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The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a

particularly efficient method for solving PDEs because it can achieve an exponential convergence rate in

the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the
polynomial degree, p. Like adaptive refinement for the h version of the finite element method, a posteriori

error estimates can be used to determine where the mesh needs to be refined, but a single error estimate

can not simultaneously determine whether it is better to do the refinement by h or p. Several strategies for
making this determination have been proposed over the years. These strategies are summarized, and the

results of a numerical experiment to study the performance of these strategies is presented. It was found
that the reference solution based methods are very effective, but also considerably more expensive, in terms

of computation time, than other approaches. The method based on a priori knowledge is very effective

when there are known point singularities. The method based on the decay rate of the expansion coefficients
appears to be the best choice as a general strategy across all categories of problems, whereas many of the

other strategies perform well in particular situations and are reasonable in general.
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1. INTRODUCTION
The numerical solution of partial differential equations (PDEs) is the most compute-
intensive part of a wide range of scientific and engineering applications. Consequently
the development and application of faster and more accurate methods for solving par-
tial differential equations has received much attention in the past fifty years. Many
of the applications at the cutting edge of research are extraordinarily challenging. For
these problems it is necessary to allocate computing resources in an optimal way in
order to have any chance at solving the problem. Determining the best grid and ap-
proximation space on which to compute the solution is a central concern in this regard.
Unfortunately, it is rarely possible to determine an optimal grid in advance. Thus, de-
veloping self-adaptive techniques which lead to optimal resource allocation is critical
for future progress in many fields.
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Self-adaptive methods have been studied for over 30 years now. They are often cast
in the context of finite element methods, where the domain of the PDE is partitioned
into a mesh consisting of a number of elements (in two dimensions, usually triangles
or rectangles), and the approximate solution is a polynomial over each element. Most
of the work has focused on h-adaptive methods. In these methods, the mesh size, h, is
adapted locally by means of a local error estimator with the goal of placing the smallest
elements in the areas where they will do the most good. In particular, elements that
have a large error estimate get refined so that ultimately the error estimates, and
presumably the error, are approximately equal over all elements. h-adaptive methods
are quite well understood now, and are beginning to be used in practice.

Recently, the research community has begun to focus more attention on hp-adaptive
methods. In these methods, one not only locally adapts the size of the mesh, but also
the degree of the polynomials, p. The attraction of hp-adaptivity is that the error con-
verges at an exponential rate in the number of degrees of freedom, as opposed to a
polynomial rate for fixed p. Much of the theoretical work showing the advantages of
hp-adaptive methods was done in the 1980’s, but it wasn’t until the 1990’s that practi-
cal implementation began to be studied. The new complication is that the local error
estimator is no longer sufficient to guide the adaptivity. It tells you which elements
should be refined, but it does not indicate whether it is better to refine the element by
h or by p. A method for making that determination is called an hp-adaptive strategy. A
number of strategies have been proposed, but it is not clear which ones perform best
under different situations, or even if any of the strategies are good enough to be used
as a general purpose solver. In this paper we present an experimental comparison of
several hp-adaptive strategies.

Any study of this type is necessarily limited in scope. The comparison will be re-
stricted to steady-state linear elliptic partial differential equations on bounded do-
mains in two dimensions with Dirichlet, natural or mixed boundary conditions. The
standard Galerkin finite element method will be used with the space of continuous
piecewise polynomial functions over triangles that are refined by the newest node bi-
section method.

The remainder of the paper is organized as follows. In Section 2 we define the equa-
tion to be solved, present the finite element method, and give some a priori error es-
timates. In Section 3 we give the details of the hp-adaptive finite element algorithm
used in the experiments. Section 4 defines the hp-adaptive strategies to be compared.
Section 5 contains the results of the experiments. Finally, we draw our conclusions in
Section 6.

2. THE FINITE ELEMENT METHOD
We consider the elliptic partial differential equation

Lu = −div(A∇u) + r(x, y)u = f(x, y) in Ω (1)
u = gD(x, y) on ∂ΩD (2)

Bu = A∇u · n+ c(x, y)u = gN (x, y) on ∂ΩN (3)

where Ω is a bounded, connected, polygonal, open region in R2 with boundary ∂Ω =
∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, A =

[
p(x,y) 0

0 q(x,y)

]
, and n is the outward unit normal. If

c = 0, Equation 3 is the natural boundary condition. If, in addition, p = q = 1 or ∂ΩN
consists of line segments that are parallel to the axes, Equation 3 is the Neumann
boundary condition. We assume the data in Equations 1-3 satisfy the usual ellipticity
and regularity assumptions. In one of the test problems, we extend the equation to a
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system of two equations containing a cross derivative term ∂2u/∂x∂y, and in another
test problem we include first order derivative terms.

As usual, define the space L2 by

L2(Ω) = {v(x, y) :
∫∫
Ω

v2 dx dy <∞}

with inner product

〈u, v〉2 =
∫∫
Ω

uv dx dy

and norm

||v||22 = 〈v, v〉2.
We denote by Hm(Ω) the usual Sobolov spaces

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ m}
where

Dαv =
∂|α|v

∂α1x∂α2y
, α = (α1, α2), αi ∈ N, |α| = α1 + α2.

The Sobolov spaces have inner products

〈u, v〉Hm(Ω) =
∫∫
Ω

∑
|α|≤m

DαuDαv dx dy

and norms

||v||2Hm(Ω) = 〈v, v〉Hm(Ω).

We will also refer to the seminorm |v|Hm(Ω) where the sum is over |α| = m.
Let H1

0,∂ΩD
(Ω) = {v ∈ H1(Ω) : v = 0 on ∂ΩD}. Let ũD ∈ H1(Ω) be a lift function

satisfying the Dirichlet boundary conditions in Equation 2 and define the affine space
ũD +H1

0,∂ΩD
(Ω) = {ũD + v : v ∈ H1

0,∂ΩD
(Ω)}. Define the bilinear form

B(u, v) =
∫∫
Ω

p
∂u

∂x

∂v

∂x
+ q

∂u

∂y

∂v

∂y
+ ruv dx dy +

∫
∂ΩN

cuv ds

and the linear form

L(v) =
∫∫
Ω

fv dx dy +
∫

∂ΩN

gNv ds.

Then the variational form of the problem is to find the unique u ∈ ũD + H1
0,∂ΩD

(Ω)
that satisfies

B(u, v) = L(v) ∀v ∈ H1
0,∂ΩD

(Ω).

The energy norm of v ∈ H1
0,∂ΩD

is defined by ||v||2E(Ω) = B(v, v).
The finite element space is defined by partitioning Ω into a grid (or mesh), Ghp,

consisting of a set of NT triangular elements, {Ti}NT

i=1 with Ω̄ = ∪NT
i=1T̄i. If a vertex

of a triangle is contained in the interior of an edge of another triangle, it is called
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a hanging node. We only consider compatible grids with no hanging nodes, i.e. T̄i ∩
T̄j , i 6= j, is either empty, a common edge, or a common vertex. The diameter of the
element is denoted hi. With each element we associate an integer degree pi ≥ 1. The
finite element space Vhp is the space of continuous piecewise polynomial functions on
Ω such that over element Ti it is a polynomial of degree pi. The degree of an edge is
determined by applying either a minimum rule or a maximum rule over Ghp in which
the edge is assigned the minimum or maximum of the degrees of the adjacent elements,
respectively.

Let VD = {v ∈ Vhp : v = 0 on all Ti for which T̄i ∩ ¯∂ΩD = ∅}. Let ûD ∈ VD be a lift
function that approximates the Dirichlet boundary conditions via

(1) ûD = ûv + ûe where ûv is piecewise linear,
(2) ûv = gD at the element vertices on ∂ΩD, and
(3)

∫
∂ΩD

(ûe − (gD − ûv))v = 0 ∀v ∈ VD

The finite element solution is the unique function uhp ∈ ûD + (Vhp \ VD) that satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp \ VD.
The error is defined by ehp = u− uhp.

The finite element solution is expressed as a linear combination of basis functions
{φi}Ni=1 that span Vhp,

uhp =
N∑
i=1

αiφi(x, y).

N is called the number of degrees of freedom. For high order elements, there are a
number of basis sets used in practice. A number of the hp strategies of Section 4 rely
on the basis being a p-hierarchical basis in which the basis functions for a space of
degree p are a subset of the basis functions for a space of degree p + 1. In the results
of Section 5 the p-hierarchical basis of Szabo and Babuška [1991], which is based on
Legendre polynomials, is used.

The discrete form of the problem is a linear system of algebraic equations

Ax = b (4)

where the matrix A is given by Aji = B(φi, φj) and the right hand side is given by
bj = L(φj).

If h and p are uniform over the grid, u ∈ Hm(Ω), and the other usual assumptions
are met, then the a priori error bound is [Babuška and Suri 1987; Babuška and Suri
1990]

||ehp||H1(Ω) ≤ C
hµ

pm−1
||u||Hm(Ω) (5)

where µ = min(p,m − 1) and C is a constant that is independent of h, p and u, but
depends on m.

With a suitably chosen hp mesh, and other typical assumptions, the error can be
shown [Guo and Babuška 1986] to converge exponentially in the number of degrees of
freedom,

||ehp||H1(Ω) ≤ C1e
−C2N

1/3
(6)

for some C1 and C2 > 0 independent of N .

3. HP -ADAPTIVE REFINEMENT ALGORITHM
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begin with a very coarse grid
form and solve the linear system
repeat

determine which elements to refine and whether to refine by h or p
refine elements
form and solve the linear system

until some termination criterion is met

Fig. 1. Basic form of an hp-adaptive algorithm.

There are many variations on the basic form and details of an hp-adaptive algo-
rithm. In this section we describe the particular algorithm used for the results given
in Section 5. Note that some of the hp strategies in Section 4 require a different choice
for some of the details, or even a modification of the basic algorithm. These exceptions
will be noted in Section 4.

The basic form of the hp-adaptive algorithm is given in Figure 1.
For triangle h-refinement, the newest node bisection method [Mitchell 1991] is used.

Briefly, a parent triangle is h-refined by connecting its most recently created vertex to
the midpoint of the opposite side to form two new child triangles. This may require
first refining a chain of neighbor triangles to maintain compatibility of the grid. p-
refinement means increasing the degree of the element by one, followed by enforcing
the minimum rule for the edges.

Adaptive refinement is guided by a local a posteriori error indicator computed for
each element. For element Ti it is given by the approximate solution of a local Neu-
mann residual problem:

Lei = f − Luhp in Ti (7)
ei = 0 on ∂Ti ∩ ∂ΩD (8)
Bei = gN − Buhp on ∂Ti ∩ ∂ΩN (9)

Bei = −1
2

[
∂uhp
∂n

]
on (∂Ti \ ∂ΩD) \ ∂ΩN (10)

where L, B, f , gN , ∂ΩD, and ∂ΩN are defined in Equations 1-3,
[
∂uhp

∂n

]
is the jump

in the outward normal derivative of uhp across the element boundary, including the
coefficients of the natural boundary conditions, and in Equation 10 B is modified by
setting c(x, y) = 0. If the degree of Ti is pi, the approximate solution, ei,hp of Equations
7-10 is computed using the hierarchical bases of exact degree pi + 1, i.e. omitting the
bases of degree 0 through pi. The error indicator for element Ti is then given by

ηi = ||ei,hp||E(Ti)

The elements that are refined are those for which ηi/||uhp||E(Ω) > τ/10
√
NT for a pre-

scribed final error tolerance τ .
The primary criterion for program termination is that the relative energy norm of

the error be smaller than τ , i.e., ||ehp||E(Ω)/||uhp||E(Ω) < τ . An upper bound on the num-
ber of degrees of freedom is used as a secondary criterion to avoid run away programs
when convergence is slow.

The method for determining whether an element should be refined by h or by p is
called an hp-adaptive strategy. Several strategies have been proposed over the years.
Many of them will be described in the next section.
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4. THE HP -ADAPTIVE STRATEGIES
In this section, the hp-adaptive strategies that have been proposed in the literature are
briefly described. For brevity, many of the details have been omitted. For a detailed de-
scription of the strategies, see [Mitchell and McClain 2011a] or [Mitchell and McClain
2011b]. In some cases, these strategies were developed in the context of 1D problems,
rectangular elements, or other settings that are not fully compatible with the context
of this paper. In those cases, the strategy is appropriately modified for 2D elliptic PDEs
and newest node bisection of triangles.

4.1. Use of a priori Knowledge of Solution Regularity
It is well known that for smooth solutions p-refinement will produce an exponen-
tial rate of convergence, but near singularities p-refinement is less effective than h-
refinement. This is a consequence of the a priori error bound in Equation 5. For this
reason, many of the hp strategies use h-refinement in areas where the solution is irreg-
ular (i.e., locally fails to be in Hm for some finite m, also called nonsmooth) or nearly
irregular, and p-refinement elsewhere. The simplest strategy is to use any a priori
knowledge about irregularities. An hp-adaptive strategy of this type was presented by
Ainsworth and Senior [1999]. In this approach they simply flag vertices in the initial
mesh as being possible trouble spots. During refinement an element is refined by h if
it contains a vertex that is so flagged, and by p otherwise. We will refer to this strategy
by the name APRIORI.

4.2. Type parameter
Gui and Babuška [1986] presented an hp-adaptive strategy using what they call a type
parameter, γ. This strategy is also used by Adjerid, Aiffa and Flaherty [1998]. We will
refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi
and ηi,pi−1, define

R(Ti) =

{
ηi,pi

ηi,pi−1
ηi,pi−1 6= 0

0 ηi,pi−1 = 0

By convention, ηi,0 = 0, which forces p-refinement if pi = 1.
R is used to assess the perceived solution smoothness. Given the type parameter,

0 ≤ γ < ∞, element Ti is said to be of h-type if R(Ti) > γ, and of p-type if R(Ti) ≤ γ.
If element Ti is selected for refinement, then refine it by h-refinement if it is of h-type
and p-refinement if it is of p-type. Note that γ = 0 gives pure h-refinement and γ = ∞
gives pure p-refinement.

For the results of Section 5, we use γ = 0.3 if the solution has a singularity, and
γ = 0.6 otherwise. 1

4.3. Estimate Regularity Using Larger p Estimates
Ainsworth and Senior [1997] presented a strategy based on an estimate of the regu-
larity using three error estimates based on spaces of degree pi + 1, pi + 2 and pi + 3, so
we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the local
Neumann residual error estimate given by Equations 7-10 in which Equation 10 is
replaced by

Bei = gi on (∂Ti \ ∂ΩD) \ ∂ΩN

1The value for this parameter, and the parameters of the other strategies, was determined by a preliminary
experiment to determine a single value (or possibly two values dependent on singularness) that generally
works best, using a subset of the test problems.
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where gi is an approximation of Bu that satisfies an equilibrium condition. This is the
equilibrated residual error estimator in [Ainsworth and Oden 2000].

The local problem is solved on element Ti three times using the spaces of degree
pi + q, q = 1, 2, 3, to obtain error estimates ei,q. In contrast to the local Neumann
residual error estimate, the whole space over Ti is used, not just the p-hierarchical
bases of degree greater than pi. These approximations to the error converge to the true
solution of the residual problem at the same rate the approximate solution converges
to the true solution of Equations 1-3, i.e.

||ei − ei,q||E(Ti) ≈ C(pi + q)−α

where C and α are positive constants that are independent of q but depend on Ti. Using
the Galerkin orthogonality

||ei − ei,q||2E(Ti)
= ||ei||2E(Ti)

− ||ei,q||2E(Ti)

this can be rewritten

||ei||2E(Ti)
− ||ei,q||2E(Ti)

≈ C2(pi + q)−2α.

We can compute ||ei,q||2E(Ti)
and pi + q for q = 1, 2, 3 from the approximate solutions,

so the three constants ||ei||E(Ti), C and α can be approximated by fitting the data.
Then, using the a priori error estimate in Equation 5, the approximation of the local
regularity is mi = 1 + α. Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.

4.4. Estimate Regularity Using Smaller p Estimates
Another approach that estimates the regularity is given by Süli, Houston and Schwab
[2000]. This strategy is based on Equation 5 and an estimate of the convergence rate
in p using error estimates based on pi − 2 and pi − 1. We will refer to this strategy as
PRIOR2P.

Suppose the error estimate in Equation 5 holds on individual elements and that the
inequality is an approximate equality. Let ηi,pi−2 and ηi,pi−1 be a posteriori error esti-
mates for partial approximate solutions over triangle Ti using the bases up to degree
pi − 2 and pi − 1, respectively. Then

ηi,pi−1

ηi,pi−2
≈
(
pi − 1
pi − 2

)−(mi−1)

and thus the regularity is estimated by

mi ≈ 1− log(ηi,pi−1/ηi,pi−2)
log((pi − 1)/(pi − 2))

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.

4.5. Texas 3 Step
The Texas 3 Step strategy [Bey 1994; Oden and Patra 1995; Oden et al. 1992] first
performs h-refinement to get an intermediate grid, and follows that with p-refinement
to reduce the error to some given error tolerance, τ . We will refer to this strategy as
T3S. Note that for this strategy the basic form of the hp-adaptive algorithm is different
than that in Figure 1.

The first step is to create an initial mesh with uniform p and nearly uniform h such
that the solution is in the asymptotic range of convergence in h. The second step is
to perform adaptive h-refinement to reach an intermediate error tolerance γτ where
γ is a given parameter. In the references, γ is in the range 5 − 10, usually 6 in the
numerical results. This intermediate grid is created by computing a desired number of

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 W. F. Mitchell and M. A. McClain

children for each element Ti by a formula that is based on the a priori error estimate
in Equation 5. The discrete problem is then solved on the intermediate grid. The third
step is to perform adaptive p-refinement to reduce the error to the desired tolerance τ .
Again, a formula is used to determine the new degree for each element, p-refinement
is performed to increase the degree of each element to the desired degree, and the
discrete problem is solved on the final grid.

The strategy of performing all the h-refinement in one step and all the p-refinement
in one step is adequate for low accuracy solutions (e.g. 1%), but is not likely to work
well with high accuracy solution (e.g. 10−6 relative error) [Patra 2009]. We extend the
Texas 3 Step strategy to high accuracy by cycling through steps 2 and 3 until the final
tolerance τfinal is met. τ in the algorithm above is now the factor by which one cycle of
steps 2 and 3 should reduce the error. Toward this end, before step 2 the error estimate
η0 is computed for the current grid. The final (for this cycle) and intermediate targets
are now given by ηT = τη0 and ηI = γηT . In the results of Section 5 we use τ = 0.1 and
γ = 6.

4.6. Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S that
is more like the algorithm of Figure 1. The difference from T3S is that instead of
predicting the number of refinements needed to reduce the error to the next target,
the usual adaptive refinement is performed until the target is reached. Thus in step
2 all elements with an error indicator larger than ηI/

√
N0 are h-refined. The discrete

problem is solved and the new error estimate compared to ηI . This is repeated until
the error estimate is smaller than ηI . Step 3 is similar except adaptive p-refinement
is performed and the target is ηT . Steps 2 and 3 are repeated until the final error
tolerance is achieved.

4.7. Nonlinear Programming
Patra and Gupta [2001] proposed a strategy for hp mesh design using nonlinear pro-
gramming. We refer to this strategy as NLP. They presented it in the context of quadri-
lateral elements with one level of hanging nodes, i.e., an element edge is allowed to
have at most one hanging node. Here it is modified slightly for newest node bisection
of triangles with no hanging nodes. This is another approach that does not strictly
follow the algorithm in Figure 1.

Given a current grid with triangles {Ti}, degrees {pi}, h-refinement levels {li}, and
error estimates {ηi}, the object is to determine new mesh parameters {p̂i} and {l̂i}, i =
1..NT , by solving an optimization problem which can be informally stated as: minimize
the number of degrees of freedom subject to the error being less than a given tolerance
and other constraints. Computationally, the square of the error is approximated by∑NT

i=0 η̂
2
i where η̂i is an estimate of the error in the refined grid over the region covered

by Ti, and the number of degrees of freedom over the children of Ti is 2l̂i−li p̂2
i /2. Thus
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the optimization problem is

minimize
{l̂i}, {p̂i}

NT∑
i=1

2l̂i−li
p̂2
i

2
(11)

s.t.
NT∑
i=1

η̂2
i < τ̂2 (12)

l̂j − 1 ≤ l̂i ≤ l̂j + 1 ∀j such that Tj shares an edge with Ti (13)

0 ≤ l̂i ≤ lmax (14)
1 ≤ p̂i ≤ pmax (15)

li −∆ldec ≤ l̂i ≤ li + ∆linc (16)
pi −∆pdec ≤ p̂i ≤ pi + ∆pinc (17)

where τ̂ is the error tolerance for this refinement phase. Equation 13 is a necessary
condition for compatibility of the grid (in [Patra and Gupta 2001] it enforces one level
of hanging nodes). Equation 14 insures that coarsening does not go beyond the initial
grid, and that the refinement level of an element does not exceed a prescribed limit
lmax. Similarly, Equation 15 insures that element degrees do not go below one or ex-
ceed a prescribed limit pmax. Also, because many quantities are only approximate, it
is wise to limit the amount of change that occurs to any element during one phase of
refinement. Equations 16 and 17 restrict the amount of change that can occur at one
time.

Since the l̂i and p̂i are naturally integers, the optimization problem is a mixed integer
nonlinear program, which is known to be NP-hard. To make the problem tractable, the
integer requirement is dropped to give a nonlinear program which can be solved by
one of several software packages. For the results in Section 5, we used the program
ALGENCAN 2 Version 2.2.1 [Andreani et al. 2007; Birgin 2005]. Following solution of
the nonlinear program, the l̂i and p̂i are rounded to the nearest integer.

4.8. Predict Error Estimate on Assumption of Smoothness
Melenk and Wohlmuth [2001] proposed a strategy based on a prediction of what the
error should be if the solution is smooth. We call this strategy SMOOTH PRED.

When refining element Ti, assume the solution is locally smooth and that the op-
timal convergence rate is obtained. If h-refinement is performed and the degree of Ti
is pi, then the expected error on the two children of Ti is reduced by a factor of

√
2
pi

as indicated by the a priori error estimate of Equation 5. Thus if ηi is the error esti-
mate for Ti, predict the error estimate of the children to be γhηi/

√
2
pi where γh is a

user specified parameter. If p-refinement is performed on Ti, exponential convergence
is expected, so the error should be reduced by some constant factor γp ∈ (0, 1), i.e.,
the predicted error estimate of the p-refinement of Ti is γpηi. When the actual error
estimate of a child of Ti or p-refinement of Ti becomes available, it is compared to the
predicted error estimate. If the error estimate is less than or equal to the predicted
error estimate, then p-refinement is indicated for the child. Otherwise, h-refinement is
indicated since presumably the assumption of smoothness was wrong. For the results
in Section 5 we use γh = 2 and γp =

√
0.4.

2The mention of specific products, trademarks, or brand names is for purposes of identification only. Such
mention is not to be interpreted in any way as an endorsement or certification of such products or brands
by the National Institute of Standards and Technology. All trademarks mentioned herein belong to their
respective owners.
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4.9. Larger of h-Based and p-Based Error Indicators
In 1D, Schmidt and Siebert [2000] proposed a strategy that uses two a posteriori error
estimates to predict whether h-refinement or p-refinement will reduce the error more.
We extend this strategy to bisected triangles and refer to it as H&P ERREST.

The local Neumann residual error estimate given by Equations 7-10 is actually an
estimate of how much the norm of the solution will change if Ti is p-refined. This is be-
cause the approximate solution of the local problem is obtained using the p-hierarchical
bases that would be added if Ti is p-refined, so it is an estimate of the actual change
that would occur. Using the fact that the current space is a subspace of the refined
space and Galerkin orthogonality, it can be shown that

||u− ûhp||2 = ||u− uhp||2 − ||ûhp − uhp||2

where ûhp is the solution in the refined space. Thus the change in the solution indicates
how much the error will be reduced.

A second error estimate for Ti can be computed by solving a local Dirichlet problem

Lei = f − Luhp in Ti ∪ Tmate
i (18)

ei = gD − uhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩD (19)

Bei = gN − Buhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩN (20)

ei = 0 on
(
∂(Ti ∪ Tmate

i ) \ ∂ΩD
)
\ ∂ΩN (21)

where Tmate
i is the element that is refined along with Ti in the newest node bisec-

tion method [Mitchell 1991]. The solution to this problem is approximated by an h-
refinement of the two elements using only the new basis functions. The error estimate
obtained by taking the norm of this approximate solution is actually an estimate of
how much the solution will change, or the error will be reduced, if h-refinement is
performed.

Schmidt and Siebert divide the two error estimates by the associated increase in the
number of degrees of freedom to obtain an approximate error reduction per degree of
freedom. In addition or instead, one of the error estimates can be multiplied by a user
specified constant to bias the refinement toward h- or p-refinement. In the results of
Section 5 the p-based error estimate is multiplied by 2.

The type of refinement that is used is the one that corresponds to the larger of the
two modified error estimates.

4.10. Legendre coefficient strategies
We consider two hp-adaptive strategies that are based on the coefficients in an ex-
pansion of the solution in Legendre polynomials. In one dimension, the approximate
solution in element Ti with degree pi can be written

ui(x) =
pi∑
j=0

ajPj(x)

where Pj is the jth degree Legendre polynomial scaled to the interval of element Ti.
Mavriplis [1994] estimates the decay rate of the coefficients by a least squares fit of

the last four coefficients aj to Ce−σj . Elements are refined by p-refinement where σ > 1
and by h-refinement where σ ≤ 1. We refer to this strategy as COEF DECAY.

Houston et al. [2003] present an approach which uses the Legendre coefficients to
estimate the regularity of the solution. The regularity is estimated using the root test
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yielding

mi =
log
(

2pi+1
2a2

pi

)
2 log pi

.

If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi−1 and h-refinement
if pi > mi − 1. We refer to this strategy as COEF ROOT.

Both Mavriplis and Houston et al. presented the strategies in the context of one
dimension and use the Legendre polynomials as the local basis so the coefficients are
readily available. In [Houston et al. 2003] it is extended to 2D for rectangular elements
with a tensor product of Legendre polynomials, and the regularity is estimated in each
dimension separately, so the coefficients are still readily available. Eibner and Melenk
[2007] extended the COEF DECAY strategy to quadrisected triangles with an orthog-
onal polynomial basis. In this study we are using triangular elements which have a
basis that is based on Legendre polynomials [Szabo and Babuška 1991]. In this basis
there are 3+max(j−2, 0) basis functions of exact degree j over an element, so we don’t
have a unique Legendre polynomial coefficient to use for each degree. Instead, for the
coefficients aj we use the `1 norm of the coefficients of the degree j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 6=∅

|αk|

4.11. Reference Solution Strategies
Demkowicz and his collaborators developed an hp-adaptive strategy over a number
of years, presented in several papers and books, e.g. [Demkowicz 2007; Demkowicz
et al. 2002; Rachowicz et al. 1989; Šolı́n et al. 2004]. We refer to this strategy as REF-
SOLN EDGE because it relies on computing a reference solution and bases the refine-
ment decisions on edge refinements. Note that for this strategy the basic form of the
hp-adaptive algorithm is different than that in Figure 1.

The algorithm is first presented for 1D elliptic problems. Given the current exist-
ing mesh, Gh,p, and current solution, uh,p, a uniform refinement in both h and p is
performed to obtain a fine mesh Gh/2,p+1. The equation is solved on the fine mesh to
obtain a reference solution uh/2,p+1.

The next step is to determine the optimal refinement of each element. This is done by
considering a p-refinement and all possible (bisection) h-refinements (i.e., all possible
assignments of p to the two children of an h-refinement) that give the same increase in
the number of degrees of freedom as the p-refinement. In 1D, this means that the sum
of the degrees of the two children must be p+ 1, resulting in a total of p h-refinements
and one p-refinement to be examined. For each possibility, the error decrease rate is
computed as

|uh/2,p+1 −Πhp,iuh/2,p+1|2H1(Ti)
− |uh/2,p+1 −Πnew,iuh/2,p+1|2H1(Ti)

Nnew −Nhp

where Πhp,iuh/2,p+1 is the projection-based interpolant of the reference solution in el-
ement Ti, and Πnew,i is the projection onto the resulting elements from any one of the
candidate refinements. The refinement with the largest error decrease rate is selected
as the optimal refinement. In the case of h-refinement, the degrees may be increased
further by a process known as following the biggest subelement error refinement path,
which is also used to determine the guaranteed element rate; see [Demkowicz 2007]
for details.
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Elements that have a guaranteed rate larger than 1/3 the maximum guaranteed
rate are selected for refinement; the factor 1/3 is arbitrary.

The 2D algorithm also begins by computing a reference solution on the globally hp-
refined grid Gh/2,p+1. Then for each edge in the grid, the choice between p- and h-
refinement, the determination of the guaranteed edge rate, and the selection of edges
to refine are done exactly as in 1D, except that a weightedH1 seminorm is used instead
of the more natural H1/2 seminorm which is difficult to work with. In the case of
bisected triangles, we only consider edges that would be refined by the bisection of
an existing triangle.

The h-refinement of edges determines the h-refinement of elements. It remains to de-
termine the degree of each element. As a starting point, element degrees are assigned
to satisfy the minimum rule for edge degrees, using the edge degrees determined in
the previous step. Then the biggest subelement error refinement path is followed to
determine the guaranteed element rate and assignment of element degrees. We again
refer to [Demkowicz 2007] for details. Finally, the minimum rule for edge degrees is
enforced.

A related, but simpler, approach was developed by Šolı́n et al. [2008]. We refer to this
strategy as REFSOLN ELEM since it also begins by computing the reference solution,
but bases the refinement on elements. The basic form of the hp-adaptive algorithm is
different than that in Figure 1 for this strategy, also.

The local error estimate is given by the norm of the difference between the reference
solution and the current solution,

ηi = ||uh/2,p+1 − uh,p||H1(Ti)

and the elements with the largest error estimates are refined. If Ti is selected for
refinement, let p0 = b(pi + 1)/2c and consider the following options:

— p-refine Ti to degree pi + 1,
— p-refine Ti to degree pi + 2,
— h-refine Ti and consider all combinations of degrees p0, p0 + 1 and p0 + 2 in the

children.

In all cases the minimum rule is used to determine edge degrees. In [Šolı́n et al. 2008],
quadrisection of triangles is used leading to 83 options to consider. With bisection of
triangles, there are only 11 options. Also, since the object of dividing by two to get p0

is to make the increase in degrees of freedom from h-refinement comparable to that of
p-refinement, we use p0 = b(pi + 1)/

√
2c since there are only two children instead of

four.
For each candidate, the standard H1 projection ΠH1(Ti)

candidate of uh/2,p+1 onto the cor-
responding space is performed, and the projection error in the H1 norm, ζcandidate, is
computed,

ζcandidate = ||uh/2,p+1 −ΠH1(Ti)
candidateuh/2,p+1||H1(Ti)

as well as the projection error of the projection onto Ti, ζi.
Let Ni be the number of degrees of freedom in the space corresponding to Ti, and

Ncandidate the number of degrees of freedom in the space corresponding to a candidate.
After discarding candidates that seem to be outliers, select the candidate that maxi-
mizes

log ζi − log ζcandidate

Ncandidate −Ni
. (22)

Following the refinement that is indicated by the selected candidate, the minimum
rule for edge degrees is applied.
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This algorithm can be modified slightly to bias the refinement towards or away from
p refinement to improve the performance. Given a parameter pbias, multiply the value
from Equation 22 by it for all the p-refinement candidates. pbias > 1 will bias the
refinement toward doing p-refinement, and pbias < 1 will bias the refinement toward
doing h-refinement. For the results in Section 5 we use pbias = 2 for most problems,
and pbias = 4 for the analytic, mild wave front and both peak problems, which are the
easiest problems.

5. NUMERICAL RESULTS
This section contains the results of a numerical experiment to compare the hp-adaptive
strategies’ performance on a suite of 20 test problems with various difficulties that
adaptive refinement should locate. Two metrics are used to compare the strategies:
the number of degrees of freedom required to reach a given error tolerance, and the
computation time required to reach the tolerance. The test problems and numerical
results for each problem are given in Section 5.1, with a summary of the results in
Section 5.2.

The full details of the test problems can be found in [Mitchell 2013]. Here we just give
a brief description of each problem. Recall that Poisson’s equation is uxx+uyy = f(x, y)
and Laplace’s equation is Poisson’s equation with f = 0.

Each problem is solved with each hp strategy using the hp-adaptive algorithm of
Section 3, except for those strategies that dictate using a variation on that algorithm,
as indicated in Section 4. The problems are solved at low accuracy, typically τ = 10−2,
and high accuracy, typically τ = 10−6. At the end of each run the number of degrees of
freedom and total “wall clock” time to solution are recorded.

The results are given in bar charts in Figures 2–41. The gray bars indicate the num-
ber of degrees of freedom required to reach the tolerance, and the black bars indicate
the computation time required to reach the tolerance. All results are scaled by the
value of the strategy that performed best, so, for example, a value of 1.0 indicates the
best strategy, and a value of 0.2 indicates the strategy needed five times as many de-
grees of freedom or took five times longer than the best strategy. Instances where both
of the bars are missing indicate cases where the strategy was unable to achieve the
given tolerance within the allotted memory and time resources.

These computations were performed using the adaptive finite element code PHAML
Version 1.11.1 [Mitchell 2012] run as a sequential code on an Intel Xeon based
computer operating under the CentOS 6.4 release of Linux with kernel 2.6.32-
358.6.2.el6.x86 64. PHAML was compiled with the Intel Fortran compiler version 11.1.

5.1. Test Problems and Convergence Graphs
Analytic Solution. The analytic problem in [Mitchell 2013] is Poisson’s equation on
the unit square with Dirichlet boundary conditions. The solution is the polynomial

24pxp(1− x)pyp(1− y)p

with p = 10. 24p is a normalization factor so that the L∞ norm is 1.0. For the APRIORI
strategy, we choose to always refine by p, i.e., it is just p-adaptive refinement. Results
are shown in Figures 2–3.

Reentrant Corner, Nearly Straight. For elliptic partial differential equations, a
reentrant (concave) corner in the domain, with interior angle ω, causes a point sin-
gularity that behaves like rα where r is the distance from the corner and α = π/ω.
The larger ω is, the stronger the singularity. All the reentrant corner problems are
Laplace’s equation with Dirichlet boundary conditions on (−1, 1) × (−1, 1) with the
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Fig. 2. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the analytic problem.

Fig. 3. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the analytic problem.
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Fig. 4. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−4) solution of the nearly straight reentrant corner problem.

section from 2π − ω to 2π removed. The solution is

rα sin(αθ)

where r =
√
x2 + y2 and θ = tan−1(y/x).

For the nearly straight reentrant corner, ω = π+ .01. This is a very mild singularity.
In all the reentrant corner test problems, the APRIORI strategy refines by h if the
element contains the origin and by p otherwise. Results are shown in Figures 4–5.

Reentrant Corner, Wide Angle. This is the reentrant corner problem with ω =
5π/4. Results are shown in Figures 6–7.

Reentrant Corner, L-Shaped Domain. The reentrant corner problem with ω =
3π/2 is the classic “L domain” problem which is used as an example in many papers on
adaptive grid refinement. Results are shown in Figures 8–9.

Reentrant Corner, Narrow Angle. This is the reentrant corner problem with ω =
7π/4. Results are shown in Figures 10–11.

Reentrant Corner, Slit. This is the reentrant corner problem with ω = 2π. This
results in a domain that has a slit along the positive x axis. Results are shown in
Figures 12–13.

Linear Elasticity, Mode 1. The linear elasticity problem is a coupled system of
two equations with a mixed derivative in the coupling term and different coefficients
on the second order x and y terms. The domain is a square with a slit, as in the reen-
trant corner slit domain problem. The boundary conditions are Dirichlet. For further
details, see [Mitchell 2013]. We consider two solutions, referred to as mode 1 and mode
2, by using different boundary conditions. Both solutions have a singularity at the ori-
gin, with the mode 1 solution having the stronger singularity. For both problems, the
APRIORI strategy refines by h if the element contains the origin and by p otherwise.
Results are shown in Figures 14–15.
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Fig. 5. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−7) solution of the nearly straight reentrant corner problem.

Fig. 6. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the wide angle reentrant corner problem.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



Comparison of hp-Adaptive Strategies A:17

Fig. 7. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the wide angle reentrant corner problem.

Fig. 8. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the L-shaped domain problem.
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Fig. 9. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the L-shaped domain problem.

Fig. 10. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the narrow angle reentrant corner problem.
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Fig. 11. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the narrow angle reentrant corner problem.

Fig. 12. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the slit domain problem.
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Fig. 13. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the slit domain problem.

Fig. 14. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mode 1 linear elasticity problem.
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Fig. 15. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the mode 1 linear elasticity problem.

Linear Elasticity, Mode 2. This is the mode 2 solution of the linear elasticity prob-
lem. Results are shown in Figures 16–17.

Mild Peak. The peak problem contains a Gaussian peak in the interior of the do-
main. It is Poisson’s equation on the unit square with Dirichlet boundary conditions.
The solution is

e−α((x−xc)2+(y−yc)2)

where (xc, yc) is the location of the peak, and α determines the strength of the peak. For
the easy form of this problem, we use α = 1000 and (xc, yc) = (0.5, 0.5). The APRIORI
strategy refines by h if the element touches the center of the peak and by p otherwise.
Results are shown in Figures 18–19.

Sharp Peak. This is the hard version of the peak problem with α = 100000 and
(xc, yc) = (.51, .117). Results are shown in Figures 20–21.

Boundary Layer, Mild. The boundary layer problem is a convection-diffusion
equation with first order terms and Dirichlet boundary conditions on (−1, 1)× (−1, 1).
The solution is

(1− e−(1−x)/ε)(1− e−(1−y)/ε) cos(π(x+ y))

where ε controls the strength of the boundary layer. In the easy form of this problem
we use ε = 10−1. In the APRIORI strategy we refine by h if the element touches either
of the boundaries with a boundary layer, and by p otherwise. Results are shown in
Figures 22–23.

Boundary Layer, Strong. For the hard version of the boundary layer problem we
use ε = 10−3. Results are shown in Figures 24–25.

Oscillatory, Mild. The oscillatory problem contains several circular waves which
get closer together as you approach the origin. The PDE is a Helmholtz equation with
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Fig. 16. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mode 2 linear elasticity problem.

Fig. 17. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the mode 2 linear elasticity problem.
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Fig. 18. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mild peak problem.

Fig. 19. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the mild peak problem.
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Fig. 20. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the sharp peak problem.

Fig. 21. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the sharp peak problem.
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Fig. 22. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mild boundary layer problem.

Fig. 23. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the mild boundary layer problem.
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Fig. 24. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the strong boundary layer problem.

Fig. 25. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the strong boundary layer problem.
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Fig. 26. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mild oscillatory problem.

Dirichlet boundary conditions on the unit square. The solution is

sin(
1

α+ r
)

where r =
√
x2 + y2. The number of oscillations, N , is determined by the parameter

α = 1
Nπ . For the easy form of this problem we use N = 10.5. For APRIORI, refine by

h if the element touches the origin and by p otherwise. Results are shown in Figures
26–27.

Oscillatory, Strong. For the strong version of the oscillatory problem we use N =
50.5. Results are shown in Figures 28–29.

Wave Front, Mild. The circular wave front problem is often used as an example
in adaptive grid refinement papers. It is Poisson’s equation with Dirichlet boundary
conditions on the unit square. The solution is

tan−1(α(r − r0))

where r =
√

(x− xc)2 + (y − yc)2. The location of the wave front is defined by a circle
with radius r0 and center (xc, yc). α determines the steepness of the wave front. In
addition to the wave front, the solution has a mild singularity at the center of the circle,
if the center is located in the closure of the domain. For the easy form of this problem
we use α = 20, (xc, yc) = (−.05,−.05), and r0 = 0.7. The center is chosen outside the
domain so that only the wave front is a factor in the adaptivity, not the singularity.
With all the wave front problems, for the APRIORI strategy, refine by h if the element
touches the circle that defines the location of the wave front and has degree at least 3
(chosen arbitrarily, but works better than degree 1), and by p otherwise. Results are
shown in Figures 30–31.
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Fig. 27. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−4) solution of the mild oscillatory problem.

Fig. 28. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the strong oscillatory problem.
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Fig. 29. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−4) solution of the strong oscillatory problem.

Fig. 30. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the mild wave front problem.
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Fig. 31. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the mild wave front problem.

Wave Front, Steep. In the hard version of the wave front problem the location
of the wave front is the same, but it is much steeper. The parameters are α = 1000,
(xc, yc) = (−.05,−.05), and r0 = 0.7. Results are shown in Figures 32–33.

Wave Front, Asymmetric. The asymmetric wave front is similar to the steep wave
front except the wave front is not symmetric within the domain. The parameters are
α = 1000, (xc, yc) = (1.5, .25), and r0 = .92. Results are shown in Figures 34–35.

Singular Well. This is the wave front problem with the center of the circle placed
at the center of the domain and a relatively mild wave front, effectively creating a well
with a mild singularity at the center. α = 50, (xc, yc) = (.5, .5), and r0 = .25. For the
APRIORI strategy, refine by h if the element touches the circle that defines the location
of the wave front and has degree at least 3, or touches the center of the circle, and by
p otherwise. Results are shown in Figures 36–37.

Intersecting Interfaces. The intersecting interfaces problem has piecewise con-
stant coefficients which create a very strong singularity at the center of the domain
and discontinuous derivatives along the x and y axes. The boundary conditions are
Dirichlet on the domain (−1, 1) × (−1, 1). For the APRIORI strategy, refine by h if the
element touches the origin and by p otherwise. Results are shown in Figures 38–39.

Multiple Difficulties. The multiple difficulties problem combines several of the
difficulties of the other problems into a single problem. It contains a reentrant corner
point singularity, wave front, peak and boundary layer. For the selected parameters,
the peak falls on the wave front, and the wave front intersects the boundary layer and
point singularity. The parameters are:

— reentrant corner ω = 3π/2
— center of circle for wave front (0,−3/4)
— radius of circle for wave front 3/4
— strength of wave front α = 200
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Fig. 32. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the steep wave front problem.

Fig. 33. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the steep wave front problem.
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Fig. 34. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the asymmetric wave front problem.

Fig. 35. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the asymmetric wave front problem.
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Fig. 36. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the singular well problem.

Fig. 37. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the singular well problem.
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Fig. 38. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−1 solution of the intersecting interfaces problem.

Fig. 39. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−2) solution of the intersecting interfaces problem.
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Fig. 40. Relative performance of the strategies in degrees of freedom and wall clock time for low accuracy
(τ = 10−2) solution of the multiple difficulties problem.

Table I. Number of problems for which each strategy required less than twice as
many degrees of freedom as the best performing strategy.

low accuracy high accuracy
strategy easy hard singular easy hard singular
ALTERNATE 0 0 5 0 2 1
APRIORI 3 1 7 2 1 8
COEF DECAY 1 0 7 0 0 2
COEF ROOT 2 0 6 0 0 2
H&P ERREST 1 0 4 0 0 0
NEXT3P 2 1 4 0 1 0
NLP 2 0 4 0 0 0
PRIOR2P 2 0 4 0 0 1
REFSOLN EDGE 5 5 10 5 5 9
REFSOLN ELEM 5 5 10 5 4 8
SMOOTH PRED 0 0 0 0 0 1
T3S 1 0 1 0 2 0
TYPEPARAM 2 1 3 3 2 2

— center of peak (
√

5/4,−1/4)
— strength of peak α = 1000
— strength of boundary layer ε = 1/100

The APRIORI method refines by h in the same cases as it did in the individual prob-
lems. Results are shown in Figures 40–41.

5.2. Summary and Observations
In this section, we summarize the results in Section 5.1 to examine the relative perfor-
mance of the strategies in different situations. The test problems are grouped into six
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Fig. 41. Relative performance of the strategies in degrees of freedom and wall clock time for high accuracy
(τ = 10−6) solution of the multiple difficulties problem.

Table II. Number of problems for which each strategy required less than twice as
much computation time as the best performing strategy.

low accuracy high accuracy
strategy easy hard singular easy hard singular
ALTERNATE 1 0 5 1 0 1
APRIORI 3 2 4 3 2 8
COEF DECAY 5 2 8 3 4 6
COEF ROOT 3 2 7 2 3 9
H&P ERREST 3 2 8 2 4 5
NEXT3P 0 0 0 1 0 0
NLP 0 0 0 0 0 0
PRIOR2P 3 2 8 0 1 7
REFSOLN EDGE 0 0 0 0 0 1
REFSOLN ELEM 0 0 0 1 1 5
SMOOTH PRED 2 4 6 2 4 3
T3S 1 3 7 3 4 3
TYPEPARAM 3 2 7 4 0 1

categories: easy problems, hard problems, and singular problems at low accuracy and
high accuracy.

While the reader may draw personal conclusions from the data given in Section 5.1,
we use the following approach to attempt to summarize those results. We will consider
a method to have performed well on a given problem if it is no more than a factor of two
worse than the best performing method for that problem, i.e., no more than twice as
many degrees of freedom or twice as much computation time. In tables I and II we give
the number of problems in each of the six categories for which each strategy performed
well in terms of degrees of freedom and computation time, respectively. Bear in mind
there are five easy problems, five hard problems, and ten singular problems. Based on
these numbers, we make the following observations.
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The two reference solution strategies are clearly superior to the other strategies in
terms of degrees of freedom, except APRIORI also does well on singular problems.
However, the reference solution strategies perform poorly in terms of computation
time. Among the other strategies, most perform reasonably well in many categories
in terms of computation time, except ALTERNATE, NEXT3P and NLP. COEF DECAY
seems to have the best overall performance across categories. TYPEPARAM does well
with easy problems and SMOOTH PRED does well with hard problems. APRIORI,
COEF ROOT, H&P ERREST and PRIOR2P do well on singular problems.

6. CONCLUSION AND FUTURE WORK
In this paper we presented the results of a study of strategies for the hp-adaptive fi-
nite element method for 2D linear elliptic partial differential equations using newest
node bisection of triangles. The hp-strategies are methods for determining how to se-
lect between the different possibilities of h- and p-refinement. Thirteen strategies were
described and compared in a numerical experiment using 20 test problems. Two met-
rics for comparison were used: the relative energy norm of the error vs. the number of
degrees of freedom and vs. computation time.

We found that the REFSOLN EDGE and REFSOLN ELEM strategies performed
best in degrees of freedom, and are comparable to each other. However, they are
considerably more expensive than the other strategies, except NLP, in computation
time. These strategies may be useful for situations where one desires an optimal grid
that will be used many times. For problems with known point singularities and no
other significant features, APRIORI appears to be the less expensive method of choice.
COEF DECAY appears to be the best choice as a general strategy across all categories
of problems, whereas many of the other strategies perform well in particular categories
and are reasonable in general.

Since the determination of what strategies to include in this study, other strategies
have come to our attention or have come into existence [Bank and Nguyen 2011; Bürg
and Dörfler 2011; Wihler 2011]. For future work we will extend the results of this study
to include additional strategies as they are discovered. Also, we hope to use the lessons
learned from this study to develop a better general purpose hp-strategy. For example,
is it possible to get the excellent convergence performance of the reference solution
strategies without the expense of computing the reference solution by combining some
aspects of the reference solution strategies with some aspects of other strategies? Our
conclusion is that, at this time, there is still much opportunity for the development of
a general purpose hp-adaptive strategy that is both efficient and effective.
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