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It’s all a matter of shape
When asked how to increase the milk production of cows, a 
theoretical physicist might answer, after much head-scratching and 
pages of calculations, "First, you start with a spherical cow." A real 
cow is too complicated. Scientists often resort to assumptions that 
simplify a problem, making it solvable. But the downside is that the 
solution may not represent anything "real."                         
(paraphrased from http://archive.ncsa.uiuc.edu/Cyberia/NumRel/BuildingBlocks.html)

Example: Nearly all computations in magnetism involve the assumption 
that everything behaves like a magnetic dipole.  Even when the 
particle shape is not spherical, the dipole approach continues to be 
used.  This is only appropriate if the particles are far apart!

In this talk, we will show that shape does matter, and that actual 
shapes can be taken into account correctly, without assumptions.



Beyond the Spherical Cow ...



Shape dependent quantities
demagnetization and depolarization tensors

gravitational/electric field

capacitance

moment-of-inertia tensor

solid angle 

acoustic radiation impedance

various transport properties

...



Typical problems
Typically, these quantities require 3D integrations over 
the volume of the object, or over the surface of the 
object.

For interacting objects, the integral is often a 6D 
integral over both particle volumes.

Shape usually enters through the integration 
boundaries, via parameterized expressions for the 
volume or the surface.

So, is there a way to incorporate the shape of the 
object via a function, rather than via integration 
boundaries?



The Shape Function
Each object has a binary nature, i.e., a randomly 
chosen point is either inside the body, or it is not.

Hence, we define the shape function as:

Note that this function is also known as the indicator 
function or the characteristic function.

In a technical sense, this is not a real function, since 
its derivatives do not exist in the traditional calculus 
context.  The shape function is therefore a generalized 
function (distribution), i.e., a 3-D hat function.

D(r) =

{
1 inside
0 outside



The Shape Function
The shape function can be used to extend the 
integration volume from the volume of an object to all 
of space:

The advantages of using shape functions become more 
apparent in Fourier space.  The Fourier transform of 
the shape function is known as the shape amplitude:

This is the only place where the actual shape 
information is used as integration boundaries.  



Example Shape Amplitudes

Shape amplitude is a real 
function for objects with a 
center of symmetry.



Example Shape Amplitudes



Magnetic Field and Energy of a dipole

µm

B(r) =
µ0

4π

[
3n(n · µ) − µ

|r|3

]
Magnetic Induction:

r

n

Magnetic Vector Potential: A(r) =
µ0

4π

µ × r

|r|3

B(r) = ∇× A(r)

E(r) = −µ · B

Magnetostatic Energy:

= µ0H(r)

Magnetic FieldPermeability of vacuum

=
µ0

4π

[
µ1 · µ2

|r|3
− 3

(r · µ1)(r · µ2)

|r|5
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Dipolar Tensor

Tensors in Magnetism

B = µ0(M + H) → Bi = µ0(Mi − NijMj)

Demagnetization tensor N describes 
the demagnetization field due to a 
given magnetization M.

Is there a relation between these two 
tensors and the shape amplitude ?



Dipolar tensor in Fourier Space

It is not too difficult to show 
that the dipolar tensor is the 
inverse Fourier transform of 

Hint: use cylindrical coordinates to prove this relation; spherical
coordinates result in diverging integrals...

direction cosines of frequency vector



Demagnetization Field

Nabla operator in
Fourier Space

The Fourier Space Formalism
Consider an object with a given magnetization state M(r)

A(r) =
µ0

4π

∫
M(r′) ×

r − r′

|r − r′|3
dr′Basic Equation: “convolution”

A(k) = −iµ0

M(k) × k

k2
Vector potential: vector cross product

M(k) =

∫
M(r)e−ik·rFourier Transform

of      :M(r)

Includes 
shape information

B(k) = −ik × A(k)Magnetic Induction:

B(k) = −
µ0

k2
k × M(k) × k = µ0

[
M(k) − k

M(k) · k

k2

]
= µ0 [M(k) + H(k)]



Analytical Expressions

H(r) = −

M0

8π3

∫
d3

k
D(k)

k2
k(m̂ · k)eik·rDemagnetization Field

E =
µ0M

2
0

16π3

∫
d3

k
|D(k)|2

k2
(m̂ · k)2Demagnetization Energy

M(k) = M0m̂D(k)For a uniformly magnetized object:

Demagnetization Tensor
(point function)

Demagnetization Tensor
(ballistic)



Demagnetization Tensor

So, the demagnetization tensor is equal to the 
convolution of the dipolar tensor with the shape 
function, which is consistent with our intuitive 
understanding:  all the possible magnetic fields 
are copied to each location in the object.

The actual demag field is obtained by contracting 
w.r.t. to the magnetic moment direction.



Properties of Demag Tensor
Trace:

Symmetry: Being a second rank tensor, N inherits the 
symmetry of the corresponding shape;  in particular, if 
the shape has a rotational axis of order greater than 
2, then the tensor is isotropic in the plane normal to 
that axis (Neumann principle)

Computability (numerical):  Numerical computation is 
relatively straightforward, thanks to FFT algorithms,   
BUT ...  



Analytical vs. Numerical
In an analytical computation, the shape amplitude has 
infinite support.

In a numerical FFT-based computation, the support is 
finite (finite frequency range).

An inverse numerical FFT of an analytical shape 
amplitude will give rise to Gibbs oscillations...

This can be avoided by using a filter function:



Example
Rectangular prism with dimensions

Regular FFT Filtered FFT

Deviation from true
step function 
extends to only 1 
pixel on either side 
of boundary.



Example (continued)
For numerical work, the demag tensor is given by:

(Ballistic)

No filter function needed!

But:



Graphical Representation
A symmetric 3x3 matrix has 3 real eigenvalues
and associated eigenvectors.

Nij → Õ




λ1 0 0

0 λ2 0

0 0 λ3


O

λ1,2,3 > 0 EllipsoidInside shape:

Outside shape: λ1,2 > 0;λ3 < 0
Single Sheet
Hyperboloid

Has eigenvectors
as columns



Example: Demagnetization Tensor





More examples
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SAME TENSOR !!!

Application to Electrostatics
A uniformly polarized particle has a potential:

and a resulting field (in Fourier space):

The electric displacement is then given by:

which results in:



Depolarization Energetics
The self-energy of a uniformly polarized particle:
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SEM images of the faceted BaTiO3 crystals after reaction with AgNO3.  

The white contrast specks indicate silver metal deposits. (images G. Rohrer)
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How about interacting shapes?
Magnetostatic energy is generally defined as:

Converting to Fourier space for uniformly 
magnetized particles we find:

             is the relative position of the particles

This expression can be rewritten as:



Interacting shapes
Using the convolution theorem, we find:

In this expression, we have introduced a new quantity:

This is the cross-correlation of the shape functions.

Finally, we rewrite the energy in terms of a new 
tensor field:



The Magnetometric Tensor Field

This relation is similar to that for pure dipoles:

The magnetometric tensor field contains all the 
shape-dependent interactions, so that the 
particles can be represented by their total 
moments.



Geometrical Interpretation
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Example Computations
Rectangular prism (2a,2b,2c) auto-correlation function:

Magnetometric tensor element:

Result is in full agreement with standard expressions used in micromagnetics codes.



Example Computations
Consider two bar magnets (rectangular prisms).  The first magnet has dimensions 
24 x 12 x 12 and is uniformly magnetized along the x-axis.  The second magnet is 
smaller (16 x 2 x 2) and is allowed to move in the x-y plane.  Its magnetization is 
along the longest axis.  The question to be answered is then: for each location in 
the x-y plane, what is the orientation of the second magnet for which the 
interaction energy is minimized?

3D computation, using a 256 x 256 x 256 voxel grid, and the analytical expression 
for the shape amplitude of a rectangular prism. 





Broader Interpretation
Magnetic particles interact through the dipolar 
interaction, which is represented by the dipolar 
tensor.

Perhaps it is possible to replace the dipolar tensor by 
another interaction function to describe other 
physical interactions between particles of arbitrary 
shape...

Interaction “kernel”



Applications to Gravitation

Gravitational potential satisfies Poisson’s equation:

Solution for uniform mass density and arbitrary shape:

Using the Fourier space approach this leads to:

and also, for the gravitational field:

Obviously, the same is valid for electrostatic problems...



What about gravitational interactions?
Interaction energy between two arbitrary bodies:

For uniform mass density we find:



General interactions
What we learn from this is that interactions between uniform bodies of arbitrary 
shape can be written in terms of the shape cross-correlation function and an 
interaction-dependent kernel, which, in Fourier space, takes on a form of the 
type:

for electrostatic, gravitational, ...

for dipolar

for a Yukawa-type interaction

...
question:  Do all factors of this form correspond to physical interactions?



What about surfaces ?

Many physical quantities involve integrations over the 
surface of the object.  Could the shape function 
formalism be used for such problems?

In other words, is there a “function” related to the 
shape function that describes the surface?

preliminary work shows that the gradient of the 
shape function results in the unit surface normal...



Surface Normal

Explicit computation for a sphere results 
in the outward unit normal on the surface.

The surface itself can then be described by 
the norm of this vector, which results in a 
discontinuous “function” which vanishes 
everywhere except on the surface where it 
is unity...

Numerical work shows that this
is correct, but the theory needs 
to be done “properly”, using the 
theory of generalized functions 
(distribution theory).



Moment of Inertia Tensor

MOIT is defined as:

example:

Working out the convolution products we find:



MOIT (continued)
The full tensor is given by:

Hessian matrix of D, evaluated in k=0

We can do the same thing for the quadrupole tensor:



There is a relation between the MOIT and the 
quadrupole tensor:

This relation is valid for every shape.  This was 
verified analytically for the sphere and numerically 
for a number of basic shapes.

MOIT (continued)



Additional General Relations
Consider the following relation:

Integral converges for n=2, 3, and 4:

For n=4, we have:

Integrand for MOIT !

with



Similarly for the quadrupole tensor:

and an even more general relation:

again, valid for all shapes...

Additional General Relations



Conclusions
Shape matters and can be correctly included in 
analytical formalism without approximations!

The shape amplitude and its derivatives and moments 
appear to allow for general shape-independent 
statements or relations to be formulated.

Fourier space shape formalism is accurate, flexible, and 
can be used for many other types of interactions... 

electrostatics, gravitation, moment of inertia tensor, elasticity, ...

Questions remain about the applicability of this formalism 
for quantities that depend on surface integrations rather 
than volume integrations.  This research is currently 
ongoing...



The End


