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Motivation - Efficient Solvers

Evolution of machines, algorithms and their combination
over the past 60 years for the solution of a 3D Poisson Egn
Adapted from Deville Fischer and Mund 2002
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Faster machines and computational algorithms
can dramatically reduce simulation time.
(Centuries to milliseconds).




Motivation - Efficient Solvers

Image courtesy of D. Donzis
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Simulating complex flows doesn’t scale as well.




Motivation - Efficient Solvers

Complexity of Modern Linear Solvers

Serial Parallel

FFT Direct nlogn logn

Multigrid lterative (logn)*2

GMRES lterative

Lower
Bound




Model - Steady Advection Diffusion

—eV2u + (0 - V)u

Inertial and viscous forces occur on disparate
scales causing sharp flow features which:

* require fine numerical grid resolution
» cause poorly conditioned non-symmetric
discrete systems.

These properties make solving the discrete
systems computationally expensive.




Motivation - Efficient Solvers & Discretization

Comparison of computational work needed to maintain
10% phase error in 1D advection equation
Karniadakis & Sherwin 2005

— Second Order Method
— Fourth Order Method
— Sixth Order Method

2 3
Number of Periods

High order methods are accurate & efficient.




Methods - Spectral Element Discretization

Spectral elements provide:
flexible geometric boundaries
‘large volume to surface ratio
‘low storage requirements
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Methods - Spectral Element Discretization

The discrete system of advection-diffusion
equations are of the form:

F(w)u=Mf

When w Is constant in each direction on
each element we can use

« Fast Diagonalization & Domain
Decomposition as a solver.

F=M® F(wy) + Fw,) ® M




Methods - Spectral Element Discretization

Otherwise, we can use this as a Preconditioner
for an iterative solver such as GMRES

F (W) P, Ppu = Mf




Methods -Tensor Products

What does ® mean?

Suppose Arxi and Bmxn
The Kronecker Tensor Product

allB algB c . CLUB

CLQlB CLQQB “. CLQZB
Ckmxln — A®B: ‘ .

ale akgB ale

Matrices of this form have properties that make
computations very efficient and save lots of
memory!




Methods - Fast Diagonalization

Matrix-vector multiplies (A ® B)i = BUA"
done in O(n”) flops instead of O(n*

)

Fast Diagonalization Property
C=ARB+B®A

VIAV =A,  V'BV =1
C=VeaVIA+ARD (VT VT
Cl=VeaVIA+ARID) '(VieV!

Only need an inverse of a diagonal matrix!




Methods - Solver & Preconditioner

We use Flexible GMRES with a preconditioner based on:

* Local constant wind approximations
* Fast Diagonalization
 Domain Decomposition

F (@) Py Ppu= Mf

N
Pp' = R{Fy M (wo)Ro + Y RIF7'(w°)R.

e=1
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Solver Results - Constant Wind

U= 2()()(—82%(%), COS(E
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Solution and contour plots of a steady advection-diffusion
flow. Via Domain Decomposition & Fast Diagonalization.
Interface solve takes 150 steps to obtain 10*-5 accuracy.




Preconditioner Results - Recirculating Wind

® non-preconditioned
® preconditioned
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Hot plate at wall forms Residual Plot above.
internal boundary layers. (P+1)[120N+(P+1)]

additional flops per step




Conclusions/Future Directions

Coupling Fast Diagonalization & Domain
Decomposition provides an efficient solver for
the advection-diffusion equation.

‘Precondition Interface Solve
-Coarse Grid Solve (multilevel C
‘Multiple wind sweeps

*Time dependent flows

2D & 3D Navier-Stokes

*Apply to study of complex flows
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