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I. What is Quantum Information?

radical departure in information technology, more

fundamentally different from current I T than the
digital computer isfrom the abacus.

A conver gence of two of the 20t Century’sgreat revolutions

| nfor mation

(i.e. books, data, pictures)
M or e abstr act
Not necessarily material

Quantum Mechanics
(i.e. atoms, photons, molecules)
“Matter”

A guantum computer if it existed could break all present-
day public key encryption systems

Quantum encryption can defeat any computational attack
NIST

|
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Quantum Information may be Inevitable

Thelimits of miniturization:

At atomic scale sizes quantum mechanicsrules
— Since objects and eectronic components continue to be miniaturized,
Inevitably we will reach feature sizesthat are atomic in scale
— In general, attemptsto make atomic-size cir cuits behave classically will
fail dueto ther inability to dissipate heat and their qguantum character

Thus quantum information may beinevitablel

Clearly, at the smallest scale, we need to take full advantage
of quantum properties.

This emphasizes a different view of why quantum infor mation
Isuseful and also show why it may ultimately lead to quantum
engineering.

Belief: Quantum Infor mation and Quantum Engineering
will have a tremendous economic impact in the 21 Century
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II. Introduction

“Using Shor’ s quantum factorl zation
algorithm, one can see th
large number
guantum gomp
fraction g the

can be done
by | / S0 for apractica
ode breaki ng, theQC s
Superior.”

“Wineland and M onr oe worked out the
single quantum gate by trapping beryllium

ions. ...”
!
ZQE_% NIST Physics Laboratory




20th Century in Review

At the beginning of the 20t century a series of crises had taken
placein physics —the old physics (now called classical physics)
predicted numerous absurdities. At first ad hoc fixeswere
madeto the classical theory — but the theory became untenable.

In the 1920’ sthis crises gave way to a qguantum mechanics —a new
theory appropriate at the smallest scales (atomic, nuclear).
Quantum mechanicsreducesto classical physics under the
appropriate conditions while removing the absurdities.

e Foundations of Quantum M echanics
— Planck: Planck’s Constant
— Einstein: Photoelectric Effect, Light Quanta,
Special Relativity, E=mc?, General Relativity
— deBroglie: Wave-Particle Duality
— Heisenberg: Uncertainty Principle, Matrix M echanics
— Schrodinger: Wave Equation

Note—that Einstein, one of thefathersof quantum mechanics, died
believing that quantum mechanics was incomplete. 7



20th Century in Review (2)

Modern infor mation theory originatesin the 1930’ swith the
concept of a Turing machine capable of running a program or
algorithm. The Church-Turing hypothesisthen assertsthat
there exists an equivalent algorithm of ssmilar complexity that
can run on a Universal Turing Machine.

Thediscovery of thetransistor in 1947, followed by integrated
electronics, leadsto the computer revolution and Moore’s law.

In the late 1940's, Shannon defines the concept of a unit of
Infor mation, which isgiven physical limitations by Landauer.

e Foundations of Information Theory

— Church-Turing: Computability, Universality

— von Neumann: Concept of a computer

— Bardeen, Brattain, & Shockley: Transistor

— Shannon: I nformation Measures

— Landauer: Physical Limitations of | nfor mation,;

, explanation for Maxwell’s Demon

/™ — Bennett: Reversible Turing Machine 8




History of Quantum Information

Foundations

— Benioff: Quantum Turing Machine

— Feynman, Deutsch: Concept of Quantum computation

— Landauer, Zurek: Physics of information

— Bennett, DiVincenzo, Ekert , Lloyd: Concept of
Quantum infor mation science

Richard
— Shor: Q. Factoring and discretelog algorithm Feynman
— Preskill, Shor, Gottesman, Steane: Quantum

error correction, Fault tolerant QC
— Lloyd: Quantum simulatorsand Universal QC

Peter o« From Theory to Experiment s o=}
Shor — Bennett, Gisin, Hughes: Demonstration
of quantum cryptography .Y
— Wineland and Kimble: Demonstration j‘
of Qubitsand quantum logic Charles
Bennett 9




Quantum Communication - 100% physically secure

— Quantum key distribution — generation of classical key material
— Quantum Teeportation

— Quantum Dense Coding

Universal Quantum Logic: all guantum computations—i.e. any
arbitrary unitary oper ations— may be efficiently constructed from 1-
and 2-qubit gates

Quantum Algorithms
— Factorization of large primes (Shor’salgorithm)
— Searching large databases (Grover’salgorithm)
— Quantum Fourier Transforms
— Potential attack of NP problems
— Simulation of large-scale guantum systems

Quantum Measurement —improved accuracy
— Heisenberg limit OL/N vs Shot-Noiselimit 01/Sgrt(N)
— Better Atomic Clocks

Quantum Engineering — specialized quantum devices

How can we use Quantum Information?

10



Scaling of Quantum Information

e Classically, information stored in a bit register: a 3-bit
register storesone number, from0—-7.  [of1]o!

eg. |ofofo| |ojo|z| [o|afo] [ofafz| ... f1|1]1]
2 21\20

Quantum mechanically, a 3-qubit register can storeall

of these numbersin an arbitrary superposition:

a\020>+b\001>+c\01o>+d\011>+e\1oo>+ f |101) + g[110) +h|111)

\) Dirac Notation for the quantum state vector

e Resault:
— Classical: one N-bit number
— Quantum: 2N (all possible) N-bit numbers

11
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III. The Quantum Primer

Schrodinger’s Equation and Dirac Notation
Light as Waves and Photons

Quantum Nature of Matter: Atoms
Superposition
Quantum M easur ement
Quantum Interference
Entanglement

Technology Administration, U.S. Department of Commerce

|
National Institute of Standards and Technology ﬁ;:‘ % NIST PhYSiCS Laboratory



Quantum Theory Summary

Quantum theory isthe branch of physicsthat describeswaves
and particles at the smallest scale and lowest energies. This
theory isbased on the observation that changesin the energy
of atoms and molecules occursin discrete quantities known
asquanta. Thisincludesthe electromagnetic field which
consists of individual quanta of various frequencies known as
photons.

Theclassical or Newtonian limit (which describes everyday
phenomena) istypically recovered when a complex qguantum
system consisting of many parts becomes massive and/or its
ener gy becomes large (many guanta).

Non-relativistic qguantum mechanics givesriseto Schrodinger’s
wave equation. The key components of this equation, which
in turn fully describes the system, are the Hamiltonian H that
governstheinteractions of the guantum system and the
wavefunctionW(r,t) that describesthe state or wavefunction
of the system. Thelatter isoften denoted by the ket |W(1)). 13



ﬂ Schrodinger Equation

Schrodinger’s wave equation isafirst order differential
equation that describesthe time evolution of a quantum
system under a Hamiltonian H. The Hamiltonian H is
the operator equivalent of thetotal energy of the system
which can be represented asthe sum of the kinetic and
potential energies of the system.

oW (r,t)
ot

Probability of being at N nye )
position r at timet p(r,t)=wi(r,t)w(r.1)

7 =H (F,t)LIJ(F,t) 7 isPlanck’s constant

Total integrated probability at timet
(W(t)|w(t))=[wo(r.t)w(r.t) dr = [ p(r.t) dF

Note: In general one does not put argumentsinside of bras|label ). 14




Schrodinger Equation (2)

TheHamiltonian H for the system can typically bewritten as
2

_ he s .
H({r,t)=——04°+V (T,t
(7.t) =207 +V (1)
wheremisthemass, V (r,t) isthe potential, and the?in the
Kinetic energy term. Basically H describesthe quantum
systems interactions.

If the potential V istime independent with theresult that H is
time independent, one obtainsthe time independent
Schrodinger equation. Thisisa second-order partial
differential equation sometimesreferred to asan eigenvalue

equation: H‘LPE>=E‘LPE>

In general one does not need to know about transistorsto
understand classical computers. Similarly one does not
need to know about H to under stand quantum computers.

15




ﬂ Example: Schrodinger’s Equation

For atimeindependent problem, Schrodinger equation’s can
bewritten: H ‘L|Jn>:En‘L|Jn>

For the special case of a 1-dimensional harmonic
oscillator, the Hamiltonian is given by:

2 42
H(X)=—h dz+£ma)2x2
2m dx“ 2 Har monic Oscillator

E,=(n+1/2)hw
(é|W,)=exp(=£°12)H (&) where & =vmw/hx
where H (&) isa Hermite polynomial and ¥/, satisfies:

(W, W)= ep(=¢)H, (§)H. (§)dE=2"ntna,

16




ﬂ Normalized Wavefunctions

Convention in quantum mechanicsisto use nor malized
wavefunctions since thetotal integrated density of a
guantum system should be 1l —i.e.

1/2

[w)=(w(b)|w(D) =1
Thusin the example from the previous page, a nor malized
¢/ can bewritten as.

2—n/2

(&|W,)= m%exp(—£2/2)Hn(£)

So that <LIJn ‘ LIJk> =0,

Moreover for any quantum system, the state kets|a) and | 8)
represent the same quantum state if they differ only by a
non-zer o multiplicative constant

A0 a)=4|B) 7




ﬂ Dirac Notation

The elements, wavefunctions, eéigenfunctions, or state vectors
that arethe solution of Schrddinger’s equation form an
orthonormal set. These state vectorsare called ket vectors
and areindividually denoted as |label; ) or |i}). The set of all
such vectors{|i>} span an abstract vector spacereferred to
mathematically asthe Hilbert Space H.

A Hilbert Space H isvery much like ordinary cartesian space
(x,y,2). Thesguare-of-the-length | of a vector from the
origin O to an arbitrary point I given by the point (x,y;,z)
. 8
IS X.

2 =x’+y +Z =(Xi Yi Zi) Y

\ 4
In Dirac notation and quantum mechanics one would label
the stateli)and the length-squared or inner product would

be denoted: 12=(ii) or I =(i]i)" 18



ﬂ Dirac Notation (2)

In normal cartesian spacethe unit vectors
x=(1 0 0),y=(0 1 0), and z=(0 0O 1)

form an orthonor mal set that spansthe space.
(1) (0) (0)

Orthonor mal because:
(1 0 0)Jo|=(0 1 0){1|=(0 O 1)|0O|=1
\0) \0) 1
and (0) (1) (0) (0)
(1 0 0)J1|=(0 1 0)|0|=(1 0 0)|0o|=(0 1 0)|0|=0
\0) \0) L L

or (X|%)=(¥9)=(z[2)=1 and (X|¥)=(y|%)=(x|2)=(¥|2)=0
Spans the space because an arbitrary vector|u) can be written:
lu)=a|X)+b|y)+c|2) and in normalized form |d) as:
.. _a|X)+b|¥)+c|2)
|u>_ 2 2 2
\/a +b°+cC 19




Quantum Mechanics for Mathematicans

Thewavefunctions (previously denoted|w)) and quantum
bitsor qubitsthat arise from quantum mechanicslivein a
Hilbert space H (which may befinite and in the specific
case of a single qubit: 2-dimensional). A Hilbert spaceH
ISavector space over the complex numbers with a
complex valued inner product. A complex valued inner

product isamap: (—,=): H x Hfi fromH x H into
the complex numbers such that:
Mathematics Quantum M echanics

(u,u)=0iffu=0 1) (u|u)=0iffu=0

) (uv)=(v.u)’ 2) {u[v)=(v|u)"

) (uv+w)=(uv)+(uw) 3) (u[v+w) = (ulv)+{ulw)
(u,Av) =A(u,v) 4) (u|Av) = /]< V)

4) (Auv)=2%(u) 4) Quvp =2y

* —denotes complex conjugation



ﬂ Quantum Mechanics for Mathematicans

Thewavefunctions (previously denoted|Ww)) and quantum
bitsor qubitsthat arise from quantum mechanicslivein a
Hilbert space H (which may befinite and in the specific
case of a single qubit: 2-dimensional). A Hilbert spaceH is
a vector space over thecomplex numbers with a
complex valued inner product. A complex valued inner
product isamap: (=, =): H x Hfi from H x H into
the complex numbers such that:

1) (u,u)=0iffu=0

2=y e
3 (0 w)=(03)+(0)

) (

u,Av) =A(u,v)
4) (Au,v) =A"(u,v)

21



ﬂ Math. Def™ for Dirac Notation

The eementsor state vectorsof the Hilbert Space H are called
ket vectorsand are denoted as|label,). The elementsof the
dual space H* are called bra vectors and are denoted (labd,|.
Moreformally, the linear functional (label,| isalinear
oper ation which associates a complex number with every ket
|label,). Thisset of linear functionals defined on the kets
|label,) constitutes a vector space called the dual space of H
and isdenoted H".

The complex inner product, denoted by a bra-c-ket is

(label, [label,) = (| labdl, ) ,|label ,))

Thereisaisomorphic mapping on H (assuming it isfini%e
dimensional) that mapsit into H* defined by |1abel) - (|label),~)
and denoted by the bra (label | .

All linear properties shown on the previous slide apply! -



Qubits, Basis Sets, and Superposition

In most of the following we will concer n our selves with
guantum bitsor “qubits’ that like classical bits have only
two elementary orthonormal basis states. Thus even though

guantum systems may have many states we will focus on
thetwo lowest states. These states we we will denote
hereafter asthe abstract basis vectors|0) and |1), where

(0]0)=(1]|1)=1 and (0]1)=(1]0)=0

Although the original Hilbert Space H may have been d-
dimensional, only the 2-dimensional H spanned by {\0> 1>}
arerelevant for quantum information. An arbitrary state
‘LIJ> can thus be represented as a superposition of| 0) and|1)

‘LP>:0"O>+,3‘1> {O',ﬁ}EID where aa+ B°4=1
snce (W|W)=1=(a"(0]+ B°(1])(a|0) + B|1))

Consequently, theresulting single qubit H isequivalent to
the vector space <2. 23




ﬂ Bloch Sphere: A Pictorial Qubit

Thestate| W) = a|0) + B|1), which 0
ISan arbitrary superposition of the ‘ >
qubit basis sets|0) and |1), can be - |w)

represented using the Bloch sphere.
Assuming ‘LIJ> is normalized, then

it is obviousthat i —3 4
(W|o|w)=(®[0]e) \
for an arbitrary operator O, if ‘ > ”
From E. Kni

D) =e¥|W) - i.e.‘LIJ>and\CD>

represent the same state since they differ at most by a constant.
Thus L|J> =a O>+[5” 1> al0d and B'00 wheea’+ "B =1
L|J>=a O>+ei’9b‘1> {a,b} 00 where a*+b*=1
which leadsto: ‘LIJ> = COSE‘O> +g'? Singm

24



ﬂ Physical Representation of a Qubit

A one-electron atom:

—
- ‘\

g N
\ o \ lower energy state: ‘O>
\\ - .
gkt )
/ higher energy state:
LI g gy
\\\ 7

~-_—’

An atom can be ‘O> or it can be ‘1> but It can also be

l.e. -- gquantum superpositions are possible

W) =al0)+B|1)

9)

1

2

25



ﬂ Matrix Representations of Qubits
1 0
o

w)=alo+gly=a | +4( 5 =[5

The“bra” (label | appropriatetothe“ket” |label) isgiven
by the complex conjugate —transpose. Thus,

(0]=(1 0) and (1]=(0 1)
<LIJ\=(a* ,3*)
Asaresult it istrivial to show:
(0|0)=(1|1) =1 and (1/0)=0;

(v|w)=a'a+ g p=laf +|4f

26



ﬂ Projection Operators

i ect] a 1 1 0
A projection operator for | P, =|0)(0| = ( ) (1 O):( )
the subspace spanned by 0 0

theket |label) Isgiven by: | - 0 00
o S a] | B=l=(;)oe 9<(g )

A 0 0
Pw:‘L|J><L|J‘: (Zjlj a- 'BD):[aaD a’ﬁﬂj

|
Thus: Py q’>:[(1) gj Zj:(gj:a‘@
2,|) = |0)(0) =[0)(0 a]0) + A1} = a0




ﬂ Quantum Measurement

Quantum measurement isjust a projection onto the
measurement basis. Thusif we measure the state|W) in
the basis{|0),|1)} , then the probability of getting|0) is:

(W]Po| W) =(W[0)(0]) =|a

Assuming | obtained the measurement|0), then the new
state of the system is:

AY) o) _

JW[B|w)  J(w[o)(o]w)

Basically theterm in the denominator, renor malizesthe
state. Repeating the measurement on this system will
return the sameresult!

28



ﬂ Quantum Observables for Experts

* Quantum observables arerepresented by linear Hermitian
operators—i.e. A= A" = AT = ATC
* Theeagenvalues g of an observable A arereal
LIJaj>=ajTLIJaj> oo Ala)=a|a)

* For Hermitian operatorsone can write:

A n-1 n-1
A= Zaj ‘aj><aj ‘ = Zaj P
 Moreover the proj ectron operators are mutually orthogonal
and complete Z 3 —[ =

e And finally an arbitrary state\ LP> In H can be decomposed

as n-1 n-1
W=5e v=Sa)ay)
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ﬂ Quantum Particle Interference

Phosphor escent

L (X) # 1, (X)+1,(x)

Electron Gun

31



Quantum and the Atom

* The Atom

— Discrete Energy
Levels

— Alternative
Representation

— Transition
— Spectrum

n=1 ®

>
I
N
T
>
© N 5
T
N
w

e Photonsas particles

n=0
- atomsasparticieswaves [N

 Wave-Particle Duality (deBroglie waves)
« Wave both hereand there

32



ﬂ Superposition and Measurement

e Quantum Superposition

w)=(alo)+pl) B =
~ Probability of beingin “|0Y’ n=2 n1=2
n=
(o]w)" =(w|0)(0]¥)=aa’ (=
AW

— Examplea 1v2 Pulse
1
W)=—([{0)+|1
W)=—7(9)+1)

e Quantum M easur ement -
The act of observing or projecting

n=0
a system into one of itsnatural -_
states. Thusthesystem endsup
in anew state |L|Jn>
Measurement in |0): ‘<O‘LIJ>‘2 = <L|J‘O><O‘LIJ> with probability: |c)'|2 2



ﬂ From 1-Qubit to 2-Qubits

Single Qubit:

2-Qubit State:

|LIJ1>=(0'1|O>+,81|1>)

W)
¥,)0|W,) =(a,|0)+ 4[1)) O(a|0)+ 5,|)) \/
basis set for particle 1 ~ basis set for particle 2 ‘L|J2>

= alaZ

=aa,

00) +a, 3,

01)+ B.a,|10) + B,3,|11)

/ denotes a 2-qubit basis state—i.e. |00)
0)

2+alIB2

1>2 +,810'2‘2>2 +'81'82‘3>2

product states span a 2-dimensional Hilbert space

2-Qubit product states have the property that the product
of the coefficients of the|00) and |11) term equalsthe
product of the |01) and |10) term!

Arethereadifferent class of 2-qubit states? 34



Quantum Entanglement

2-Qubit Entangled State (unfactorizable):
1 1
) =—7(10),10), *[8),1),) =75 (|00 +}12)

not a product state; can span a 4-dimensional Hilbert space
Entanglement createsa “ shared fate” ** Schrodinger’s Cat **

Another example of an unfactorizable 2-qubit state:
W) =a|00)+ B|01) + y|10) + 3|11) and ad # By
Note -- however if ad=-p0y, then:
|®)_ =a|00)+ B|01)+y|10)-J|11) isfactorizable!!

Entanglement is a unigue guantum resour ce:
* ... fundamental resour ce of nature, of comparable importanceto
energy, information, entropy, or any other fundamental resour ce.”
Nielsen & Chuang, Quantum Computation and Quantum | nformation

35



Tensor Products

Let/; and/, be two separate (possibly identical) quantum
systems that have been independently prepared in states
described by|W,) and |W,). Assuming these two quantum
systems/; and/, have not interacted since their
preparation, then the combined wavefunction for the
guantum system/ can berepresented as a tensor product
—i.e. W) =|W,)O|W,)

w)O|w,)0H, OH,

Moreformally, given n-quantum systems,/,,/,, ...,/
characterized by the Hilbert spaces, H,, H,, ..., H,,
respectively, then the multipartite quantum system/ has a
Hilbert spaceH given by: H =0, H,

NOTE!! — However, the general state | W) of /cannot be

represented astensor product of individual component
wavefunctions |W,) —i.e. generally [¥) 0], |¥, )

|



ﬂ Matrix Representations of Tensors
0L
O
0) (1

2-Qubit Basis States:

ot}
w3l

(1)
0
0

Y

(0)

0

1, =[oy =

3= =

0
1

Pl

A more general 2-Qubit Basis Product State:

W) =|w,)0|0)={al0)+ A1)} O|0) =(Z]D@ =

(0)
1
0

0,

37



ﬂ Interesting n-particle Tensor States

The equal superposition of all possible (2") n-qubit statesis
a tensor product — Proof:

), =[S (0+m)}

/ n
i) {‘oo...oo>+‘oo...o1>+‘oo...1o>+... +‘11...11>}

V2
o —1>n}

(1
\Zmzj{@n +1) +|2) 4ot

Note —in general an n-qubit state isdefined by 2" complex
coefficients and therefore is defined by 4"-2 real
numberssincetheoverall phaseisarbitrary and the
total wavefunction should be normalized.

38



ﬂ References Quantum Primer

A very good overall reference is Quantum Computation and
Quantum Information by M. A. Nielsen and |. L. Chuang

For ageneral introduction to Quantum Mechanics see
Quantum Mechanics by C. Cohen-Tannoudji, B. Diu, and
F. Laloé (especially Chapters 2-4)

For a mathematical view of Quantum M echanics see Linear
Operators for Quantum Mechanicsby T. F. Jordan.

For more on Dirac Notation see The Principles of Quantum
Mechanics by P. A. M. Dirac (especially Chapter 1)

An overview written by a Mathematician — see Quantum
Computation: A Grand Mathematical Challenge. ...,
Proceedings of Sympoisum in Applied Mathematics, v58,
Chapter 1 by S. J. Lomonaco, Jr.

An introduction to manipulating qubitsthat de-emphasizes
physics: arXiv:quant-ph/0207118 by N. D. Mermin
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IV. Classical Bits vs. Quantum Bits

o Classical Bits: two-state systems
Classical bits: 0 (off) or 1(on) (switch)
e Quantum Bits are also two-state (level) systems

Note that almost all quantum systems have mor e than 2-states and
thusaqubit isreally using just 2-states of an n-state quantum system!

1)

.4—»

1)
|nternal State Motional State
But: Quantum Superpositions are possible
W=alt)+B|)
=a|0)+ B|1)
NIST

!
Lo '@ -
National Institute of Standards and Technology \ NIST Physics Laboratory
Technology Administration, U.S. Department of Commerce Ve '



ﬂ Scaling of Quantum Information

e Classically, information stored in a bit register: a 3-bit
register storesone number, fromO0—7. ol1lol

eg. |0/ojo| |ojo|1| fojtfof .. fifif1]

 Quantum mechanically, a 3-qubit register can store all of
these numbersin an arbitrary superposition:

a|000) + 3|001) + x|010) + 5|011) + £]100) + y|101) +7|110) + « |111)

e Result:

— Classical: one N-bit number
— Quantum: 2N (all possible) N-bit numbers

41



ﬂ Scaling of Quantum Information (2)

e Consequence of Quantum Scaling
— Calculate all values of f(x) at once and in parallé
— Quantum Computer will provide Massive Parallelism

e But wait ...

—When | “readout theresult” | obtain only one value of f(x)

— For the previous 3-qubit example each value of f(x)
appears with probability 1/8

 Thus must measure some global property of f(x)
— e.g. periodicity

Notel

300-qubit register has much mor e stor age capacity than
classically isin the whole universe

33-qubits has 1Gb of storage capacity

42



ﬂ Analog vs. Quantum Computing

|sa quantum computer basically an analogue
computer — (qubit coefficients are continuous)?

No!

 Why Not? — Analog Computer
— Finite Resolution = must bin values
— Scaling lost = equivalent to classical digital computer
= classical Church-Turing hypothesis

e Quantum Computer
— Add 1 qubit, double storage/memory capacity

— Scaling Is preserved = tensor product structure and
entanglement

43



ﬂ Einstein-Podolsky-Rosen Paradox

>|1 > (1) Prepare 2-qubitsin
L% an entangled state

(2) Send qubit 1 with Aliceto Paris
and qubit 2 with Bob to Tokyo

—() (2—

befor e measur ement, @ isboth|0,) and |1,) (asis@!)

But if you measure @ tobe|0,), then@ issurely |0,)

And you know it immediately, even if @ Islight years away

44



No Cloning Theorem

Assumethereexistsa unitary operator U, that copiesan

clone

arbitrary unknown quantum statesinto a standard or
“null” state. Then for two arbitrary states|W) and|®)

such that: ‘Lp>¢‘¢> a0 <L|J‘c|)>;t()
aone| ¥)|0) =[W)[ W)
Ugere|®)[0) =|®)| @)

Taking the Her mitian conjugate of the lower equation and
eguation and collecting the left and right sides one obtains:

(0[(PUgneUsane | )] 0) = (@[ (]| W) | W)
(0](®|w)[0) =(®|w)’
1=(d|¥)

Thisisa clear contradictions and thus Lj

onecan then write. U

must not exist!

clone
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Quantum Circuits

A timelinefor a single qubit

— U — A gateon asingle qubit
|)(> ® A controlled ® unitary gate
| wher e the state of the
Ty — ul—  control | ) determines
whether [ U|isapplied
$) —e A controlled-not gate where
Jﬁ the control flipsthetarget
$,) —®
@

A controlled-controlled
unitary gate whereiff the

two control qubits have a
component “|11_)" isthe

U

Note: Because of

entanglement, one
must be careful to
Inter pret the circuit
by linearly applying
the appropriate set
of gates on each of
theindividual
components of the
qgubit bases
functions|0) and |1)
that span the H
space—i.e. usethe
linear properties of
the vector space.

unitary applied to the 3"
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ﬂ Standard Single Qubit Gates
Notes

e Hadamard

e Pauli-X

e Pauli-Y

e Pauli-Z

 Phase

* T8

H

X

1 1) <Aveyimportant
& key 1-qubit gate

bit-flip gate

[o 1) * The basic 1-qubit

1 0) °Abasicgatefor a
1-qubit phaseerror

0
ei Tl 4 47



Common n-Qubit Gates

(1 0
e Controlled-NOT
$ T~ |01
 Classical Bit 00
. 0 0
o Toffoli
) 1 0 0 0)
. Swap ] 0010
- O 1 0O
@
e Fredkin or 0 0 0 1
controlled swap 1
e Measurement —{—A—= 1
0)
e Controlled-Z or ¢ - ZI—_ ¢
controlled “phase” — 7 ® 0

o O+ O

L O O O

o +r»r O O
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ﬂ Example of CNOT Gate

Let: |W) =a|00)+B|01)+y|10)+45|11)
10 0 OV a) (g l [
0 100(B|_|B o t)
000 11y o Circuit
0 01 0o \y)

= |W¥)_ =a|00)+ B|01)+5|10) + y|11)
1 1 1
It a=y=— and f=5=0;then W) =E(|oo>+|1o>)=E(|o>+|1>)m|o>
= CNOT |W) = —=(|00) +|12))

1- & 2-Qubit Gatesallow for all possible unitary operations

|n|t|al N- blt @_) ‘ fmal N-bit
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ﬂ No Cloning Theorem - Revisited
Truth Table

e Copying a Classical Bit
Sk {ct} {c,mod(c+t2)]

{c} —e—{c] {00} {00}
{t} J,) {mod (c+t,2)} E(l)cl)% = Eiﬁ
o Attempt to Copy a Quantum Bit: {11} {10}
SO At Let: [¢)=—(0)+[1)
?,) an " mod (@, +¢2,2)">? é,)=|0)
g = ((00) +[11) % (0)+[1) 0(0)+[)

entangled state :%(\OO> +|01) +|10) +\11>)
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Applications of Quantum Information

e Quantum Communication - 100% physically secure

— Quantum cryptographic key exchange — generation of a one-time
classical key for secure communication
— Quantum Teeportation —requires* entangled photons’

e Quantum Algorithmsand Computing
— Factorization of large composite numbers
— Searching large databases
— Potential solution of computationally intractable (NP) problems
— Simulation of large-scale guantum systems

e Quantum M easurement — improved accuracy
— Beatsclassical limit on Signal to Noise /N vs [O1/Sgrt(N)

— Better Atomic Clocks | mproved navigation
— Metrology for Single Photon Sources and Detectors

Note: Quantum Computing requireslarger register size and
higher fidelity gatesthen either Quantum Communication
or Quantum M easur ement.

51
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V. Quantum Communication

Quantum Key Distribution —attenuated or single
photon sources with known but arbitrary selected
polarization and an authenticated classical channel

Quantum Teeportation —i.e. “sending” of an unknown
guantum state—requires shared Bdll’s (entangled)
states and an authenticated classical channel

Dense Coding —requires shared Bell’s states

Quantum Communication:
— with attenuated sourcesis 100% physically secure and has been
demonstrated over kilometer distances
— infibersover distanceslarger than 1100 km will require
guantum repeaters
— ~10 qubit quantum processor s can serve as quantum repeaters

NIST

|
National Institute of Standards and Technology ﬁ;:‘ % NIST PhYSiCS Laboratory

Technology Administration, U.S. Department of Commerce




ﬂ Classical Communication

Evefreely copies classical
bits — encryption may
delay reading of message

53



ﬂ Quantum Communication

104, +19]),

Quantum

Repeater

Eve can only obtain key
bits by destroying them
(no-cloning theorem).
Eve presenceis detected.




Basis for BB84

Two non-orthogonal Alphabets

Horizontal/Vertical Diagonal
0
' H>| \/\1
|1H> 1)
Relation between Basis Setss. (W, |W,, ) = \g \/1_
V2 2

|f you measure either |OH>or ‘1 > In the diagonal basisyou have
a50% probability of obtaining |0, ) or |15). Similarly if you
measure\O >or ‘1 >|nthehor|zontal basis. Easily obtained
using simple trigonometry. 55



BB84 Protocol Schematic

Bob's polarization

pick a basis analyzers

and
pickOor 1  Two Basis sets (alphabets)

W

Alice s polarization
selector

pick a basisand measure
then check Alice'sbasis
by classical channel

Alice'ssingle
photon sour ce

Alice's bit value 1 0 0 0 1 1
Alice's polarization s/ | N N /7 =
Bob'spolarizationbasis x x + x + +
Bob's result 1 1 0 0 1 1
Same basis? Y N N Y NY

1 0 1

Transmitted key 56



ﬂ BB84 Protocol

0 1
+ basis(HV) $ P
x basso) | N | &

« STEP 1: Transmission - quantum channel
— Alice selectsrandom key and transmits each bit using
random basis
— Bob measures each bit in random basis
— Bob now has key, but only some areright

e STEP 2: Reconciliation - classical channel

— Bob tells Alice which bases he used (but not the data)
— Alicetells Bob which bases match (the bits measured in
the same bases should match —assuming no errors)



ﬂ BB84 Protocol (2)

e Only bitstransmitted and recelved using same
basisare used askey

e STEP 3. Detecting Eve - classical channel

— Alice & Bob compareinitial bits of key

— |f key does not match, then it has been compromised

— If error rate > 25%, must assume Eve is present

— In practice other sourcesof error must be accounted
for. Error correction and privacy amplification can be
applied for error rates< 25%.
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ﬂ Bell States and Teleportation

« Making Bell States

1 18

X) - H

Y)

€U

o Teleportation

/

o O

=
=)

=

¥) l

H

\

O 9 O 9
2 L2 L
1+ 4

-

1 [

P

-

A% C;Dm
S~ T T
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Status of Quantum Communications

OH AUICE. YoURE Y | BUT B0B. W A e State of the Art

THE ONE FOR ME  £f | QUANTUM WORLD
] [ HOW CAN WE BE SURE: — Free Space
— 10 km both day and night: LANL
— 30 kmnight: Kurtseifer, Rarity

— Fiber over 65km
— LANL, Telcordia
— U. Geneva: Gisin
- MagiQ

— Single Photon Sour ces: Numerous
Demonstrations

— High Efficiency Single Photon Detectors

— Quantum Repeaters




NIST Testbed Structure

Alice Bob

Quantum ‘
Channel (RIS

Data |=. .~ Data
Generation | == Acquisition
Electronics | Electronics

1.25 GHz High-speed QKD



Quantum Communication Test-Bed

What is special about the NIST system?

e Dual Classical & Quantum Channelsrunning at 1.25 GHz

 Network —Internet interfaced (Also BBN)
— Security Protocols— SSL, Authentication —

e Quantum Link
— Attenuated VCSEL transmitters (initially) [P
— 850 nm free space optics
— S avalanche detectors

 Twoclassical linksnear 1550 nm
— 8B/10B encoded path for timing/framing
— Dedicated gigabit ethernet channd
— Sifting, Error correction, and Reconciliation
— Privacy amplification

Joshua Bienfang, Bob Car penter, Alex Gross, Ed Hagley,
Barry Hershman, Richang Lu, Alan Mink, Tassos Nakassis,
Xiao Tang, Jesse Wen, David Su, Charles Clark, Carl Williams
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High-Speed Free-Space QKD

e Spectral, Spatial filter to ~ 10° solar photons/sec into Rx
— (0.1 nm, 300 cm?, 220 prad)

e Gating:

1 nsec
8B/10B encoding/clock recovery

 No heralding pulse: all timebinsarefilled

« Alnsgateisequivalenttol GHz pulserate
— Gate shortenswith increased pulserate

— Limited by detector jitter and recovery time
64



ﬂ VI. Quantum Computing >

e A Uniform Superpositionsof all input statesis easy:
1 an
W) =4—(|0)+|1
), ={ 5 (0+/)}

=(i)n{‘oo...oo>+‘oo...01>+‘oo...1o>+... +‘11...11>}

J2

» Using n-additional qubits calculatethe function f on |¥),
W) o

Theresult is entanglement
\OO---OO} f(‘an>) between \Ll’>nand itsfunction

i (), =(2$J{\o>n\f(\o>n)>+\1>n\f(\1>n)>+-~+ {l2-,))

NIST

|
National Institute of Standards and Technology ﬁ;:‘ % NIST PhYSiCS Laboratory

Technology Administration, U.S. Department of Commerce
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Classical vs Quantum Computation

Classical Computation Quantum Computation

e Initialize state: “0” » Initializestate: W, =|000---0)
* Logic: * Logic: 0) - |1)
not 2: (1) 1-qubit  |1) ~0) .
0) ~ (|0)+[2))/2
00 - 0 00) — 00}
and )— 010 2-qubit  [01) ~[01) . linear +
10-0 controlled-not |10) -, |11) (‘superposition
-1 11) - [10) |
control—" *~—tar gef

o Qutput result .
e Final state measurement

. Logicerrors: M easur e qubits W, =‘|Jk---|>

i i 4
Error correction possible ¢ Coherence: T sonerence/ Tiogic 110

Q. Computation allows non-classical computation 66




ﬂ Universal Quantum Logic

All guantum computations and all unitary operators may
be efficiently constructed from 1- and 2- qubit logic gates

Single Qubit Operations/Gates
Arbitrary 1-qubit rotations. ~ |0) - a|0)+ B|1)

o=(g): 1=(5) (Z f]@@

Note: Although the standard paradigm for quantum
computationsrelieson the ability to do arbitrary 1- qubit
gates and almost any 2- qubit gates, alter natives exist




ﬂ Universal Quantum Logic -- 11

Most common 2-Qubit Gate: CNOT Gate

.y

(]00))  (]0O)) (1 0 0 0)

01) 01) 0100 ?
—

10) 11) 0 001 &

J1n)  (|10)) 0 0 1 0,

Operation Transfor mation Circuit

Thisgateissimilar to addition modular 2 of classical
gates but one should recall that this gate workson
arbitrary superpositions
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ﬂ Bell States and Teleportation

« Making Bell States

1 18

X) - H

Y)

€U

o Teleportation

/

o O

=
=)

=

) l

H

\

O 9 O 9
2 L2 L
1+ 4

-

1 [

P

-

= C;Dm
S~ T T
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ﬂ Teleportation without Measurement

|LIJ> H ®
N2 ?
|ﬂoo>{T Kz — ¥
(wo) [wy)  |w,) ws) w,)
o) =|%) 0| s) = [ a]0)0(]00) +12))+ 4|1)  [00) +[12)

\w1>=ﬁ[a\o 0(|00) +[12)) + 8]1) 0 (|20) +|01)) |

w,)=[(|00) +|o1) +[10) +[11)) T (a]0) + B]1)] 10



Quantum Error Correction

e.g. -- Redundant Encoding |0), =|000) and |1) =|111)

W) =a|000)+ B|111) W) l ®
Measure Error Syndrome |O> N %
extract error information (measur e parity) ‘0> D

preserve original quantum infor mation

vt T
00 ——a]{ A O>j%/7§ 0) A

Quantum Computing appear simpossible without Quantum Error
Correction (Shor, Steane,...) opening bid:
10 to 10 decoherence dependson errors, could improve-,




ﬂ Basis of Shor’s Algorithm

N —number to be factored
select anumber x such that ged(x,N)=1 (coprime)
find r such that x'=1 mod (N)

Example: N=15, x=13
x!mod (15 =13 x?mod (15 =4 x3mod (15) =7
x*mod (15) =1 x>mod (15) =13 x®mod (15) =4
r=4 andd x"—1=0 or forr even
(x2—1) (x?+ 1) =0mod (N) = kN
factorsare (x2 + 1) mod (N)

eg. x=4 xImod (15) =4  x2mod (15) =1

e.g. x=/ x'mod (15)=7  x?mod (15) =4
x3mod (15) =13 x*mod (15) =1

12



.

Shor’s Algorithm

o Select Nsuchthat N=p-eq
e Find x such that
 Run Shor’sAlgorithm

Hn

gcd(xX,N) =1 (coprime)

W) =]000---) —

I

W) =|000---)

« Measurefirst register and obtain an approximation tor

f(x)=a* mod(N)

« factorsare(x"2+ 1) mod (N)

Q-FFT
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Quantum Information’s Impact

Revolutionary
— Buildsthe physical foundation for infor mation theory
— Teaches usto examine theinformation content in real systems
— Help usto develop a language to move quantum mechanics
from a scientific to an engineering field

Quantum Limited M easurement will become available

20t Century we used the particle/wave aspects of
Quantum Mechanics. Televisions, CRT’s, NMR ...

21% Century we will use the coherence, entanglement,
and tensor structure of quantum systemsto build new,
asyet unimagined, types of devices

L et me speculate: Quantum engineering will come and will

allow usto extend the Moore' s Law paradigm based not on

making things smaller but making them more powerful by
using the laws of guantum mechanics.
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VIII. Conclusions ”

What is Quantum Information?

A radical departurein information technology, more
fundamentally different from current | T than the
digital computer isfrom the abacus.

A conver gence of two of the 20th Century’s great revolutions

| nformation

(i.e. books, data, pictures)
M or e abstr act
Not necessarily material

Quantum Mechanics
(i.e. atoms, photons, molecules)
“Matter”

NIST 1

National Institute of Standards and Technology T NIST PhYSiCS Laboratory

Technology Administration, U.S. Department of Commerce




Difficulty/Complexity

Quantum Information Timeline

A 1
\ Quantum
\ .
. Computation
IS
I S N
, S o \The expected
The unlikely —impossible? ~ /* T~
L7 Quantum
et Widgets
_- Quantum
__,—/' Engineered
T L Quantur;\ Photocells?
The known TS~. Sensors:
AR The as yet unimagined! !!
S Quantum N\
Quantum M easur ement Y Quantum
Communication ! Games & Toys
>
0 5 10 ~15 207? 2577

Time (years)
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ﬂ Quantum Mechanics Summary

Quantum Mechanics at itsssmplest level reducesto solving a
differential equation that deter minesthe time evolution of
guantum system. Thiseguation includesthe Hamiltonian
H which describes a systems kinetic and potential energies.
The solution of thisequation isa wavefunction¥(r,t) which
can be morebriefly written asthe “ket” |W(t)) . The
wavefunction along with H, fully describes the system.

This mathematical view of quantum mechanics has been
confirmed experimentally —an untold number of times.

Notea “ket” isnothing but avector. Thesameistrueof a
ubran <L|J(t)| .

The next few pages providesa “physics’ and “ mathematics”
view of quantum mechanics. | will not do justiceto either
group. Thekey point isthat bra’s and ket’s are vectors. 77



