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Information
(i.e. books, data, pictures)

More abstract
Not necessar ily mater ial

I.  What is Quantum Information?
A radical departure in information technology, more 

fundamentally different from current IT than the 
digital computer is from the abacus.

A convergence of two of the 20th Century’s great revolutions

Ø A quantum computer  if it existed could break all present-
day public key encryption systems

Ø Quantum encryption can defeat any computational attack

Quantum Mechanics
(i.e. atoms, photons, molecules)

“ Matter”
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Quantum Information may be Inevitable

The limits of minitur ization:
At atomic scale sizes quantum mechanics rules
– Since objects and electronic components continue to be miniatur ized, 

inevitably we will reach feature sizes that are atomic in scale
– In general, attempts to make atomic-sizecircuits behave classically will 

fail due to their  inability to dissipate heat and their  quantum character

Belief: Quantum Information and Quantum Engineer ing
will have a tremendous economic impact in the 21st Century

Ø Clear ly, at the smallest scale, we need to take full advantage 
of quantum proper ties.

Ø This emphasizes a different view of why quantum information 
is useful and also show why it may ultimately lead to quantum 
engineer ing.

Thus quantum information may be inevitable!
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II.  Introduction 6

“ Using Shor’squantum factorization 
algorithm, one can see that factoring a 
large number can be done by a QC –
quantum computer – in a very small 
fraction of the time the same number 
would take using ordinary hardware.  A 
problem that a SuperCray might labor 
over for a few million years can be done 
in seconds by my QC.  So for a practical 
matter like code breaking, the QC is 
vastly superior.”

…

“Wineland and Monroeworked out the 
single quantum gate by trapping beryllium 
ions. …”
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20th Century in Review

Note – that Einstein, one of the fathers of  quantum mechanics, died 
believing that quantum mechanics was incomplete.

• Foundations of Quantum Mechanics
– Planck:  Planck’s Constant
– Einstein: Photoelectr ic Effect, L ight Quanta,

Special Relativity, E=mc2, General Relativity
– deBroglie: Wave-Par ticle Duality
– Heisenberg: Uncertainty Pr inciple, Matr ix Mechanics
– Schrödinger : Wave Equation

At the beginning of the 20th century a ser ies of cr ises had taken 
place in physics – the old physics (now called classical physics) 
predicted numerous absurdities.  At first ad hoc fixes were 
made to the classical theory – but the theory became untenable.

In the 1920’s this cr ises gave way to a quantum mechanics – a new 
theory appropr iate at the smallest scales (atomic, nuclear).  
Quantum mechanics reduces to classical physics under  the 
appropr iate conditions while removing the absurdities.  
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20th Century in Review (2)

• Foundations of Information Theory
– Church-Tur ing:  Computability, Universality
– von Neumann: Concept of a computer
– Bardeen, Brattain, &  Shockley: Transistor
– Shannon: Information Measures
– Landauer: Physical L imitations of Information; 

explanation for  Maxwell’s Demon
– Bennett: Reversible Tur ing Machine

Modern information theory or iginates in the 1930’s with the 
concept of a Tur ing machine capable of running a program or  
algor ithm.  The Church-Tur ing hypothesis then asser ts that 
there exists an equivalent algor ithm of similar  complexity that 
can run on a Universal Tur ing Machine.

The discovery of the transistor  in 1947, followed by integrated 
electronics, leads to the computer  revolution and Moore’s law.

In the late 1940’s, Shannon defines the concept of  a unit of 
information, which is given physical limitations by Landauer. 
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History of Quantum Information

• Foundations
– Benioff: Quantum Tur ing Machine
– Feynman, Deutsch:  Concept of Quantum computation
– Landauer, Zurek:  Physics of information
– Bennett, DiVincenzo, Eker t , L loyd:  Concept of  

Quantum information science Richard
Feynman

Charles
Bennett

• From Theory to Exper iment
– Bennett, Gisin, Hughes:  Demonstration 

of quantum cryptography 
– Wineland and Kimble:  Demonstration 

of Qubits and quantum logic

Peter
Shor

– Shor:  Q. Factor ing and discrete log algor ithm
– Preskill, Shor , Gottesman, Steane: Quantum 

error  correction, Fault tolerant QC
– Lloyd:  Quantum simulators and Universal QC
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How can we use Quantum Information?

• Quantum Communication - 100% physically secure
– Quantum key distr ibution – generation of classical key mater ial
– Quantum Telepor tation
– Quantum Dense Coding

• Universal Quantum Logic: allall quantum computations – i.e. any any 
arbitraryarbitrary unitary operations– may be efficiently constructed from 1-
and 2-qubit gates

• Quantum Algor ithms
– Factor ization of large pr imes (Shor ’salgor ithm)
– Searching large databases (Grover ’s algor ithm)
– Quantum Four ier  Transforms
– Potential attack of NP problems
– Simulation of large-scale quantum systems

• Quantum Measurement – improved accuracy 
– Heisenberg limit ∝∝∝∝1/N   vs   Shot-Noise limit ∝∝∝∝1/Sqr t(N) 
– Better  Atomic Clocks

• Quantum Engineer ing – specialized quantum devices
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Scaling of Quantum Information

• Classically, information stored in a bit register : a 3-bit 
register  stores one number, from 0 – 7. 010

• Quantum mechanically, a 3-qubit register  can store all
of these numbers in an arbitrary superposition:

000 001 010 011 100 101 110 111a b c d e f g h+ + + + + + ++ + + + + + ++ + + + + + ++ + + + + + +

• Result:
– Classical: one N-bit number
– Quantum: 2N (all possible) N-bit numbers

111000 100 010e.g. …110

202122

���� à Dirac Notation for  the quantum state vector
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III.  The Quantum Primer

• Schrödinger ’s Equation and Dirac Notation
• Light as Waves and Photons
• Quantum Nature of Matter : Atoms
• Superposition
• Quantum Measurement
• Quantum Inter ference
• Entanglement

12
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Quantum Theory Summary

Quantum theory is the branch of physics that descr ibes waves 
and par ticles at the smallest scale and lowest energies.  This 
theory is based on the observation that changes in the energy 
of atoms and molecules occurs in discrete quantities known 
as quanta.  This includes the electromagnetic field which 
consists of individual quanta of var ious frequencies known as 
photons.   

The classical or  Newtonian limit (which descr ibes everyday 
phenomena) is typically recovered when a complex quantum 
system consisting of many par ts becomes massive and/or  its 
energy becomes large (many quanta). 

Non-relativistic quantum mechanics gives r ise to Schrödinger ’s 
wave equation.  The key components of this equation, which 
in turn fully describes the system, are the Hamiltonian H that 
governs the interactions of the quantum system and the 
wavefunctionΨΨΨΨ(r,t) that descr ibes the state or  wavefunction
of the system. The latter  is often denoted by the ket .( )tΨΨΨΨ



14

Schrödinger Equation

Schrödinger ’s wave equation is a first order  differential 
equation that descr ibes the time evolution of a quantum 
system under a Hamiltonian H.  The Hamiltonian H is 
the operator  equivalent of the total energy of the system 
which can be represented as the sum of the kinetic and 
potential energies of the system.

(((( )))) (((( )))) (((( )))), , ,r t r t r tρρρρ ∗∗∗∗= Ψ Ψ= Ψ Ψ= Ψ Ψ= Ψ Ψ� � �� � �� � �� � �Probability of being at 
position r at time t

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))  , , ,t t r t r t dr r t drρρρρ∗∗∗∗Ψ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =� �� �� �� �
� � � � �� � � � �� � � � �� � � � �

Total integrated probability at time t

(((( )))) (((( )))) (((( )))),
, ,

r t
i H r t r t

t

∂Ψ∂Ψ∂Ψ∂Ψ
= Ψ= Ψ= Ψ= Ψ

∂∂∂∂

����
� �� �� �� �

���� is Planck’s constant����

Note:  In general one does not put arguments inside of bras .label
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Schrödinger Equation (2)

The Hamiltonian H for  the system can typically be wr itten as

(((( )))) (((( ))))
2

2, ,
2

H r t V r t
m

= − ∇ += − ∇ += − ∇ += − ∇ +����� �� �� �� �

where m is the mass,               is the potential, and the     in the
kinetic energy term. Basically H descr ibes the quantum 
systems interactions.

(((( )))),V r t
���� 2∇∇∇∇

EE EH Ψ = ΨΨ = ΨΨ = ΨΨ = Ψ

I f the potential V is time independent with the result that H is 
time independent, one obtains the time independent 
Schrödinger  equation.  This is a second-order  par tial 
differential equation sometimes referred to as an eigenvalue 
equation:

In general one does not need to know about transistors to 
understand classical computers.  Similar ly one does not 
need to know about H to understand quantum computers.
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Example:  Schrödinger’s Equation

For a time independent problem, Schrödinger  equation’s can 
be wr itten:

nEn nH Ψ = ΨΨ = ΨΨ = ΨΨ = Ψ

(((( ))))
2 2

2 2
2

1
2 2

d
H x m x

m dx
ωωωω= − += − += − += − +����

For the special case of a 1-dimensional harmonic 
oscillator , the Hamiltonian is given by:

Harmonic Oscillator

0
1
2

����
����

(((( ))))
(((( )))) (((( ))))   where  2

1/ 2

exp / 2 /
n

n n

E n

H m x

ωωωω
ξ ξ ξ ξ ωξ ξ ξ ξ ωξ ξ ξ ξ ωξ ξ ξ ξ ω

= += += += +

Ψ = − =Ψ = − =Ψ = − =Ψ = − =

����

����

where Hn(ξξξξ) is a Hermite polynomial and ΨΨΨΨn satisfies:

(((( )))) (((( )))) (((( ))))2exp 2 !n
n k n k nkH H d nξ ξ ξ ξ π δξ ξ ξ ξ π δξ ξ ξ ξ π δξ ξ ξ ξ π δ

+∞+∞+∞+∞

−∞−∞−∞−∞
Ψ Ψ = − =Ψ Ψ = − =Ψ Ψ = − =Ψ Ψ = − =����
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Normalized Wavefunctions

Convention in quantum mechanics is to use normalized 
wavefunctions since the total integrated density of a 
quantum system should be 1 – i.e. 

(((( )))) (((( )))) 1/ 2
( ) 1t t tΨ = Ψ Ψ =Ψ = Ψ Ψ =Ψ = Ψ Ψ =Ψ = Ψ Ψ =

(((( )))) (((( ))))
/ 2

2

4

2
exp / 2

!

n

n nH
n

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ
ππππ

−−−−

Ψ = −Ψ = −Ψ = −Ψ = −

Thus in the example from the previous page, a normalized 
ΨΨΨΨn can be written as:

So that n k nkδδδδΨ Ψ =Ψ Ψ =Ψ Ψ =Ψ Ψ =

λλλλ ∈∈∈∈ ���� α λ βα λ βα λ βα λ β====

αααα ββββMoreover for  any quantum system, the state kets       and 
represent the same quantum state if they differ  only by a 
non-zero multiplicative constant 



18

Dirac Notation

The elements, wavefunctions, eigenfunctions, or  state vectors 
that are the solution of Schrödinger ’s equation form an
orthonormal set.  These state vectors are called ket vectors 
and are individually denoted as or      .  The set of all 
such vectors       span an abstract vector  space refer red to 
mathematically as the Hilber t Space ΗΗΗΗ.

A Hilber t Space ΗΗΗΗ is very much like ordinary car tesian space 
(x,y,z).  The square-of-the-length l of a vector  from the 
or igin O to an arbitrary point i given by the point (xi,yi,zi) 
is: 

iilabel

{{{{ }}}}i

(((( ))))2 2 2 2
i

i i i i i i i

i

x

l x y z x y z y

z

� �� �� �� �
� �� �� �� �= + + == + + == + + == + + = � �� �� �� �
� �� �� �� �
� �� �� �� �

In Dirac notation and quantum mechanics one would label 
the state    and the length-squared or  inner  product would 
be denoted:   or  

1/ 22l i i l i i= == == == =
i
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Dirac Notation (2)

In normal car tesian space the unit vectors

form an or thonormal set that spans the space.
Orthonormal because:

(((( )))) (((( )))) (((( ))))     ˆ ˆ ˆ1 0 0 , 0 1 0 , and 0 0 1x y z= = == = == = == = =

and

(((( )))) (((( )))) (((( ))))
1 0 0

1 0 0 0 0 1 0 1 0 0 1 0 1

0 0 1

� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �= = == = == = == = =� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �

(((( )))) (((( )))) (((( )))) (((( ))))
0 1 0 0

1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

0 0 1 1

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �= = = == = = == = = == = = =� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 and 0x x y y z z x y y x x z y z= = = = = = == = = = = = == = = = = = == = = = = = =or

Spans the space because an arbitrary vector      can be wr itten:u
ˆ ˆ ˆu a x b y c z= + += + += + += + + and in normalized form       as: û

2 2 2

ˆ ˆ ˆ
ˆ

a x b y c z
u

a b c

+ ++ ++ ++ +
====

+ ++ ++ ++ +
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Quantum Mechanics for Mathematicans

ΨΨΨΨ

(((( )))), :− −− −− −− − ΗΗΗΗ ×××× ΗΗΗΗfifififi ÷÷÷÷

Thewavefunctions (previously denoted      ) and quantum 
bits or  qubits that ar ise from quantum mechanics live in a 
Hilber t space ΗΗΗΗ (which may be finite and in the specific 
case of a single qubit: 2-dimensional).  A Hilber t space ΗΗΗΗ
is a vector  space over  the complex numbers ÷÷÷÷ with a 
complex valued inner  product.  A complex valued inner  
product is a map: from ΗΗΗΗ ×××× ΗΗΗΗ into 
the complex numbers ÷÷÷÷ such that:

)))) (((( ))))
)))) (((( )))) (((( ))))
)))) (((( )))) (((( )))) (((( ))))
)))) (((( )))) (((( ))))
)))) (((( )))) (((( ))))

  iff 

 

 

 

 

1 , 0 0

2 , ,
3 , , ,
4 , ,

4 , ,

u u u

u v v u
u v w u v u w
u v u v

u v u v

λ λλ λλ λλ λ
λ λλ λλ λλ λ

∗∗∗∗

∗∗∗∗

= == == == =
====

+ = ++ = ++ = ++ = +
====

′′′′ ====
*  – denotes complex conjugation

Mathematics

))))
))))
))))
))))
))))

  iff 

 

 

 

 

1 0 0

2
3
4

4

u u u

u v v u
u v w u v u w
u v u v

u v u v

λ λλ λλ λλ λ
λ λλ λλ λλ λ

∗∗∗∗

∗∗∗∗

= == == == =

====
+ = ++ = ++ = ++ = +

====
′′′′ ====

Quantum Mechanics
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Quantum Mechanics for Mathematicans

The wavefunctions (previously denoted      ) and quantum 
bits or  qubits that ar ise from quantum mechanics live in a 
Hilber t space ΗΗΗΗ (which may be finite and in the specific 
case of a single qubit: 2-dimensional).  A Hilber t space ΗΗΗΗ is 
a vector  space over  the complex numbers ÷÷÷÷ with a 
complex valued inner  product.  A complex valued inner  
product is a map: from ΗΗΗΗ ×××× ΗΗΗΗ into 
the complex numbers ÷÷÷÷ such that:

ΨΨΨΨ

(((( )))), :− −− −− −− − ΗΗΗΗ ×××× ΗΗΗΗfifififi ÷÷÷÷

)))) (((( ))))
)))) (((( )))) (((( ))))
)))) (((( )))) (((( )))) (((( ))))
)))) (((( )))) (((( ))))
)))) (((( )))) (((( ))))

  iff 

 

 

 

 

1 , 0 0

2 , ,
3 , , ,
4 , ,

4 , ,

u u u

u v v u
u v w u v u w
u v u v

u v u v

λ λλ λλ λλ λ
λ λλ λλ λλ λ

∗∗∗∗

∗∗∗∗

= == == == =
====

+ = ++ = ++ = ++ = +
====

′′′′ ====

* denotes complex 
conjugate
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Math. Defn for Dirac Notation

The elements or  state vectors of the Hilber t Space ΗΗΗΗ are called 
ket vectors and are denoted as            .  The elements of the 
dual space ΗΗΗΗ* are called bra vectors and are denoted .  
More formally, the linear  functional is a linear  
operation which associates a complex number with every ket  

.  This set of linear  functionals defined on the kets   
constitutes a vector  space called the dual space of ΗΗΗΗ

and is denoted ΗΗΗΗ*.

(((( ))))1 2 1 2,label label label label====
The complex inner  product, denoted by a bra-c-ket is

1label

2label

2label

1label

1label

There is a isomorphic mapping on ΗΗΗΗ (assuming it is finite 
dimensional) that maps it into ΗΗΗΗ* defined by
and denoted by the bra .label

(((( )))),label label −−−−����

All linear  proper ties shown on the previous slide apply!



23

Qubits, Basis Sets, and Superposition

In most of the following we will concern ourselves with 
quantum bits or “ qubits”  that like classical bits have only 
two elementary orthonormal basis states.  Thus even though 
quantum systems may have many states we will focus on 
the two lowest states.  These states we we will denote 
hereafter  as the abstract basis vectors      and      , where 

Consequently, the resulting single qubit H is equivalent to 
the vector  space ≤≤≤≤2.

  and0 0 1 1 1 0 1 1 0 0= = = == = = == = = == = = =
0 1

{{{{ }}}}   where, 1α β α α β βα β α α β βα β α α β βα β α α β β∗ ∗∗ ∗∗ ∗∗ ∗∈ + =∈ + =∈ + =∈ + =����0 1α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +
ΨΨΨΨ

{{{{ }}}}0 , 1

0 1

Although the or iginal Hilber t Space H may have been d-
dimensional, only the 2-dimensional H spanned by 
are relevant for  quantum information.  An arbitrary state 

can thus be represented as a superposition of     and   

since (((( )))) (((( ))))1 0 1 0 1α β α βα β α βα β α βα β α β∗ ∗∗ ∗∗ ∗∗ ∗Ψ Ψ = = + +Ψ Ψ = = + +Ψ Ψ = = + +Ψ Ψ = = + +
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Bloch Sphere: A Pictorial Qubit

0 1ia e bϑϑϑϑΨ = +Ψ = +Ψ = +Ψ = + {{{{ }}}}   2 2where, 1a b a b∈ + =∈ + =∈ + =∈ + =����

The state , which 
is an arbitrary superposition of the 
qubit basis sets and      , can be 
represented using the Bloch sphere.  
Assuming is normalized, then 
it is obvious that 

0 1α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +

0 1

ΨΨΨΨ

ˆ ˆO OΨ Ψ = Φ ΦΨ Ψ = Φ ΦΨ Ψ = Φ ΦΨ Ψ = Φ Φ
for  an arbitrary operator  Ô, if 

– i.e. and      
represent the same state since

ie χχχχΦ = ΨΦ = ΨΦ = ΨΦ = Ψ
they differ  at most by a constant.

ΦΦΦΦΨΨΨΨ

0

From E. Knill
1

ΨΨΨΨ

    2and where 1a aβ β ββ β ββ β ββ β β∗∗∗∗′ ′ ′′ ′ ′′ ′ ′′ ′ ′∈ ∈ + =∈ ∈ + =∈ ∈ + =∈ ∈ + =� �� �� �� �0 1a ββββ ′′′′Ψ = +Ψ = +Ψ = +Ψ = +Thus

cos 0 sin 1
2 2

ie ϕϕϕϕθ θθ θθ θθ θΨ = +Ψ = +Ψ = +Ψ = +which leads to:
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Physical Representation of a Qubit

A one-electron atom:

higher  energy state: 1

lower energy state: 0

An atom can be        or  it can be but it can also be 

ðððð i.e. -- quantum superpositions are possible
0 1α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +

0 1
0 1

2

++++
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Matrix Representations of Qubits

 and 

= + 1 =

1 0
0 1

0 1

1 0
0

0 1

αααα
α β α βα β α βα β α βα β α β

ββββ

� � � �� � � �� � � �� � � �
= == == == =� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� � � � � �� � � � � �� � � � � �� � � � � �
Ψ + =Ψ + =Ψ + =Ψ + =� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

 and  ;

2 2* *

0 0 1 1 1 1 0 0

α α β β α βα α β β α βα α β β α βα α β β α β

= = == = == = == = =

Ψ Ψ = + = +Ψ Ψ = + = +Ψ Ψ = + = +Ψ Ψ = + = +

(((( )))) (((( ))))
(((( ))))
 and 

* *

0 1 0 1 0 1

α βα βα βα β

= == == == =

Ψ =Ψ =Ψ =Ψ =

The “ bra”  appropr iate to the “ ket”  is given 
by the complex conjugate – transpose.  Thus,

label label

As a result it is tr ivial to show:
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Projection Operators

(((( )))) 2
0

1 0ˆ 0 0
0 0

P
αααα

α β α α αα β α α αα β α α αα β α α α
ββββ

∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗� �� �� �� �� �� �� �� �
Ψ Ψ = Ψ Ψ = = =Ψ Ψ = Ψ Ψ = = =Ψ Ψ = Ψ Ψ = = =Ψ Ψ = Ψ Ψ = = =� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

(((( ))))

(((( ))))

=

=

0

1

1 1 0ˆ 0 0 1 0
0 0 0

0 0 0ˆ 1 1 0 1
1 0 1

P

P

� � � �� � � �� � � �� � � �
= = ⊗= = ⊗= = ⊗= = ⊗� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �
= = ⊗= = ⊗= = ⊗= = ⊗� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �

A projection operator  for  
the subspace spanned by 
the ket is given by:label

labelP label label====

{{{{ }}}}
0

0

1 0ˆ 0
0 0 0

ˆ 0 0 0 0 0 1 0

P

P

α αα αα αα α
αααα

ββββ

α β αα β αα β αα β α

� �� � � �� �� � � �� �� � � �� �� � � �
Ψ = = =Ψ = = =Ψ = = =Ψ = = =� �� � � �� �� � � �� �� � � �� �� � � �

� �� � � �� �� � � �� �� � � �� �� � � �

Ψ = Ψ = + =Ψ = Ψ = + =Ψ = Ψ = + =Ψ = Ψ = + =

Thus:

(((( ))))P = = =ˆ α αα αβα αα αβα αα αβα αα αβ
α βα βα βα β

ββββ βα βββα βββα βββα ββ

∗ ∗∗ ∗∗ ∗∗ ∗
∗ ∗∗ ∗∗ ∗∗ ∗

ΨΨΨΨ ∗ ∗∗ ∗∗ ∗∗ ∗

� �� �� �� �� �� �� �� �
Ψ Ψ ⊗Ψ Ψ ⊗Ψ Ψ ⊗Ψ Ψ ⊗ � �� �� �� �� �� �� �� � � �� �� �� �� �� �� �� � � �� �� �� �
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Quantum Measurement

Quantum measurement is just a projection onto the 
measurement basis.  Thus if we measure the state        in 
the basis , then the probability of getting      is:0{{{{ }}}}0 , 1

ΨΨΨΨ

2
0

ˆ 0 0P ααααΨ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =Ψ Ψ = Ψ Ψ =

Assuming I  obtained the measurement     , then the new 
state of the system is:

0

0

0

ˆ 0 0
0

ˆ 0 0

P

P

Ψ ΨΨ ΨΨ ΨΨ Ψ
= == == == =

Ψ ΨΨ ΨΨ ΨΨ ΨΨ ΨΨ ΨΨ ΨΨ Ψ

Basically the term in the denominator , renormalizes the 
state.  Repeating the measurement on this system will 
return the same result!
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Quantum Observables for Experts

• Quantum observables are represented by linear  Hermitian
operators – i.e.

• The eigenvalues aj of an observable A are real

• For Hermitian operators one can wr ite:

• Moreover the projection operators are mutually or thogonal 
and complete

• And finally an arbitrary state in ΗΗΗΗ can be decomposed 
as

ˆ
j ja j aA aΨ = ΨΨ = ΨΨ = ΨΨ = Ψ

†ˆ ˆ ˆ ˆH TA A A A ∗∗∗∗= = == = == = == = =

ΨΨΨΨ

ˆ
j j jA a a a====or

1 1

0 0

ˆ
j

n n

j j j j a
j j

A a a a a P
− −− −− −− −

= == == == =

= == == == =� �� �� �� �

1

0

ˆ 1
j

n

a
j

P I
−−−−

====

= == == == =����

1 1

0 0
j

n n

a j j
j j

P a a
− −− −− −− −

= == == == =

Ψ = Ψ = ΨΨ = Ψ = ΨΨ = Ψ = ΨΨ = Ψ = Ψ� �� �� �� �
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Quantum Interference

• Waves coming through two slits inter fere

0

0
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Quantum Particle Interference

0

0

0

0

0

0

0

0

Double Slit

Electron Gun

Phosphorescent
Screen(((( )))) (((( ))))1 2( )I x I x I x≠ +≠ +≠ +≠ +

(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))where  

2 2

1 2

1 2

( )I x E x E x E x

E x E x E x

∝ = +∝ = +∝ = +∝ = +

= += += += +

1

2
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n=0

n=1

n=2

n=3
n=4

…

– Alternative 
Representation

– Transition

Quantum and the Atom

-1-1-1-1-1-1-1-1-1-1

n=0
n=1

n=2
n=3

n=4

– Discrete Energy 
Levels

– Spectrum

• Waves – superposition

• Photons as wave• Photons as par ticles

• Atoms as par ticles/waves

• Wave-Par ticle Duality (deBrogliewaves)

• Wave – here        wave – there• Wave both here and there
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n=0

n=1

n=2

n=3
n=4

…

Superposition and Measurement

n=0
n=1

n=2
n=3

n=4

• Quantum Superposition

(((( ))))0 1α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +

0– Probability of being in “     ”
2 *0 0 0 ααααααααΨ = Ψ Ψ =Ψ = Ψ Ψ =Ψ = Ψ Ψ =Ψ = Ψ Ψ =

(((( ))))1
0 1

2
Ψ = +Ψ = +Ψ = +Ψ = +

– Example a ππππ/2 Pulse

• Quantum Measurement

nΨΨΨΨ

The act of observing or  projecting 
a system into one of its natural 
states.  Thus the system ends up 
in a new state

2
0 0 0Ψ = Ψ ΨΨ = Ψ ΨΨ = Ψ ΨΨ = Ψ ΨMeasurement in       :0 with probability:

2αααα
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Single Qubit: (((( ))))1 1 10 1α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +

2-Qubit State:
(((( )))) (((( ))))

           =

           =

1 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 22 2 2 2

0 1 0 1

00 01 10 11

0 1 2 3

α β α βα β α βα β α βα β α β

α α α β β α β βα α α β β α β βα α α β β α β βα α α β β α β β

α α α β β α β βα α α β β α β βα α α β β α β βα α α β β α β β

Ψ ⊗ Ψ = + ⊗ +Ψ ⊗ Ψ = + ⊗ +Ψ ⊗ Ψ = + ⊗ +Ψ ⊗ Ψ = + ⊗ +

+ + ++ + ++ + ++ + +

+ + ++ + ++ + ++ + +

From 1-Qubit to 2-Qubits

ðððð product states span a 2-dimensional Hilber t space

1ΨΨΨΨ

2ΨΨΨΨ

2-Qubit product states have the proper ty that the product 
of the coefficients of the term equals the 
product of the term! 

 and 00 11
 and 01 10

Are there a different class of 2-qubit states?

basis set for  par ticle 1 basis set for  par ticle 2

denotes a 2-qubit basis state – i.e. 00
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Entanglement is a unique quantum resource:
“ … fundamental resource of nature, of comparable importance to 
energy, information, entropy, or  any other fundamental resource.”
Nielsen &  Chuang, Quantum Computation and Quantum Information

(((( )))) (((( ))))1 2 1 2

1 1
0 0 1 1 00 11

2 2
Ψ = + = +Ψ = + = +Ψ = + = +Ψ = + = +

2-Qubit Entangled State (unfactor izable):

ð not a product state;  can span a 4-dimensional Hilber t space
ð Entanglement creates a “ shared fate”   **  Schrodinger ’sCat **

Quantum Entanglement

Another  example of an unfactor izable 2-qubit state:
 and 

2
00 01 10 11α β γ δ αδ βγα β γ δ αδ βγα β γ δ αδ βγα β γ δ αδ βγΨ = + + + ≠Ψ = + + + ≠Ψ = + + + ≠Ψ = + + + ≠

Note -- however if , then:  

2
00 01 10 11α β γ δα β γ δα β γ δα β γ δΦ = + + −Φ = + + −Φ = + + −Φ = + + −

αδ βγαδ βγαδ βγαδ βγ= −= −= −= −

is factor izable!!
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Tensor Products

Let ⁄⁄⁄⁄1 and ⁄⁄⁄⁄2 be two separate (possibly identical) quantum 
systems that have been independently prepared in states 
descr ibed by         and .  Assuming these two quantum 
systems ⁄⁄⁄⁄1 and ⁄⁄⁄⁄2 have not interacted since their  
preparation, then the combined wavefunction for  the 
quantum system ⁄⁄⁄⁄ can be represented as a tensor product 
– i.e. 1 2

1 2 1 2

total

H H

Ψ = Ψ ⊗ ΨΨ = Ψ ⊗ ΨΨ = Ψ ⊗ ΨΨ = Ψ ⊗ Ψ

Ψ ⊗ Ψ ∈ ⊗Ψ ⊗ Ψ ∈ ⊗Ψ ⊗ Ψ ∈ ⊗Ψ ⊗ Ψ ∈ ⊗

1ΨΨΨΨ 2ΨΨΨΨ

More formally, given n-quantum systems, ⁄⁄⁄⁄1, ⁄⁄⁄⁄2, …, ⁄⁄⁄⁄n, 
character ized by the Hilber t spaces, ΗΗΗΗ1, ΗΗΗΗ2, …, ΗΗΗΗn, 
respectively, then the multipar tite quantum system ⁄⁄⁄⁄ has a 
Hilber t space ΗΗΗΗ given by:

NOTE!! – However, the general state        of ⁄⁄⁄⁄ cannot  be 
represented as tensor product of individual component 
wavefunctions – i.e. generally 

1
n
j jH H===== ⊗= ⊗= ⊗= ⊗

ΨΨΨΨ

1
n
j j====Ψ ≠ ⊗ ΨΨ ≠ ⊗ ΨΨ ≠ ⊗ ΨΨ ≠ ⊗ Ψ

jΨΨΨΨ
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Matrix Representations of Tensors

2-Qubit Basis States:

 ;   

 ;   

2 2

2 2

1 0

1 1 0 1 0 1
0 00 1 01

0 0 0 0 1 0

0 0

0 0

0 1 0 0 0 0
2 10 3 11

1 0 1 1 1 0

0 1

� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �� � � �� � � �� � � �= = ⊗ = = = ⊗ == = ⊗ = = = ⊗ == = ⊗ = = = ⊗ == = ⊗ = = = ⊗ =� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �� � � �� � � �� � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �� � � �� � � �� � � �= = ⊗ = = = ⊗ == = ⊗ = = = ⊗ == = ⊗ = = = ⊗ == = ⊗ = = = ⊗ =� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �� � � �� � � �� � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

{{{{ }}}}12

1 0
0 0 1 0

0

0

αααα
αααα

α βα βα βα β
β ββ ββ ββ β

� �� �� �� �
� �� �� �� �

� � � �� � � �� � � �� � � � � �� �� �� �Ψ = Ψ ⊗ = + ⊗ = ⊗ =Ψ = Ψ ⊗ = + ⊗ = ⊗ =Ψ = Ψ ⊗ = + ⊗ = ⊗ =Ψ = Ψ ⊗ = + ⊗ = ⊗ =� � � �� � � �� � � �� � � � � �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �
� �� �� �� �

A more general 2-Qubit Basis Product State:
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Interesting n-particle Tensor States

The equal superposition of all possible (2n) n-qubit states is 
a tensor product – Proof:

(((( ))))

{{{{ }}}}

{{{{ }}}}/ 2

1
0 1

2

1
00 00 00 01 00 10 11 11

2

1
0 1 2 2 1

2

n

n

n

n
n n n n n

⊗⊗⊗⊗
	 
	 
	 
	 
Ψ = +Ψ = +Ψ = +Ψ = +� �� �� �� �

 �
 �
 �
 �

� �� �� �� �= + + + += + + + += + + + += + + + +� �� �� �� �
� �� �� �� �

� �� �� �� �= + + + + −= + + + + −= + + + + −= + + + + −� �� �� �� �
� �� �� �� �

� � � � �� � � � �� � � � �� � � � �

����

Note – in general an n-qubit state is defined by 2n complex 
coefficients and therefore is defined by 4n-2 real 
numbers since the overall phase is arbitrary and the 
total wavefunction should be normalized.
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References Quantum Primer

A very good overall reference is Quantum Computation and 
Quantum Information by M. A. Nielsen and I . L. Chuang

For a general introduction to Quantum Mechanics see 
Quantum Mechanics by C. Cohen-Tannoudji, B. Diu, and 
F. Laloë (especially Chapters 2-4)

For a mathematical view of Quantum Mechanics see Linear 
Operators for Quantum Mechanics by T. F. Jordan.

For more on Dirac Notation see The Principles of Quantum 
Mechanics by P. A. M. Dirac (especially Chapter  1)

An overview written by a Mathematician – see Quantum 
Computation: A Grand Mathematical Challenge …, 
Proceedings of Sympoisum in Applied Mathematics, v58, 
Chapter 1 by S. J. Lomonaco, Jr.

An introduction to manipulating qubits that de-emphasizes 
physics: arXiv:quant-ph/0207118 by N. D. Mermin
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• Classical Bits: two-state systems
Classical bits: 0 (off) or  1 (on) (switch)

IV.  Classical Bits vs. Quantum Bits

• Quantum Bits are also two-state (level) systems
Note that almost all quantum systems have more than 2-states and 
thus a qubit is really using just 2-states of an n-state quantum system!

Internal State

Atom

↑↑↑↑

↓↓↓↓

Motional State

0

1

ðððð But: Quantum Superpositions are possible

   0 1

α βα βα βα β

α βα βα βα β

ΨΨΨΨ ↑↑↑↑

====

↓↓↓↓= += += += +

++++

40
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Scaling of Quantum Information

• Classically, information stored in a bit register : a 3-bit 
register  stores one number, from 0 – 7. 010

• Quantum mechanically, a 3-qubit register  can store all of 
these numbers in an arbitrary superposition:

000 001 010 011 100 101 110 111α β χ δ ε γ η κα β χ δ ε γ η κα β χ δ ε γ η κα β χ δ ε γ η κ+ + + + + + ++ + + + + + ++ + + + + + ++ + + + + + +

• Result:
– Classical: one N-bit number
– Quantum: 2N (all possible) N-bit numbers

111000 100 010e.g. …
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Scaling of Quantum Information (2)

• Consequence of Quantum Scaling
– Calculate all values of f(x) at once and in parallel
– Quantum Computer  will provide Massive Parallelism

• But wait …
– When I  “ readout the result” I  obtain only one value of f(x)
– For the previous 3-qubit example each value of f(x) 

appears with probability 1/8

Note!
300-qubit register  has much more storage capacity than 

classically is in the whole universe
33-qubits has 1Gb of storage capacity

• Thus must measure some global property of f(x)
– e.g. per iodicity
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Analog vs. Quantum Computing

• Why Not? – Analog Computer
– Finite Resolution  ���� must bin values
– Scaling lost  ���� equivalent to classical digital computer

���� classical Church-Tur ing hypothesis

Is a quantum computer  basically an analogue 
computer  – (qubit coefficients are continuous)?

No!

• Quantum Computer
– Add 1 qubit, double storage/memory capacity
– Scaling is preserved ���� tensor  product structure and 

entanglement
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Einstein-Podolsky-Rosen Paradox

before measurement, is both and (as is    !)1 210 11

But if you measure to be        , then        is surely

And you know it immediately, even if         is light years away

2 201

2

10

1 2

(1) Prepare 2-qubits in
an entangled state21 1200 1 1++++

(2) Send qubit 1 with Alice to Par is
and qubit 2 with Bob to Tokyo

21
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No Cloning Theorem

Assume there exists a unitary operator that copies an 
arbitrary unknown quantum states into a standard or  
“ null”  state.  Then for  two arbitrary states and  
such that:

ˆ
cloneU

ΦΦΦΦΨΨΨΨ
 and 0Ψ ≠ Φ Ψ Φ ≠Ψ ≠ Φ Ψ Φ ≠Ψ ≠ Φ Ψ Φ ≠Ψ ≠ Φ Ψ Φ ≠

ˆ 0
ˆ 0

clone

clone

U

U

Ψ = Ψ ΨΨ = Ψ ΨΨ = Ψ ΨΨ = Ψ Ψ
Φ = Φ ΦΦ = Φ ΦΦ = Φ ΦΦ = Φ Φ

one can then wr ite:

Taking the Hermitian conjugate of the lower equation and 
equation and collecting the left and r ight sides one obtains:

†

2

ˆ ˆ0 0

0 0
1

clone cloneU UΦ Ψ = Φ Φ Ψ ΨΦ Ψ = Φ Φ Ψ ΨΦ Ψ = Φ Φ Ψ ΨΦ Ψ = Φ Φ Ψ Ψ

Φ Ψ = Φ ΨΦ Ψ = Φ ΨΦ Ψ = Φ ΨΦ Ψ = Φ Ψ
= Φ Ψ= Φ Ψ= Φ Ψ= Φ Ψ

This is a clear  contradictions and thus must not exist! ˆ
cloneU
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Quantum Circuits

U

1ϕϕϕϕ

2ϕϕϕϕ

U

χχχχ

ττττ

U

A timeline for  a single qubit

A gate on a single qubit

A controlled     unitary gate 
where the state of the 
control        determines 
whether       is applied

A controlled-not gate where 
the control flips the target

A controlled-controlled 
unitary gate where iff the 
two control qubits have a 
component “         ”  is the 
unitary applied to the 3rd

U
χχχχ

11_

Note:  Because of 
entanglement, one 
must be careful to 
interpret the circuit 
by linear ly applying 
the appropr iate set 
of gates on each of 
the individual 
components of the 
qubit bases 
functions      and 
that span the ΗΗΗΗ
space – i.e. use the 
linear properties of 
the vector  space.

0 1
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Standard Single Qubit Gates

• Hadamard

• Pauli-X

• Pauli-Y

• Pauli-Z

• Phase

• ππππ/8

H

X

Y

Z

S

T

 
1 11
1 12

� �� �� �� �
� �� �� �� �−−−−� �� �� �� �

 
0 1

1 0
� �� �� �� �
� �� �� �� �
� �� �� �� �

 
0

0

i

i

−−−−� �� �� �� �
� �� �� �� �
� �� �� �� �

 
1 0

0 1
� �� �� �� �
� �� �� �� �−−−−� �� �� �� �

 
1 0

0 i

� �� �� �� �
� �� �� �� �
� �� �� �� �

 
/ 4

1 0

0 ie ππππ
� �� �� �� �
� �� �� �� �
� �� �� �� �

Notes
• A very important  

&  key 1-qubit gate

• The basic 1-qubit 
bit-flip gate

• A basic gate for  a  
1-qubit phase er ror
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Common n-Qubit Gates

• Controlled-NOT

• Classical Bit

• Toffoli

• Swap

• Fredkin or  
controlled swap

• Measurement

• Controlled-Z or  
controlled “ phase”

····
····

····
····

Z

Z
or

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �
� �� �� �� �−−−−� �� �� �� �
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Example of CNOT Gate

1- &  2-Qubit Gates allow for  all possible unitary operations

bit-NinitialΨ
bit-NfinalΨQ

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

α αα αα αα α
β ββ ββ ββ β
γ δγ δγ δγ δ
δ γδ γδ γδ γ

� �� � � �� �� � � �� �� � � �� �� � � �
� �� � � �� �� � � �� �� � � �� �� � � �
� �� � � �� �� � � �� �� � � �� �� � � �====
� �� � � �� �� � � �� �� � � �� �� � � �
� �� � � �� �� � � �� �� � � �� �� � � �
� �� � � �� �� � � �� �� � � �� �� � � �

  
12

00 01 10 11α β δ γα β δ γα β δ γα β δ γ���� Ψ = + + +Ψ = + + +Ψ = + + +Ψ = + + +

  
12

00 01Let : 10 11α β γ δα β γ δα β γ δα β γ δΨ = + + +Ψ = + + +Ψ = + + +Ψ = + + +

(((( )))) (((( ))))      
12

1 1 1
If and 0; then 00 10 0 1 0

2 2 2
α γ β δα γ β δα γ β δα γ β δ= = = = Ψ = + = + ⊗= = = = Ψ = + = + ⊗= = = = Ψ = + = + ⊗= = = = Ψ = + = + ⊗

(((( ))))    
12

1
CNOT 00 11

2
���� Ψ = +Ψ = +Ψ = +Ψ = +

Circuit

c

t
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No Cloning Theorem – Revisited

(((( )))) (((( ))))

(((( ))))1
=

2

1 1
0 1 0 1

2 2

00 01 10 11

≠ + ⊗ +≠ + ⊗ +≠ + ⊗ +≠ + ⊗ +

+ + ++ + ++ + ++ + +

{{{{ }}}}c

(((( )))){{{{ }}}},2mod c t++++

{{{{ }}}}c

{{{{ }}}}t

• Copying a Classical Bit
{{{{ }}}},c t

{{{{ }}}}
{{{{ }}}}
{{{{ }}}}
{{{{ }}}}

{{{{ }}}}
{{{{ }}}}
{{{{ }}}}
{{{{ }}}}

          

00 0

01 01

1

1 0

0

1

0 11

1

����

(((( )))){{{{ }}}},c mod c+ t,2

Truth Table

• Attempt to Copy a Quantum Bit:

1ϕϕϕϕ

(((( ))))1 2" ",2 ?mod ϕ ϕϕ ϕϕ ϕϕ ϕ++++
2ϕϕϕϕ

1" " ?ϕϕϕϕ (((( ))))1

2

1
0 1

2
0

ϕϕϕϕ

ϕϕϕϕ

= += += += +

====

Let:

(((( ))))1 2

1
00 11

2
ϕ ϕϕ ϕϕ ϕϕ ϕ = += += += +

entangled state

Then:
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Applications of Quantum Information

• Quantum Communication - 100% physically secure
– Quantum cryptographic key exchange – generation of a one-time 

classical key for  secure communication
– Quantum Telepor tation – requires “ entangled photons”

• Quantum Algor ithms and Computing
– Factor ization of large composite numbers
– Searching large databases
– Potential solution of computationally intractable (NP) problems
– Simulation of large-scale quantum systems

• Quantum Measurement – improved accuracy 
– Beats classical limit on Signal to Noise ∝∝∝∝1/N   vs   ∝∝∝∝1/Sqr t(N) 
– Better  Atomic Clocks ðððð Improved navigation
– Metrology for  Single Photon Sources and Detectors

Note:  Quantum Computing requires larger  register  size and 
higher fidelity gates then either  Quantum Communication 
or  Quantum Measurement.
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V.  Quantum Communication

• Quantum Key Distr ibution – attenuated or single 
photon sources with known but arbitrary selected 
polar ization and an authenticated classical channel

• Quantum Telepor tation – i.e. “ sending”  of an unknown 
quantum state– requiresrequires shared Bell’s (entangled) 
states and an authenticated classical channel

• Dense Coding – requiresrequires shared Bell’s states

• Quantum Communication: 
– with attenuated sources is 100% physically secure and has been 

demonstrated over kilometer  distances
– in fibers over distances larger  than ∼∼∼∼100 km will require 

quantum repeaters
– ~ 10 qubit quantum processors can serve as quantum repeaters

52
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Classical Communication

01

Bob

01

Alice

Eve

01

Eve
Eve freely copies classical 

bits – encryption may 
delay reading of message 
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Quantum Communication

Eve can only obtain key 
bits by destroying them
(no-cloning theorem).

Eve presence is detected.
Eve

Alice

↑
1

↓
2

+ ↓
1
↑

2

2
?1

?

2
?

Quantum
Repeater

Bob
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Basis for BB84

Relation between Basis Sets:

1 1

2 2
1 1

2 2

D H

� �� �� �� �
� �� �� �� �
� �� �� �� �Ψ Ψ =Ψ Ψ =Ψ Ψ =Ψ Ψ =

−−−−� �� �� �� �
� �� �� �� �
� �� �� �� �

Two non-or thogonal Alphabets

0H

1H

Horizontal/Ver tical

0D 1D

Diagonal

I f you measure either          or           in the diagonal basis you have 

a 50% probability of obtaining          or           .   Similar ly if you 

measure         or           in the hor izontal basis.   Easily obtained 

using simple tr igonometry.

0H 1H

1D0D

1D0D
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Bob's polar ization
analyzers

Alice's single
photon source

Alice’s polar ization
selector

pick a basis
and 

pick 0 or  1

BB84 Protocol Schematic

}

}

Two Basis sets (alphabets)

quantum channel

pick a basis and measure
then check Alice’s basis 

by classical channel

0

or

1

0

1

1

0

0

1

Same basis?              Y     N     N     Y    N    Y
Transmitted key          1                      0      1

Alice's bit value  1     0   0      0     1      1
Alice's polar ization
Bob's polar ization basis   ×××× ×××× +     ×××× + +
Bob's result 1 1      0      0     1     1
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BB84 Protocol

• STEP 1 :  Transmission - quantum channel
– Alice selects random key and transmits each bit using 

random basis
– Bob measures each bit in random basis
– Bob now has key, but only some are r ight

• STEP 2: Reconciliation - classical channel
– Bob tells Alice which bases he used (but not the data)
– Alice tells Bob which bases match (the bits measured in 

the same bases should match – assuming no errors)

× basis(D)

+ basis(HV)

10
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BB84 Protocol (2)

• Only bits transmitted and received using same 
basis are used as key

• STEP 3: Detecting Eve - classical channel
– Alice &  Bob compare initial bits of key
– I f key does not match, then it has been compromised
– I f er ror  rate > 25%, must assume Eve is present
– In practice other  sources of error  must be accounted 

for .  Error  correction and pr ivacy amplification can be 
applied for  error  rates < 25%. 
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Bell States and Teleportation

• Making Bell States
(((( ))))
(((( ))))
(((( ))))
(((( ))))

  

00

01

10

11

00 11 2

01 10 2

00 11 2

01 10 2

00

01

10

11

ββββ
ββββ
ββββ
ββββ

++++

++++

−−−−

−−−−

� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �≡≡≡≡� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� �� �� �� �� � � �� � � �� � � �� � � �� �� �� �� �

����

• Teleportation

x

y

H

xyββββ

H

XM2

M2

ZM1

M1

{00ββββ

ΨΨΨΨ

ΨΨΨΨ
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Analysis of Teleportation Circuit

H

XM2

M2

ZM1

M1

{00ββββ

ΨΨΨΨ

ΨΨΨΨ
 

0

↑↑↑↑

ΨΨΨΨ

 

1

↑↑↑↑

ΨΨΨΨ

 

2

↑↑↑↑

ΨΨΨΨ

(((( )))) (((( ))))0 00

1
0 00 11 1 00 11

2
β α ββ α ββ α ββ α β⊗ ⊗⊗ ⊗⊗ ⊗⊗ ⊗� �� �� �� �Ψ = Ψ ⊗ = + + +Ψ = Ψ ⊗ = + + +Ψ = Ψ ⊗ = + + +Ψ = Ψ ⊗ = + + +� �� �� �� �

(((( )))) (((( ))))1

1
0 00 11 1 10 01

2
α βα βα βα β⊗ ⊗⊗ ⊗⊗ ⊗⊗ ⊗� �� �� �� �Ψ = + + +Ψ = + + +Ψ = + + +Ψ = + + +� �� �� �� �

(((( )))) (((( ))))
(((( )))) (((( ))))                

[

]
2

1
00 0 1 01 1 0

2

10 0 1 11 1 0

α β α βα β α βα β α βα β α β

α β α βα β α βα β α βα β α β

⊗ ⊗⊗ ⊗⊗ ⊗⊗ ⊗

⊗ ⊗⊗ ⊗⊗ ⊗⊗ ⊗

Ψ = + + + +Ψ = + + + +Ψ = + + + +Ψ = + + + +

− + −− + −− + −− + −
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Status of Quantum Communications

• State of the Ar t
– Free Space

– 10 km both day and night:  LANL
– 30 km night:  Kurtseifer, Rarity

– Fiber  over  65km 
– LANL, Telcordia
– U. Geneva: Gisin
– MagiQ

• Wish L ist
– Single Photon Sources: Numerous 

Demonstrations
– High Efficiency Single Photon Detectors
– Quantum Repeaters

Sae Woo Nam, Aaron Miller ,
John Martinis – NIST - Boulder
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BobAlice

Data
Generation
Electronics

Data
Acquisition
Electronics

Quantum 

Channel

Classical 

Channel

WDM System WDM System

NIST Testbed Structure

1.25 GHz High-speed QKD
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Quantum Communication Test-Bed

What is special about the NIST system?
• Dual Classical &  Quantum Channels running at 1.25 GHz
• Network – Internet inter faced  (Also BBN)

– Secur ity Protocols – SSL, Authentication
• Quantum L ink

– Attenuated VCSEL transmitters (initially)
– 850 nm free space optics
– Si avalanche detectors

• Two classical links near 1550 nm
– 8B/10B encoded path for  timing/framing
– Dedicated gigabit ethernet channel

– Sifting, Error correction, and Reconciliation
– Privacy amplification

Joshua Bienfang, Bob Carpenter, Alex Gross, Ed Hagley,
Barry Hershman, Richang Lu, Alan Mink, Tassos Nakassis,
Xiao Tang, Jesse Wen, David Su, Char les Clark, Car l Williams
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Heralded Pulse/Gate

High-Speed Free-Space QKD

• Spectral, Spatial filter  to ~ 106 solar  photons/sec into Rx 
– (0.1 nm, 300 cm2, 220 µµµµrad)

• Gating:

1 nsec

• No heralding pulse: all time bins are filled 
• A 1 ns gate is equivalent to 1 GHz pulse rate

– Gate shor tens with increased pulse rate
– Limited by detector  j itter  and recovery time

8B/10B encoding/clock recovery 

Classical

Quantum RxQuantum Tx

Classical
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VI.  Quantum Computing

• A Uniform Superpositions of all input states is easy:

• Using n-additional qubits calculate the function f on 

(((( ))))

{{{{ }}}}

1
0 1

2

1
00 00 00 01 00 10 11 11

2

n

n

n

⊗⊗⊗⊗
	 
	 
	 
	 
Ψ = +Ψ = +Ψ = +Ψ = +� �� �� �� �

 �
 �
 �
 �

� �� �� �� �= + + + += + + + += + + + += + + + +� �� �� �� �
� �� �� �� �

� � � � �� � � � �� � � � �� � � � �

65

f( )

nΨΨΨΨ

00 00����
nΨΨΨΨ

n
ΨΨΨΨ

(((( )))) (((( )))) (((( )))) (((( )))){{{{ }}}}/ 2

1
0 0 1 1 2 1 2 1

2
n n

n n n n nn n n
f f f f

� �� �� �� �Ψ Ψ = + + + − −Ψ Ψ = + + + − −Ψ Ψ = + + + − −Ψ Ψ = + + + − −� �� �� �� �
� �� �� �� �

����

The result is entanglement 
between        and its functionn

ΨΨΨΨ
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Classical Computation

• Initialize state: “ 0”
• Logic:

• Output result

• Logic errors:
Error  correction possible

not

and

0 1
1 0

→→→→
→→→→

00 0
01 0
10 0
11 1

→→→→
→→→→
→→→→
→→→→

000 0inΨ =Ψ =Ψ =Ψ = ����

Quantum Computation

• Initialize state:

(((( )))) 1 2

0 1

1 0

0 0 1 2→ +→ +→ +→ +

→→→→
→→→→1-qubit

• Logic:

control target

00 00

01 01

10 11

11 10

→→→→
→→→→
→→→→
→→→→

2-qubit
controlled-not

linear +
superposition

Classical vs Quantum Computation

4
log 10coherence icτ ττ ττ ττ τ ≅≅≅≅• Coherence:

• Final state measurement
Measure qubits   ÞÞÞÞ f ijk lΨ =Ψ =Ψ =Ψ = ����

Q. Computation allows non-classical computation
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Universal Quantum Logic

Single Qubit Operations/Gates

All quantum computations and all unitary operators may 
be efficiently constructed from 1- and 2- qubit logic gates

     0 0 1α βα βα βα β→ +→ +→ +→ +

   ;   1  ;            
1 0 1

0
0 1 0

α β αα β αα β αα β α
βββββ αβ αβ αβ α

∗∗∗∗

∗∗∗∗

� �� �� �� �−−−−� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
= = == = == = == = =� �� �� �� �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� �� �� �� �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� �� �� �� �

Arbitrary 1-qubit rotations:

Note: Although the standard paradigm for  quantum 
computations relies on the ability to do arbitrary 1- qubit 
gates and almost any 2- qubit gates, alternatives exist
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Universal Quantum Logic -- II

Most common 2-Qubit Gate: CNOT Gate

Operation Transformation Circuit

            

00 00 1 0 0 0

01 01 0 1 0 0

10 11 0 0 0 1

11 10 0 0 1 0

� � � �� � � �� � � �� � � � � �� �� �� �
� � � �� � � �� � � �� � � � � �� �� �� �
� � � �� � � �� � � �� � � � � �� �� �� �
� � � �� � � �� � � �� � � � � �� �� �� �
� � � �� � � �� � � �� � � � � �� �� �� �� � � �� � � �� � � �� � � �

� �� �� �� �� �� �� �� �

����

� �� �� �� �

c

t

,c t

This gate is similar  to addition modular  2 of classical 
gates but one should recall that this gate works on 
arbitrary superpositions
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Bell States and Teleportation

• Making Bell States
(((( ))))
(((( ))))
(((( ))))
(((( ))))

  

00

01
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00 11 2

01 10 2

00 11 2

01 10 2

00
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10

11

ββββ
ββββ
ββββ
ββββ

++++

++++

−−−−

−−−−

� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �≡≡≡≡� �� �� �� �� � � �� � � �� � � �� � � �
� �� �� �� �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� �� �� �� �� � � �� � � �� � � �� � � �� �� �� �� �

����

• Teleportation

x

y

H

xyββββ

H

XM2

M2

ZM1

M1

{00ββββ

ΨΨΨΨ

ΨΨΨΨ
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Teleportation without Measurement

(((( )))) (((( ))))0 00

1
0 00 11 1 00 11

2
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71

Quantum Error Correction

e.g. -- Redundant Encoding
L L

0 000   and   1 111= == == == =

ΨΨΨΨ
0

0
Measure Error  Syndrome

extract er ror  information (measure parity)
preserve or iginal quantum information

L
000  111α βα βα βα βΨ = +Ψ = +Ψ = +Ψ = +

L
ΨΨΨΨ

0

{
0 0

Quantum Computing appears impossible without Quantum Error  
Correction (Shor , Steane,...) opening bid:
10-2 to 10-4 decoherence depends on er rors, could improve
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Basis of Shor’s Algorithm

• N – number to be factored
• select a number  x  such that gcd(x,N)=1   (copr ime)
• find  r   such that  xr=1 mod (N)
• Example:  N=15, x=13

x1 mod (15) = 13 x2 mod (15) = 4 x3 mod (15) = 7
x4 mod (15) = 1 x5 mod (15) = 13 x6 mod (15) = 4

ÞÞÞÞ r=4  and ∴∴∴∴ xr – 1 = 0  or    for  r  even
(xr/2 – 1) (xr/2 + 1) = 0 mod (N) = kN

ÞÞÞÞ factors are (xr/2 ± 1) mod (N)

e.g.  x=4 x1 mod (15) = 4 x2 mod (15) = 1

e.g.  x=7 x1 mod (15) = 7 x2 mod (15) = 4
x3 mod (15) = 13 x4 mod (15) = 1
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Shor’s Algorithm

• Select N such that N = p • q
• Find x such that gcd(x,N) = 1 (copr ime)
• Run Shor ’s Algor ithm

Hn

000Ψ =Ψ =Ψ =Ψ = ����

000Ψ =Ψ =Ψ =Ψ = ����

f(x)=ax mod(N)
Q-FFT

• Measure first register  and obtain an approximation to r
• factors are (xr/2 ± 1) mod (N)
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Quantum Information’s Impact

• Revolutionary
– Builds the physical foundation for  information theory
– Teaches us to examine the information content in real systems
– Help us to develop a language to move quantum mechanics 

from a scientific to an engineer ing field

• Quantum Limited Measurement will become available 
• 20th Century we used the par ticle/wave aspects of 

Quantum Mechanics: Televisions, CRT’s, NMR …

• 21st Century we will use the coherence, entanglement, 
and tensor structure of quantum systems to build new, 
as yet unimagined, types of devices

Let me speculate:  Quantum engineer ing will come and will 
allow us to extend the Moore’s Law paradigm based not on 
making things smaller  but making them more powerful by 

using the laws of quantum mechanics.
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Information
(i.e. books, data, pictures)

More abstract
Not necessar ily mater ial

VIII.  Conclusions

A radical departure in information technology, more 
fundamentally different from current IT than the 

digital computer is from the abacus.

A convergence of two of the 20th Century’s great revolutions

Quantum Mechanics
(i.e. atoms, photons, molecules)

“ Matter”

75

What is Quantum Information?
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Quantum Information Timeline

0 5 10 ~15 20? 25??
Time (years)

D
if
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Quantum
MeasurementQuantum

Communication

The known

Quantum
Computation

The expected

The unlikely – impossible?

Quantum
Sensors?

The as yet unimagined! ! !

Quantum
Engineered 
Photocells?

Quantum
Widgets

Quantum
Games &  Toys
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Quantum Mechanics Summary

Quantum Mechanics at its simplest level reduces to solving a 
differential equation that determines the time evolution of 
quantum system.  This equation includes the Hamiltonian 
H which descr ibes a systems kinetic and potential energies.  
The solution of this equation is a wavefunctionΨΨΨΨ(r,t) which 
can be more br iefly wr itten as the “ ket” .  The 
wavefunction along with H, fully describes the system.

( )tΨΨΨΨ

( )tΨΨΨΨ
Note a “ ket” is nothing but a vector .  The same is true of a 

“ bra” .

The next few pages provides a “ physics” and “ mathematics”
view of quantum mechanics.  I  will not do justice to either  
group.  The key point is that bra’s and ket’s are vectors.

This mathematical view of quantum mechanics has been 
confirmed exper imentally – an untold number of times.


