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Abstract

Adaptive grid refinement is a critical component of the improvements that have re-
cently been made in algorithms for the numerical solution of partial differential equa-
tions (PDEs). The development of new algorithms and computer codes for the solution of
PDEs usually involves the use of proof-of-concept test problems. 2D elliptic problems are
often used as the first test bed for new algorithms and codes. This paper contains a set
of twelve parametrized 2D elliptic test problems for adaptive grid refinement algorithms
and codes. The problems exhibit a variety of types of singularities, near singularities,
and other difficulties.
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1. Introduction

The numerical solution of partial differential equations (PDEs) is the most compute-
intensive part of a wide range of scientific and engineering applications. Consequently
the development and application of faster and more accurate methods for solving partial
differential equations has received much attention in the past fifty years. Self-adaptive
methods to determine a quasi-optimal grid are a critical component of the improvements.
Although adaptive grid refinement techniques are now in widespread use in applications,
they remain an active field of research, particularly in the context of hp-adaptive tech-
niques.

The development of new algorithms and computer codes for the solution of PDEs
usually involves the use of proof-of-concept test problems. Such test problems have a
variety of uses such as demonstrating that a new algorithm is effective, verifying that a
new code is correct in the sense of achieving the theoretical order of convergence, and
comparing the performance of different algorithms and codes. Nearly every paper on
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algorithms for solving PDEs contains a numerical results section with one or more test
problems.

In this paper, the focus is on 2D elliptic problems, as they are often used as the first
test bed for new algorithms and codes for solving PDEs. Other classes of problems (3D,
hyperbolic, goal-oriented, etc.) can be found on the NIST Adapative Mesh Refinement
Benchmark Problems web page [1]. This paper contains a set of twelve 2D elliptic test
problems for adaptive grid refinement algorithms and codes. Most of the problems are
taken from the numerical results section of papers in the adaptive grid refinement litera-
ture. The problems exhibit a variety of types of singularities (point and line singularities
on the boundary and in the interior), near singularities (sharp peaks, boundary layers,
and wave fronts), and other difficulties. Most of the problems are parametrized to allow
“easy” and “hard” variations on the problem. This collection of problems can be used
for testing correctness of a computer code or optimality of an algorithm by observing the
convergence rate of a norm (energy, H1, L2, etc.) of the error with respect to the number
of degrees of freedom, to test the efficiency index of error estimates, to benchmark the
computation time of different computer codes and algorithms, etc.

We primarily consider elliptic partial differential equations of the form
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with coefficient functions p, q, r and c, and right hand sides f , gD and gN , where Ω is
a bounded, connected, polygonal, open region in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN ,
∂ΩD ∩ ∂ΩN = ∅. Differentiation with respect to s is with respect to a counterclockwise
parametrization of the boundary (x(s), y(s)) with ‖(dx/ds dy/ds)‖ = 1. Equation 2
represents Dirichlet boundary conditions, and Equation 3 represents natural boundary
conditions if c = 0 and mixed boundary conditions otherwise. We assume the data in
Equations 1-3 satisfy the usual ellipticity and regularity assumptions. Some of the test
problems extend this to a coupled system of two equations, and the inclusion of first
order derivative and mixed derivative terms.

Many of the test problems use the special case of Poisson’s Equation

−∇2u := −∂
2u

∂x2
− ∂2u

∂y2
= f(x, y)

and Laplace’s Equation, which is Poisson’s equation with f=0. All but one problem are
defined by the method of manufactured solution. When the right side of the equation
is simply given as “f” and the exact solution is known, f is determined by applying
the operator to the exact solution. Similarly, if the boundary conditions are said to be
Dirichlet and the exact solution is known, gD is given by the exact solution.

We use the terms singular and singularity rather loosely. We consider a function to
be singular (or to have a singularity) if it or a derivative of any order is singular. More
precisely, we consider it to be singular if there exists a finite positive m such that the
function does not lie in Hm, where Hm is the usual Sobolev space of functions whose
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Figure 1: The solution of the analytic problem with a = 10.

derivatives of order m are square integrable, and the usual extensions to noninteger m.
We refer to the largest m such that the function is in Hm as the Sobolev regularity of
the function.

2. The Set of Test Problems

2.1. Analytic Solution

This is a well behaved problem with a smooth solution that has no trouble spots. It
can be used for seeing how an adaptive algorithm behaves in a context where adaptivity
isn’t really needed.

Equation: Poisson
Domain: unit square
Boundary conditions: Dirichlet
Solution: 24axa(1− x)aya(1− y)a

Parameters: the integer a determines the degree of the polynomial solution. It should
be chosen to be large enough that the highest order finite elements to be used will not
give the exact solution.

The solution with a = 10 is shown in Figure 1, both as a color-mapped image and
as a surface in perspective. The other figures that show solutions also present these two
views.

2.2. Reentrant Corner

For elliptic partial differential equations, reentrant corners in the domain are a source
of singularities in the solution. In particular, for a corner with an angle ω as shown
in Figure 2, the solution behaves like rα where r is the distance from the corner and
α = π/ω. The solution is in H1+α−ε ∀ε > 0 [2].

Equation: Laplace
Domain: (−1, 1) × (−1, 1) with a section removed from the clockwise side of the

positive x axis, as shown in Figure 2.
Boundary conditions: Dirichlet
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Figure 2: Domain for the reentrant corner problem.

Figure 3: The solution of the reentrant corner problem with ω = π + .01.

Solution: rα sin(αθ) where r =
√
x2 + y2 and θ = tan−1(y/x)

Parameters: ω determines the angle of the reentrant corner, and consequently α and
the strength of the singularity. Varying ω can be used to study the effect of the strength
of the singularity on adaptive algorithms. Using ω = 3π/2 gives the infamous “L domain”
problem used heavily in the adaptive refinement community. With ω = 2π the domain
is a square with a slit. A solution with ω slightly larger than π is nearly linear.

The solutions for ω = π + 0.01, 5π/4, 3π/2, 7π/4, and 2π are shown in Figures 3-7.

2.3. Linear Elasticity

Several papers [3, 4, 5, 6] use a problem from linear elasticity as an example. This is
a coupled system of two equations with a mixed derivative in the coupling term. In [3]
the equations are given as
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Figure 4: The solution of the reentrant corner problem with ω = 5π/4.

Figure 5: The solution of the reentrant corner problem with ω = 3π/2.

Figure 6: The solution of the reentrant corner problem with ω = 7π/4.
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Figure 7: The solution of the reentrant corner problem with ω = 2π.

mode λ Q

1 0.5444837367825 0.5430755788367
2 0.9085291898461 -0.2189232362488

Table 1: Parameters for the linear elasticity problem.

where u and v are the x and y displacements, E is Young’s Modulus, and ν is Poisson’s
ratio.

Two solutions are given in [3] in polar coordinates; a mode 1 solution{
u = 1

2Gr
λ[(κ−Q(λ+ 1)) cos(λθ)− λ cos((λ− 2)θ)]

v = 1
2Gr

λ[(κ+Q(λ+ 1)) sin(λθ) + λ sin((λ− 2)θ)]
(5)

and a mode 2 solution{
u = 1

2Gr
λ[(κ−Q(λ+ 1)) sin(λθ)− λ sin((λ− 2)θ)]

v = − 1
2Gr

λ[(κ+Q(λ+ 1)) cos(λθ) + λ cos((λ− 2)θ)]
(6)

where κ = 3− 4ν, G = E/(2(1 + ν)), and λ and Q are constants. The solutions have a
point singularity at the origin and are in H1+λ−ε ∀ε > 0 [4].

The domain is taken to be a square with a slit (a cracked plate) as in [6]. Some of
the other references use an L-shaped domain.

Equation: coupled system of two equations given by Equation 4
Domain: (−1, 1)× (−1, 1) with a slit from (0, 0) to (1, 0)
Boundary conditions: Dirichlet
Solution: Two solutions as given in Equations 5 and 6.
Parameters: All the above references use ν = 0.3 and E = 1. The values for λ and Q

differ in the two solutions, and are given in Table 1. See [3] for the derivation of these
constants. With these solutions and parameters, Fx = Fy = 0.

The solutions are shown in Figures 8-11.
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Figure 8: The u component of the mode 1 solution of the linear elasticity problem.

Figure 9: The v component of the mode 1 solution of the linear elasticity problem.

Figure 10: The u component of the mode 2 solution of the linear elasticity problem.
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Figure 11: The v component of the mode 2 solution of the linear elasticity problem.

Figure 12: The solution of the peak problem with α = 1000, (xc, yc) = (0.5, 0.5).

2.4. Peak

This problem has an exponential peak in the interior of the domain. It is based on
Problem 10 in [7].

Equation: Poisson
Domain: Unit square.
Boundary conditions: Dirichlet
Solution: e−α((x−xc)

2+(y−yc)2)

Parameters: (xc, yc) is the location of the peak, and α determines the strength of the
peak.

The solutions of two instances of this problem are shown in Figures 12 and 13. The
first has a mild peak at the vertex (0.5,0.5) with α = 1000. The second has a sharp peak
at (0.51,0.117) with α = 100000.

2.5. Battery

This problem comes from [6], where it is attributed to Ivo Babuška and Sandia Na-
tional Laboratories. It features piecewise constant coefficient functions p and q and right
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Figure 13: The solution of the peak problem with α = 100000, (xc, yc) = (0.51, 0.117).

k p q f

1 25.0 25.0 0.0
2 7.0 0.8 1.0
3 5.0 0.0001 1.0
4 0.2 0.2 0.0
5 0.05 0.05 0.0

Table 2: Piecewise constant coefficient functions for the battery problem. k designates the region from
Figure 14.

hand side f , and mixed boundary conditions. The solution has multiple point singular-
ities in the interior of the domain. The equation models heat conduction in a battery
with nonhomogeneous materials. The domain is the rectangle shown in Figure 14. The
numbered regions indicate the areas of different material constants, with the constants
given in Table 2. The location of the line segments that separate the regions are given
in Table 3. The coefficients of the mixed boundary conditions are given in Table 4. The
solution has singularities at the points where three or more materials meet. For any
ε > 0 there exists coefficients such that the solution is in H1+ε. By observing the rate
of convergence with uniform h-refinement and comparing it with the theoretical a priori
error bound, we estimate that ε is about 1/2 for the given set of coefficients. The solution
is shown in Figure 15.

Equation: − ∂
∂x

(
p∂u∂x

)
− ∂

∂y

(
q ∂u∂y

)
= f with p, q and f given in Table 2

Domain: (0, 8.4)× (0, 24)
Boundary conditions: Mixed, with c and gN given in Table 4
Solution: Unknown.
Parameters: None.

2.6. Boundary Layer

This problem comes from [8]. It has an O(ε) boundary layer along the right and top
sides of the domain. It is a convection-diffusion equation with first order terms.
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Figure 14: Domain for the battery problem.

x y

0.0 0.0
6.1 0.8
6.5 1.6
8.0 3.6
8.4 18.8

21.2
23.2
24.0

Table 3: The locations of the line segments that separate the regions of the battery problem. For
example, the line y = 24.0 is the top of the region in Figure 14.

side c gN

left 0.0 0.0
top 1.0 3.0

right 2.0 2.0
bottom 3.0 1.0

Table 4: Boundary condition coefficients for the four sides of the battery problem domain in Figure 14.
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Figure 15: The solution of the battery problem.

Figure 16: The solution of the boundary layer problem with ε = 10−1.

Equation: −ε∇2u+ 2∂u∂x + ∂u
∂y = f

Domain: (−1, 1)× (−1, 1)
Boundary conditions: Dirichlet
Solution: (1− e−(1−x)/ε)(1− e−(1−y)/ε) cos(π(x+ y))
Parameters: ε determines the strength of the boundary layer.
Figures 16 and 17 show solutions with a mild boundary layer from ε = 10−1, and a

steep boundary layer from ε = 10−3.

2.7. Boundary Line Singularity

Many papers [6, 9, 10, 11] use a 1D example with a singularity of the form xα at
the left endpoint of the domain. The solution is in Hα+1/2−ε ∀ε > 0 [9]. This can be
extended to 2D by simply making the solution be constant in y. On the unit square, the
result is a solution that is singular along the left boundary.
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Figure 17: The solution of the boundary layer problem with ε = 10−3.

Figure 18: The solution of the boundary line singularity problem with α = 0.6.

Equation: Poisson
Domain: Unit square
Boundary conditions: Dirichlet
Solution: xα

Parameters: α ≥ 1/2 determines the strength of the singularity. All of the cited
references use α = 0.6.

The solution with α = 0.6 is shown in Figure 18.

2.8. Oscillatory

This problem is inspired by the wave function that satisfies a Schrödinger equation
model of two interacting atoms [12]. It is highly oscillatory near the origin, with the
wavelength decreasing closer to the origin. The number of oscillations, N , is determined
by the parameter α = 1

Nπ . We use a Helmholtz equation for this problem.

Equation: −∇2u− 1
(α+r)4u = f , where r =

√
x2 + y2

Domain: Unit square
Boundary conditions: Dirichlet
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Figure 19: The solution of the oscillatory problem with α = 1
10π

.

Figure 20: The solution of the oscillatory problem with α = 1
50π

.

Solution: sin( 1
α+r )

Parameters: α determines the number of oscillations.
The solutions of a relatively easy problem with α = 1

10π and a more difficult problem
with α = 1

50π are shown in Figures 19 and 20. In the surface plot of Figure 19 we have
zoomed in on the origin to show the detail.

2.9. Wave Front

A commonly used example for testing adaptive refinement algorithms is Poisson’s
equation with a solution that has a steep wave front in the interior of the domain [2,
6, 9, 11]. Usually the wave front is given by an arctangent, but sometimes a hyperbolic
tangent is used. In this problem we use a circular wave front as in [6, 11]. Parameters
determine the steepness and location of the wave front. With the arctangent wave front,
there is a mild singularity at the center of the circle. By observing the convergence rate
with uniform h-refinement, we estimate that the solution is in Hm with m ≈ 2 if the
center of the circle is in the closure of the domain, and smooth otherwise.
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name α xc yc r0

mild 20 -.05 -.05 0.7
steep 1000 -.05 -.05 0.7
asymmetric 1000 1.5 0.25 0.92
well 50 0.5 0.5 0.25

Table 5: Parameters for the wave front problem.

Figure 21: The solution of the mild wave front problem.

Equation: Poisson
Domain: Unit square
Boundary conditions: Dirichlet
Solution: tan−1(α(r − r0)) where r =

√
(x− xc)2 + (y − yc)2

Parameters: (xc, yc) is the center of the circular wave front, r0 is the distance from
the wave front to the center of the circle, and α gives the steepness of the wave front.

Four example solutions are shown in Figures 21-24, with the parameters given in
Table 5. In the first three we choose the center of the circle to be outside the domain
so that we are examining the performance on the wave front, not the singularity. These
solutions are characterized as a mild wave front, a steep wave front, and a steep wave
front that is not symmetric about the origin. In the fourth example, the entire circle is
inside the domain, resulting in a solution that is a well with a mild singularity at the
bottom.

2.10. Interior Line Singularity

Houston et al. [9] extend the 1D xα problem in Section 2.7 to 2D by extending the
1D domain to (-1,1), defining the solution to be 0 for x < 0, extending the domain to 2D
with y ∈ (−1, 1), and adding cos(πy/2). We extend this further to allow a sloped line so
that the singularity does not necessarily coincide with element edges. There is no PDE
in [9] since they are only evaluating their estimate of the regularity. We use a Poisson
equation with Dirichlet boundary conditions. The solution is in Hα+1/2−ε ∀ε > 0 [9].

Equation: Poisson
Domain: (−1, 1)× (−1, 1)
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Figure 22: The solution of the steep wave front problem.

Figure 23: The solution of the asymmetric wave front problem.

Figure 24: The solution of the wave front “well” problem.
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Figure 25: The solution of the interior line singularity problem with α = 2.5 and β = 0.

Figure 26: The solution of the interior line singularity problem with α = 1.1 and β = 0.

Boundary conditions: Dirichlet

Solution:

{
cos(πy/2) x ≤ β(y + 1)

cos(πy/2) + (x− β(y + 1))α x > β(y + 1)

Parameters: α determines the strength of the singularity and β determines the slope
of the singularity line.

Solutions containing a mild singularity with α = 2.5, β = 0, a stronger singularity
with α = 1.1, β = 0, and a slanted line singularity with α = 1.5, β = 0.6 are shown in
Figures 25-27.

2.11. Intersecting Interfaces

This problem comes from a paper by Kellogg [13] in which he studies Poisson problems
with intersecting interfaces. Two interfaces, given by the lines y = 0 and y = tan(φ)x,
divide the plane into four regions for a given φ ∈ (0, π/2]. The PDE coefficients p and q
are a piecewise constant function taking the value pi in the ith region counterclockwise
from the positive x-axis. Let ψ = π/2− φ. The solution is given in polar coordinates by

u = ra1µ(θ) (7)
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Figure 27: The solution of the interior line singularity problem with α = 1.5 and β = 0.6.

where

µ(θ) =


cos((ψ − β1)a1) cos((θ − φ+ α1)a1) 0 ≤ θ ≤ φ
cos(α1a1) cos((θ − π + β1)a1) φ <= θ <= π

cos(β1a1) cos(θ − π − α1)a1) π <= θ <= π + φ

cos((φ− α1)a1 cos(θ − φ− π − β1)a1) π + φ <= θ <= 2π

(8)

and where the numbers a1, α1 and β1 satisfy the relations

p1/p2 = − tan((ψ − β1)a1) cot(α1a1)

p2/p3 = − tan(α1a1) cot(β1a1)

p3/p4 = − tan(β1a1) cot((φ− α1)a1)

p4/p3 = − tan((φ− α1)a1) cot((ψ − β1)a1)

0 < a1 < π/ψ

max{0, 2φa1 − π} < 2a1α1 < min{2φa1, π}
max{0, π − 2ψa1} < −2a1β1 < min{π, 2π − 2ψa1}

(9)

The solution has a discontinuous derivative along the interfaces, and an infinite derivative
at the origin. The solution is in H1+a1−ε ∀ε > 0, so a1 can be chosen to make the Sobolev
regularity arbitrarily close to 1.

Equation: −∇ · p∇u = 0 where p is piecewise constant
Domain: (−1, 1)× (−1, 1)
Boundary conditions: Dirichlet
Solution: given by Equations 7 and 8
Parameters: As in [14], we take θ = π/2, p1 = p3 = R, p2 = p4 = 1, and a1 = 0.1.

The conditions in Equation 9 can then be solved to obtain R = 161.447 638 797 588 1,
α1 = π/4 and β1 = −14.922 565 104 551 52.

The solution for the given parameters is shown in Figure 28.

2.12. Multiple Difficulties

In [11] one of the test cases involves both a singularity due to a reentrant corner and
a sharp gradient in the form of an arctangent wave front. In this problem we combine
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Figure 28: The solution of the intersecting interfaces problem.

Figure 29: The solution of the problem with multiple difficulties.

four or five difficulties of different strengths into the same problem by combining some of
the features of the other test problems. It contains a point singularity due to a reentrant
corner, a circular wave front (which might include a singularity at the center of the
circle), a sharp peak, and a boundary layer.

Equation: Poisson
Domain: L-shaped domain (−1, 1)× (−1, 1) \ (0, 1)× (−1, 0)
Boundary conditions: Dirichlet
Solution: r(π/ω) sin(θπ/ω) + tan−1(αw(

√
(x− xw)2 + (y − yw)2 − r0)) +

e−αp((x−xp)2+(y−yp)2) + e−(1+y)/ε

Parameters: This problem has the same parameters as the problems that it combines.
The boundary layer was placed on y = −1. It could instead be placed on y = 1, x = −1
or x = 1, or any combination of them.

Figure 29 shows a solution where the wave front intersects the boundary layer and
corner singularity, and the peak is centered on the wave front. The following parameters
were used. For the reentrant corner, ω = 3π/2. The wave front is defined by (xw, yw) =
(0,−3/4), r0 = 3/4 and αw = 200. The peak is centered at (xp, yp) = (

√
5/4,−1/4) with
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strength αp = 1000. The boundary layer is given by ε = 1/100.

3. Future Work

The collection of problems given in this paper were selected to represent a variety
of solution features for which adaptive grid refinement is appropriate in the solution of
elliptic partial differential equations in 2D. Clearly this is a limited class of problems.
Standard benchmark problems are also needed for 1D, 3D, time dependent problems,
problems that are motivated by real-world applications without manufactured solutions,
goal-oriented adaptivity, etc. A web resource [1] is being developed, from which re-
searchers can obtain standard adaptive grid refinement benchmark problems from a rich
collection of problems representing many classes of partial differential equations.
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[5] I. Babuška, M. Suri, The p- and h-p versions of the finite element method, an overview, Comput.
Methods Appl. Mech. Engrg. 80 (1990) 5–26.

[6] L. Demkowicz, Computing with hp-adaptive finite elements, Volume 1, One and two dimensional
elliptic and Maxwell problems, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[7] J. Rice, E. Houstis, W. Dyksen, A population of linear, second order, elliptic partial differential
equations on rectangular domains, Math. Comp. 36 (1981) 475–484.

[8] S. Adjerid, M. Aiffa, J. Flaherty, Computational methods for singularly perturbed systems, in:
J. Cronin, R. O’Malley (Eds.), Singular Perturbation Concepts of Differential Equations, AMS,
Providence, 1998.
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