!
− · · · ) + (x− x3

3!
+

x5

5!
− · · · )(x− x3

3!
+

x5

5!
− · · · )

has constant term 1

has no odd terms

How about the even terms?

Coefficient of x2 : −1
2

+−1
2

+ 1 = 0.
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0
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(
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1
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(
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(
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(
4
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1
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[1− 4 + 6− 4 + 1] = 0
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1
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What is the coefficient of xn?
When n=0, coefficient is 1.

When n is odd, coefficient is 0.



What is the coefficient of xn?
When n > 0 is even, coefficient is

(−1)n/2

n!
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−
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n

1

)
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n
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)
−
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n

3

)
+

(
n

4

)
− · · · +

(
n

n
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k
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When n > 0 is even, coefficient is

(−1)n/2

n!

[(
n

0

)
−

(
n

1

)
+

(
n

2

)
−

(
n

3

)
+

(
n

4

)
− · · · +

(
n

n

)]

=
(−1)n/2

n!

[
n∑

k=0

(
n

k

)
(−1)k

]

Goal: Prove for all even n > 0, 
n∑

k=0

(
n

k

)
(−1)k = 0

(And it’s even true for odd n too!)



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

Algebraic Proof:



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

Binomial Theorem:
∑n

k=0

(
n
k

)
xk = (1 + x)n



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

Binomial Theorem:
∑n

k=0

(
n
k

)
xk = (1 + x)n

Thus,
n∑

k=0

(
n

k

)
(−1)k = (1− 1)n

= 0n

= 0



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

Combinatorial Proof:



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

(
n

0

)
−

(
n

1

)
+

(
n

2

)
− · · · ±

(
n

n

)
= 0



Identity: For n > 0,
n∑

k=0

(
n

k

)
(−1)k = 0.

(
n

0

)
−

(
n

1

)
+

(
n

2

)
− · · · ±

(
n
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0
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+
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n
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+
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Identity: For n > 0,
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n
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n
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(
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+

(
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+

(
n

4
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+ · · · =

(
n

1

)
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n

3

)
+

(
n

5

)
+ · · ·

Prove: For the set {1,2,...,n} where n > 0, 
# of subsets of even size = # of subsets of odd size
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24 124
34 134

1234 234
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Even subsets f Odd subsets
∅ 1
12 2
13 3
14 4
23 123
24 124
34 134

1234 234

Toggle the number 1.

f(X) = X ⊕ 1



In general, every subset X of {1,2,...,n}

holds hands with a subset of opposite parity.

The number of even subsets of {1,2,...,n}
= the number of odd subsets of {1,2,...,n}

n∑

k=0

(
n

k

)
(−1)k = 0

☺

X ←→ X ⊕ 1
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sign-reversing involution

Involution: f(f(x)) = x for all x.

Here, f(f(X)) = (X ⊕ 1)⊕ 1 = X.

The function f(X) = X ⊕ 1 is a

Sign reversing: 
X and f(X) have opposite sign in the sum.

Here, |X| and |X ⊕ 1| have opposite parity.



Alternating sums arise in combinatorial problems 
when using the Principle of Inclusion-Exclusion. 

P.I.E.
But we will use a different method.



How about the partial sum?

For 0 ≤ m ≤ n,
∑m

k=0

(
n
k

)
(−1)k = ???



How about the partial sum?

For 0 ≤ m ≤ n,
∑m

k=0

(
n
k

)
(−1)k = ???

Example: n = 4, m = 2
(

4

0

)
−

(
4

1

)
+

(
4

2

)
= 1− 4 + 6 = 3.



How about the partial sum?

For 0 ≤ m ≤ n,
∑m

k=0

(
n
k

)
(−1)k = ???

Example: n = 4, m = 2
(

4

0

)
−

(
4

1

)
+

(
4

2

)
= 1− 4 + 6 = 3.

∑m
k=0

(
n
k

)
counts

subsets of {1, 2, . . . , n} with at most m elements.
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For 0 ≤ m ≤ n,
∑m
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(−1)k = ???

Example: n = 4, m = 2
(
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1
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(
4

2

)
= 1− 4 + 6 = 3.

∑m
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(
n
k

)
counts

subsets of {1, 2, . . . , n} with at most m elements.

Note: The positive sum has NO CLOSED FORM.
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For 0 ≤ m ≤ n,
∑m
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Example: n = 4, m = 2
Even subsets Odd subsets

∅ 1
12 2
13 3
14 4
23 123
24 124
34 134
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Unmatched

f(X) = X ⊕ 1
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∑m
k=0

(
n
k

)
counts

subsets of {1, 2, . . . , n} with at most m elements.

The involution f(X) = X ⊕ 1 is well-defined 
except for size m subsets of {1,2,...,n} that don’t
contain 1. 

How many exceptions are there?  
(

n−1
m

)

All exceptions have the same sign: (−1)m

For 0 ≤ m ≤ n,
∑m

k=0

(
n
k

)
(−1)k = (−1)m

(
n−1
m

)
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Doron Zeilberger calls this a killing involution. 
The sum counts the survivors.

Jennifer Quinn prefers to call it hand-holding.
The sum counts the unattached.

Compromise: We adopt a peaceful interpretation 
with a violent acronym.



P.I.E.
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D.I.E.
Description.

Involution.

Exception.

Describe a set of objects that is being counted 
when we ignore the sign term. 

Find an involution between positive objects and 
negative objects.

Describe the exceptions, where the involution is 
undefined. Count these exceptions, and note 
their sign.
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Q: How many ways to tile a 1 × n board 
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Q: How many ways to tile a 1 × n board 
with squares     and dominoes       ? 

n = 1

n = 2

n = 3	

n = 4

n = 5

A: The n-th Fibonacci number!

1 way

2 ways

3 ways

5 ways

8 ways

What do Fibonacci numbers count?



Alternating sum of Fibonacci numbers

−f1 + f2 − f3 + f4 − f5 + f6 − · · · ± fn

−1 + 2− 3 + 5− 8 + 13− · · · ± fn
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Alternating sum of Fibonacci numbers

−f1 + f2 − f3 + f4 − f5 + f6 − · · · ± fn

−1 + 2− 3 + 5− 8 + 13− · · · ± fn
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Alternating sum of Fibonacci numbers

−f1 + f2 − f3 + f4 − f5 + f6 − · · · ± fn

−1 + 2− 3 + 5− 8 + 13− · · · ± fn

-21-1 3 -5 8



Alternating sum of Fibonacci numbers

−f1 + f2 − f3 + f4 − f5 + f6 − · · · ± fn

−1 + 2− 3 + 5− 8 + 13− · · · ± fn

-21-1 3 -5 8

−f1 + f2 − f3 + f4 − f5 + f6 − · · · ± fn = (−1)nfn−1.



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Hence,
∑n

k=1 fk(−1)k is the number of
even length tilings minus the odd length tilings
(up to length n).



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

Add a square?



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

1 2 3 4 5 6

Xs =



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

1 2 3 4 5 6

Xs =

Not an involution!



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

Toggle the last tile!



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

1 2 3 4 5 6

Xt =



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.
Involution. What is the second easiest way to 
change the parity of the length of a tiling? 

1 2 3 4 5

X =

1 2 3 4 5 6

Xt =

Involution!



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception.



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

(since f(X) would have length n+1 -- too big) 



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

1 2 3 . . . n-1 n

How many exceptions? 



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

1 2 3 . . . n-1 n

How many exceptions? 

fn−1 exceptions!



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

1 2 3 . . . n-1 n

fn−1 exceptions!

Sign of exceptions? 



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

1 2 3 . . . n-1 n

fn−1 exceptions!

Sign of exceptions? (−1)n (since all exceptions have length n)



Identity: For n ≥ 1,
∑n

k=1 fk(−1)k = (−1)nfn−1

Description.
∑n

k=1 fk counts
All tilings with (positive) length at most n.

Involution. Toggle the last tile. f(X) = X t

Exception. Involution is undefined when
X has length n and ends with a square.

1 2 3 . . . n-1 n

fn−1 exceptions!

Sign of exceptions? (−1)n (since all exceptions have length n)

☺
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Pascal’s Triangle: Diagonal Sums 
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1 1 1
2 1 2 1
3 1 3 3 1
5 1 4 6 4 1
8 1 5 10 10 5 1

13 1 6 15 20 15 6 1



Pascal’s Triangle: Diagonal Sums 

1 1
1 1 1
2 1 2 1
3 1 3 3 1
5 1 4 6 4 1
8 1 5 10 10 5 1

1 6 15 20 15 6 1
(

5

0

)
+

(
4

1

)
+

(
3

2

)
= 1 + 4 + 3 = 8 = f5



Pascal’s Triangle: Diagonal Sums 
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= 1 + 5 + 6 + 1 = 13 = f6



Pascal’s Triangle: Diagonal Sums 

1 1
1 1 1
2 1 2 1
3 1 3 3 1
5 1 4 6 4 1
8 1 5 10 10 5 1

13 1 6 15 20 15 6 1
(

6

0

)
+

(
5

1

)
+

(
4

2

)
+

(
3

3

)
= 1 + 5 + 6 + 1 = 13 = f6

(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+

(
n− 3

3

)
+ · · · = fn
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3
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Identity: For all n ≥ 0,
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Identity: For all n ≥ 0,

More compactly,
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Identity: For all n ≥ 0,

More compactly,

∑

k≥0

(
n− k

k

)
= fn.
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Identity: For all n ≥ 0,

More compactly,

∑

k≥0

(
n− k

k

)
= fn.

Note:
(

n−k
k

)
is nonzero when k ≤ n− k



(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+

(
n− 3

3

)
+ · · · = fn

Identity: For all n ≥ 0,

More compactly,

∑

k≥0

(
n− k

k

)
= fn.

(when k ≤ n/2)

Note:
(

n−k
k

)
is nonzero when k ≤ n− k



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:
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Q: How many tilings of length n?
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Combinatorial Proof:
Q: How many tilings of length n?
Answer 1: 
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Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
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Combinatorial Proof:
Q: How many tilings of length n?
Answer 1: fn

Answer 2:



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:
Q: How many tilings of length n?
Answer 1: fn

Answer 2: What does k represent?



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:
Q: How many tilings of length n?
Answer 1: fn

Answer 2: What does k represent?

The number of dominoes!



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:

Answer 1: fn

Answer 2: Consider the number of dominoes.
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∑
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k

)
= fn.

Combinatorial Proof:

Answer 1: fn

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:

Answer 1: fn

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:

Answer 1: fn

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.
Can choose k of the tiles to be dominoes in(

n−k
k

)
ways.



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Combinatorial Proof:

Answer 1: fn

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.

☺

Can choose k of the tiles to be dominoes in(
n−k

k

)
ways.



Identity: For all n ≥ 0,
∑
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k

)
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Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.

1 2 3 4 5 6

Example: n = 6, k = 2  dominoes

has 4 tiles 



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.

1 2 3 4 5 6

Example: n = 6, k = 2  dominoes

has 4 tiles 

Here, we have chosen dominoes to be tiles 3 and 4.



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.

1 2 3 4 5 6

Example: n = 6, k = 2  dominoes

has 4 tiles 

Here, we have chosen dominoes to be tiles 3 and 4.
# of length 6 tilings with 2 dominoes is 



Identity: For all n ≥ 0,
∑

k≥0

(
n− k

k

)
= fn.

Answer 2: Consider the number of dominoes.
A tiling of length n with exactly k dominoes has
                                          n - 2k squares

Total: n  -  k  tiles.

1 2 3 4 5 6

Example: n = 6, k = 2  dominoes

has 4 tiles 

Here, we have chosen dominoes to be tiles 3 and 4.
# of length 6 tilings with 2 dominoes is 

(
4
2

)
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1 -8 28 -56 70 -56 28 -8 1



Pascal’s Triangle: Alternate Diagonal Sums 
1
1 -1
1 -2 1
1 -3 3 -1
1 -4 6 -4 1
1 -5 10 -10 5 -1
1 -6 15 -20 15 -6 1
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Pascal’s Triangle: Alternate Diagonal Sums 
1 1
1 1 -1
0 1 -2 1
-1 1 -3 3 -1
-1 1 -4 6 -4 1
0 1 -5 10 -10 5 -1
1 1 -6 15 -20 15 -6 1
1 1 -7 21 -35 35 -21 7 -1
0 1 -8 28 -56 70 -56 28 -8 1



Pascal’s Triangle: Alternate Diagonal Sums 
1 1
1 1 -1
0 1 -2 1
-1 1 -3 3 -1
-1 1 -4 6 -4 1
0 1 -5 10 -10 5 -1
1 1 -6 15 -20 15 -6 1
1 1 -7 21 -35 35 -21 7 -1
0 1 -8 28 -56 70 -56 28 -8 1

Pattern: 1,1,0,-1,-1,0,  1,1,0,-1,-1,0,  ...



Identity: For n ≥ 0,
∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Identity: For n ≥ 0,
∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

= cos
π

3
n +

1√
3

sin
π

3
n
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−1 if n ≡ 3 or 4 (mod 6)
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−1 if n ≡ 3 or 4 (mod 6)

Description. 
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Description. 
∑
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k
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(with any number of dominoes)



Identity: For n ≥ 0,
∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

Description. 
∑

k≥0

(
n− k

k

)
counts tilings of length n

(with any number of dominoes)

Goal. There are almost as many length n tilings with
an even number of dominoes as tilings with an odd 
number of dominoes.
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Description. Tilings of length n.

Involution. 
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Description. Tilings of length n.

Involution. Toggle the last tile?



Identity: For n ≥ 0,
∑
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(
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)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

Description. Tilings of length n.

Involution. Toggle the last tile?

Nope. That changes the length.



Identity: For n ≥ 0,
∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

Description. Tilings of length n.

Involution. Toggle the last tile?

Nope. That changes the length.

We must change the parity of the number of 
dominoes without changing the length of the tiling.
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Involution. If the tiling starts with a domino
then replace the domino with 2 squares (and vice versa)



Description. Tilings of length n.

Involution. If the tiling starts with a domino
then replace the domino with 2 squares (and vice versa)

Example:

X =



Description. Tilings of length n.
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Description. Tilings of length n.

Involution. If the tiling starts with a domino
then replace the domino with 2 squares (and vice versa)

Example:

X =

Xt =

Convenient notation: dY ←→ ssY



Description. Tilings of length n.

Involution. If the tiling starts with a domino
then replace the domino with 2 squares (and vice versa)

Example:

X =

Xt =

The number of dominoes changes by ± 1.
Convenient notation: dY ←→ ssY



Description. Tilings of length n.

Involution. 

But what if X begins square-domino, say X = sdY?
Then ignore the sd, and try to toggle what comes 
next.

dY ←→ ssY



Description. Tilings of length n.

Involution. 

But what if X begins square-domino, say X = sdY?
Then ignore the sd, and try to toggle what comes 
next.

dY ←→ ssY

sddY ←→ sdssY



What about ...
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What about ...



What about ...

Involution. (sd)jdY ←→ (sd)jssY



What about ...

Involution. (sd)jdY ←→ (sd)jssY

Length is unchanged. 
Number of dominoes changes by ± 1.



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception.

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)j
n = 3j
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n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑
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(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

Thus, if n = 3j + 2, (n ≡ 2 or 5 (mod 6))

then there are no exceptions.



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)

Thus, if n = 3j + 2, (n ≡ 2 or 5 (mod 6))

then there are no exceptions.

✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j or 6j+1, then there is one exception



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j or 6j+1, then there is one exception
X = (sd)2j or X = (sd)2js



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j or 6j+1, then there is one exception
X = (sd)2j or X = (sd)2js (counted positively)



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j or 6j+1, then there is one exception
X = (sd)2j or X = (sd)2js (counted positively)

✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j+3 or 6j+4, then there is one exception

✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j+3 or 6j+4, then there is one exception

✔

X = (sd)2j+1 or X = (sd)2j+1s



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j+3 or 6j+4, then there is one exception
(counted negatively)

✔

X = (sd)2j+1 or X = (sd)2j+1s



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j+3 or 6j+4, then there is one exception
(counted negatively)

✔

X = (sd)2j+1 or X = (sd)2j+1s

✔



Involution. (sd)jdY ←→ (sd)jssY

Description. Tilings of length n.

Exception. Every n has at most one exception.

X = (sd)js n = 3j + 1

X = (sd)j
n = 3j

∑

k≥0

(
n− k

k

)
(−1)k =

1 if n ≡ 0 or 1 (mod 6)

0 if n ≡ 2 or 5 (mod 6)

−1 if n ≡ 3 or 4 (mod 6)
✔

If n = 6j+3 or 6j+4, then there is one exception
(counted negatively)

✔

X = (sd)2j+1 or X = (sd)2j+1s

✔

☺
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For n ≥ 0,
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Related identities
For n ≥ 0,

∑

k≥0

(
n− k

k

)
2n−2k(−1)k = n + 1.

∑

k≥0

(
n− k

k

)
3n−2k(−1)k = f2n+1.

where A0 = 1, A1 = s, and for n ≥ 2,

An = sAn−1 + dAn−2.

∑

k≥0

(
n− k

k

)
sn−2kdk = An,



P.I.E. can D.I.E.!

Any combinatorial problem that can be solved 
by the principle of inclusion-exclusion can also 
be solved by D.I.E.



Derangements 
For n ≥ 1,

Dn = number of derangements of {1, 2, . . . , n}
is the number of ways to arrange 
1,2,...,n so that no number is in its 
natural position. 

Example: 2 1 4 3  is a derangement.  

But 4 1 3 2 is not a derangement. 

3 is a fixed point.



Derangements 
n=1 n=2 n=3 n=4
none 21 231 2143

312 2341
2413
3142
3412
3421
4123
4312
4321



Derangements 
n=1 n=2 n=3 n=4
none 21 231 2143

312 2341
2413
3142
3412
3421
4123
4312
4321

D1 = 0 D2 = 1 D3 = 2 D4 = 9



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Example. n=4:

D4 =
4!

0!
− 4!

1!
+

4!

2!
− 4!

3!
+

4!

4!
= 24− 24 + 12− 4 + 1

= 9



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. What does n!/k! count?

Example: n = 9, k = 6
9!

6!
= 9× 8× 7 counts 



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. What does n!/k! count?

Example: n = 9, k = 6
9!

6!
= 9× 8× 7 counts 3-digit numbers using

digits from {1,2,...,9} where all digits are different.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. What does n!/k! count?

Example: n = 9, k = 6
9!

6!
= 9× 8× 7 counts 3-digit numbers using

digits from {1,2,...,9} where all digits are different.
n!
k! counts words of length n− k using different

letters from {1,2,..., n}.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. What does n!/k! count?

Example: n = 9, k = 6
9!

6!
= 9× 8× 7 counts 3-digit numbers using

digits from {1,2,...,9} where all digits are different.
n!
k! counts words of length n− k using different

letters from {1,2,..., n}.

different elements from {1,2,...,n}.

∑n
k=0

n!
k! counts words of any length using



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.



Identity: For n ≥ 1, Dn =
n∑
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n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Goal.
Try to pair up words whose lengths have opposite parity.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Goal.
Try to pair up words whose lengths have opposite parity.
Involution (Rule 1). Given a word X, 
Toggle the number 1, if possible.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Goal.
Try to pair up words whose lengths have opposite parity.
Involution (Rule 1). Given a word X, 
Toggle the number 1, if possible.

i.e., if 1 is missing from X, then insert 1 in front.
 if 1 is first letter of X, then remove it from X.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Goal.
Try to pair up words whose lengths have opposite parity.
Involution (Rule 1). Given a word X, 
Toggle the number 1, if possible.

i.e., if 1 is missing from X, then insert 1 in front.
 if 1 is first letter of X, then remove it from X.

Example. 2358 12358
492 1492

1∅
23456789 123456789



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.

What if Rule 1 doesn’t apply? Say X = 31459.  Then try...



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.

What if Rule 1 doesn’t apply? Say X = 31459.  Then try...

Involution (Rule 2).Toggle the number 2, if 
possible. That is, 



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.

What if Rule 1 doesn’t apply? Say X = 31459.  Then try...

Involution (Rule 2).Toggle the number 2, if 
possible. That is, 

       if 2 is missing from X, then insert 2 in position 2.
if 2 is in X in position 2, then remove it from X.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.

What if Rule 1 doesn’t apply? Say X = 31459.  Then try...

Involution (Rule 2).Toggle the number 2, if 
possible. That is, 

       if 2 is missing from X, then insert 2 in position 2.
if 2 is in X in position 2, then remove it from X.

Example. 31459 321459



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.

What if Rule 1 doesn’t apply? Say X = 31459.  Then try...

Involution (Rule 2).Toggle the number 2, if 
possible. That is, 

       if 2 is missing from X, then insert 2 in position 2.
if 2 is in X in position 2, then remove it from X.

Example. 31459 321459

Note: By inserting or removing 2 in 2nd position,
1 cannot suddenly become a fixed point of X.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,

       if m is missing from X, then insert m in position m
if m is in X in position m, then remove it from X



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,

       if m is missing from X, then insert m in position m
if m is in X in position m, then remove it from X

Note: This rule will not change the numbers in 
positions 1, 2, ..., m-1. Thus, it’s an involution.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,

       if m is missing from X, then insert m in position m
if m is in X in position m, then remove it from X

Note: This rule will not change the numbers in 
positions 1, 2, ..., m-1. Thus, it’s an involution.

Example. Suppose X = 3145926



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,

       if m is missing from X, then insert m in position m
if m is in X in position m, then remove it from X

Note: This rule will not change the numbers in 
positions 1, 2, ..., m-1. Thus, it’s an involution.

Example. Suppose X = 3145926 m=7



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X. That is,

       if m is missing from X, then insert m in position m
if m is in X in position m, then remove it from X

3145926 321459276

Note: This rule will not change the numbers in 
positions 1, 2, ..., m-1. Thus, it’s an involution.

Example. Suppose X = 3145926 m=7



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. When does m fail to exist?



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. When does m fail to exist?

When X contains all numbers from {1,2,...,n}
and X contains no fixed points.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. When does m fail to exist?

When X contains all numbers from {1,2,...,n}
and X contains no fixed points.

The derangements of {1,2,...,n}!



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.

How many exceptions? 
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k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.

How many exceptions? Dn



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.

How many exceptions? Dn

Sign of exceptions?



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.

How many exceptions? Dn

Sign of exceptions?

Each derangement has length n, so k = 0.
Thus, all derangements are counted positively.



Identity: For n ≥ 1, Dn =
n∑

k=0

n!

k!
(−1)k

Description. Words using different letters from {1,...,n}.
Note: n!/k! counts words of length n - k.
Involution (general).Toggle the number m, 
where m is the smallest number that is either 
missing from X or a fixed point of X.

Exception. X is a derangement of {1,2,...,n}.

How many exceptions? Dn

Sign of exceptions?

Each derangement has length n, so k = 0.
Thus, all derangements are counted positively.

☺



Back to Trigonometry:
Up-Down permutations

The permutation
2 7 1 8 3 9 4 6 5

is an example of an up-down (or zig-zag) permutation 
since the numbers alternatiely go up then down.

a1 < a2 > a3 < a4 > a5 < a6 > · · ·

Let Un be the number of up-down permutations of 
length n.



n = 0:    ∅ U0 = 1

n = 1:   1 U1 = 1

n = 2:   12 U2 = 1

n = 3:   132   231 U3 = 2

n = 4:   1324   1423   2314   2413   3412 U4 = 5

n = 5:   13254   14253   14352   15243  
            15342   23154   24153   24351
             25143   25341   34152   34251
             35142   35241   45132   45231   U5 = 16
Also, U6 = 61,    U7 = 272, ...



No exact formula for Un, but it has recurrence

2Un+1 =
∑

k≥0

(
n

k

)
UkUn−k

and asymptotic formula

Un ∼
2n+2n!

πn+1

and exponential generating function
U(x) =

∑

n≥0

Un
xn

n!

= 1 + x +
x2

2!
+

2x3

3!
+

5x4

4!
+

16x5

5!
+

61x6

6!
+

272x7

7!
+ · · ·



Remarkably,
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In fact,
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Remarkably,
U(x) = 1 + x +

x2

2!
+

2x3

3!
+

5x4

4!
+

16x5

5!
+

61x6

6!
+

272x7

7!
+ · · ·

= sec x + tan x

In fact,

Ueven(x) = 1 +
x2

2!
+

5x4

4!
+

61x6

6!
+ · · ·

= sec x

Uodd(x) = x +
2x3

3!
+

16x5

5!
+

272x7

7!
+ · · ·

= tan x
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Ueven(x) = 1 +
x2

2!
+

5x4

4!
+

61x6

6!
+ · · ·

= sec x

=
1

cos x

(cos x)Ueven(x) = 1



Ueven(x) = 1 +
x2

2!
+

5x4

4!
+

61x6

6!
+ · · ·

= sec x

=
1

cos x

(cos x)Ueven(x) = 1

(U0 + U2
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All odd terms have coefficient of zero.
Show: For even n > 0, 
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Un−2k(−1)k = 0.



Identity: For even n > 0, 
∑

k≥0

(
n

2k

)
Un−2k(−1)k = 0.

This has a beautiful D.I.E. proof, due to Ira Gessel.
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The Chebyshev Polynomials
T0(x) = 1

T0(x) = 1

T3(x) = 4x3 − 3x

T2(x) = 2x2 − 1

T1(x) = x
and for n ≥ 2,

T4(x) = 8x4 − 8x2 + 1

Tn(x) = 2xTn−1(x)− Tn−2(x).
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Q: How many ways to tile a 1 × n board 
with squares     and dominoes       ? 

n = 1

n = 2

n = 3	

n = 4

n = 5

A: The n-th Fibonacci number!

1 way

2 ways

3 ways

5 ways

8 ways

What do Count?Fibonacci Numbers
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A square on cell 1 has weight x.
All other squares have weight 2x.
All dominoes have weight -1.
The weight of a tiling is the product of the 
weights of its tiles.

T0(x) = 1,    T1(x) = x,   Tn(x) = 2x Tn-1(x) -1 Tn-2(x).
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T4(x) = 8x4 − 8x2 + 1

T4(x) = 2xT3(x)− T2(x)
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Tn(cos θ) is the sum of the weights of all colored tilings.

We now show that this sum is almost zero!
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Tn(cos θ) counts all colored tilings of length n.

Our Proof Strategy

We show that all the impure tilings sum to zero.

Tn(cos θ) counts all the pure tilings.Thus

2 cases:
The tiling does not start with an impurity.

The tiling does start with an impurity.
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Find a mate of opposite weight!
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Summary
• Every impure tiling belongs to exactly one 

pair or trio that sums to zero.

• Thus Tn(cos θ) is the sum of the weights of 
all the pure tilings.
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