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Motivation - Efficient Solvers

Faster machines and computational algorithms 
can dramatically reduce simulation time. 
(Centuries to milliseconds).



Motivation - Efficient Solvers

Simulating complex flows doesn’t scale as well.

Image courtesy of D. Donzis



Motivation - Efficient Solvers

Serial Parallel

FFT Direct nlogn logn

Multigrid Iterative n (logn)^2

GMRES Iterative n n

Lower 
Bound n logn

Complexity of Modern Linear Solvers



Model - Steady Advection Diffusion

Inertial and viscous forces occur on disparate 
scales causing sharp flow features which:

• require fine numerical grid resolution 
• cause poorly conditioned non-symmetric 
discrete systems. 

These properties make solving the discrete 
systems computationally expensive.



Motivation - Efficient Solvers & Discretization

High order methods are accurate & efficient. 



Methods - Spectral Element Discretization

Spectral elements provide:
•flexible geometric boundaries
•large volume to surface ratio
•low storage requirements



Methods - Spectral Element Discretization

When w is constant in each direction on 
each element we can use
• Fast Diagonalization & Domain 
Decomposition as a solver.

The discrete system of advection-diffusion 
equations are of the form:



Methods - Spectral Element Discretization

Otherwise, we can use this as a Preconditioner 
for an iterative solver  such as GMRES



Methods -Tensor Products

What does mean?

Suppose Ak×l and Bm×n

The Kronecker Tensor Product

Matrices of this form have properties that make 
computations very efficient and save lots of 
memory!
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Methods - Fast Diagonalization

Matrix-vector multiplies (A ⊗ B)!u = BUA
T

done in O(n3) flops instead of O(n4)

Fast Diagonalization Property
C = A ⊗ B + B ⊗ A

C
−1 = (V ⊗ V )(I ⊗ Λ + Λ ⊗ I)−1(V T

⊗ V
T )

C = (V ⊗ V )(I ⊗ Λ + Λ ⊗ I)(V T
⊗ V

T )

V T AV = Λ, V T BV = I

Only need an inverse of a diagonal matrix!



We use Flexible GMRES with a preconditioner based on:

• Local constant wind approximations
• Fast Diagonalization
• Domain Decomposition

Methods - Solver & Preconditioner
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Solver Results - Constant Wind

Solution and contour plots of a steady advection-diffusion 
flow. Via Domain Decomposition & Fast Diagonalization.  
Interface solve takes 150 steps to obtain 10^-5 accuracy.

!w = 200(−sin(
π

6
), cos(

π

6
))



Hot plate at wall forms 
internal boundary layers.

Preconditioner Results - Recirculating Wind 

Residual Plot above.
•( P + 1 ) [ 1 2 0 N + ( P + 1 ) ] 
additional flops per step

!w = 200(y(1 − x2),−x(1 − y2))



Coupling Fast Diagonalization & Domain 
Decomposition provides an efficient solver for 
the advection-diffusion equation.

Conclusions/Future Directions

•Precondition Interface Solve
•Coarse Grid Solve (multilevel DD)
•Multiple wind sweeps
•Time dependent flows
•2D & 3D Navier-Stokes
•Apply to study of complex flows
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