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Abstract. The hp version of the finite element method (hp-FEM) com-
bined with adaptive mesh refinement is a particularly efficient method
for solving partial differential equations (PDEs) because it can achieve
an exponential convergence rate in the number of degrees of freedom.
hp-FEM allows for refinement in both the element size, h, and the poly-
nomial degree, p. Like adaptive refinement for the h version of the finite
element method, a posteriori error estimates can be used to determine
where the mesh needs to be refined, but a single error estimate can not
simultaneously determine whether it is better to do the refinement by
h or p. Several strategies for making this determination have been pro-
posed over the years. In a recent study [Mitchell, W.F. and McClain,
M.A., ACM Trans. Math. Software 41(1), 2:1-2:39 (Oct 2014)], the effec-
tiveness of 13 strategies for 2D elliptic PDEs were compared in terms of
the number of degrees of freedom and computation time needed to reach
an error tolerance. This paper presents the results of a similar study
for 3D elliptic PDEs. It was found that the results are very similar to
those of the 2D study. For minimizing the computation time, the method
based on a priori knowledge is very effective when there are known point
singularities, and the method based on the decay rate of the expansion
coefficients is very effective across all categories of problems. For mini-
mizing the number of degrees of freedom, the method based on a priori
knowledge works well for easy problems and problems with singulari-
ties, and the method that uses a “type parameter” works well for hard
problems.

Keywords: adaptive mesh refinement, hp-adaptive strategy, hp-FEM, 3D el-
liptic partial differential equations

1 Introduction

The use of adaptive mesh refinement with the finite element method for the
numerical solution of partial differential equations (PDEs) has been studied for
more than 35 years now. For many years, most of the work focused on h-adaptive
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methods where the mesh size, h, is adapted locally by means of a local error
estimator with the goal of placing the smallest elements in the areas where they
will do the most good. Recently, the research community has begun to focus more
attention on hp-adaptive methods. In these methods, one not only locally adapts
the size of the mesh, but also the degree of the polynomials, p. The attraction of
hp-adaptivity is that the error converges at an exponential rate in the number
of degrees of freedom, as opposed to a polynomial rate for fixed p. The new
complication is that the local error estimator is no longer sufficient to guide the
adaptivity. It tells you which elements should be refined, but it does not indicate
whether it is better to refine the element by h or by p. A method for making
that determination is called an hp-adaptive strategy. A number of strategies have
been proposed over the years. Mitchell and McClain [13] performed a numerical
experiment to compare the effectiveness of 13 such strategies for 2D elliptic
PDEs under different situations. In this paper we present the results of a similar
experiment for 3D elliptic PDEs. We consider 7 of the hp-adaptive strategies from
[13]; those that did not perform well in terms of minimizing the computation
time to reach an error tolerance in the 2D experiment are not included.

As in [13], the comparison will be restricted to steady-state linear elliptic
partial differential equations on bounded domains. The standard Galerkin finite
element method will be used with the space of continuous piecewise polynomial
functions over tetrahedra that are refined by the bisection method of Arnold,
Mukherjee and Pouly [3].

The remainder of the paper is organized as follows. In Sect. 2 we briefly
review the hp-adaptive finite element algorithm used in the experiments. Sect.
3 defines the hp-adaptive strategies to be compared. Sect. 4 contains the results
of the experiments. Finally, we draw our conclusions in Sect. 5.

2 The Finite Element Method

In this section we briefly review the hp-adaptive finite element method used in
the experiment. This is a natural extension to 3D of the method described in
more detail in [13].

We consider the elliptic partial differential equation

Lu := −∇2u+ c(x, y, z)u = f(x, y, z) in Ω (1)

u = g(x, y, z) on ∂Ω (2)

where Ω is a bounded, connected, polyhedral, open region in IR3 with boundary
∂Ω.

We denote by Hm(Ω) the usual Sobolev spaces consisting of those functions
whose derivatives up to order m are in L2(Ω), with the usual Sobolev norms
|| · ||Hm(Ω). Define the bilinear form

B(u, v) =

∫
Ω

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
+
∂u

∂z

∂v

∂z
+ cuv (3)



and the linear form

L(v) =

∫
Ω

fv . (4)

The energy norm is defined by ||u||E(Ω) = B(u, u)1/2.
The finite element space is defined by partitioning Ω into a mesh, Ghp, con-

sisting of a set of NT tetrahedral elements, {Ti}NT

i=1 with Ω̄ = ∪NT
i=1T̄i. We only

consider compatible meshes, i.e. T̄i ∩ T̄j , i 6= j, is either empty, a common face,
a common edge, or a common vertex. The diameter of the element is denoted
hi. With each element we associate an integer degree pi ≥ 1. The finite element
space Vhp is the space of continuous piecewise polynomial functions on Ω such
that over element Ti it is a polynomial of degree pi. The degree of a face or an
edge is determined by applying the minimum rule in which the face or edge is
assigned the minimum of the degrees of the adjacent elements.

Let E be the set of edges of the mesh that are on ∂Ω. Let VD = {v ∈ Vhp :
v = 0 on all Ti for which T̄i ∩ ∂Ω = ∅}. Let ûD ∈ VD be a lift function that
approximates the Dirichlet boundary conditions via

– ûD = ûv + ûe + ûf where ûv is piecewise linear and ûf is 0 on E,
– ûv = g at the element vertices on ∂Ω,
–
∫
E

(ûe − (g − ûv))v = 0 ∀v ∈ VD, and
–
∫
∂Ω

(ûf − (g − ûv − ûe))v = 0 ∀v ∈ VD.

The finite element solution is the unique function uhp ∈ ûD + (Vhp \ VD) that
satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp \ VD . (5)

The error is defined by ehp = u− uhp.
The finite element solution is expressed as a linear combination of basis

functions {φi}Ni=1 that span Vhp,

uhp =

N∑
i=1

αiφi(x, y, z) . (6)

We use the p-hierarchical basis of Szabo and Babuška [16].
The discrete form of the problem is a linear system of algebraic equations

Ax = b (7)

where the matrix A is given by Aji = B(φi, φj) and the right hand side is given
by bj = L(φj).

If h and p are uniform over the mesh, u ∈ Hm(Ω), and the other usual
assumptions are met, then the a priori error bound is [4]

||ehp||H1(Ω) ≤ C
hµ

pm−1
||u||Hm(Ω) (8)

where µ = min(p,m− 1) and C is a constant that is independent of h, p and u,
but depends on m.



With a suitably chosen hp mesh, and other typical assumptions, the error
can be shown [6] to converge exponentially in the number of degrees of freedom,
N ,

||ehp||H1(Ω) ≤ C1e
−C2N

1/3

(9)

where C1 and C2 > 0 are constants that are independent of N .

begin with a very coarse mesh

form and solve the linear system

repeat

determine which elements to refine and whether to refine by h or p

refine elements

form and solve the linear system

until some termination criterion is met

Fig. 1. Basic form of an hp-adaptive algorithm.

The basic form of the hp-adaptive algorithm is given in Fig. 1.
For h-refinement, we use the bisection method of Arnold, Mukherjee and

Pouly [3], while p-refinement means increasing the degree of the element by
one, followed by enforcing the minimum rule for the faces and edges. Adaptive
refinement is guided by an explicit a posteriori error estimate (see, for example,
[1]). For element Ti with degree pi, the error estimate, ηi, is given by

η2i =
h2i
p2i
||r||2L2(Ti)

+
hi
2pi
||R||2L2(∂Ti)

(10)

where r is the interior residual

r = f +∇2uhp − cuhp (11)

and R is the jump in the outward normal derivative of uhp across the element
boundary. The elements chosen to be refined are those for which the error es-
timate is larger than one tenth of the largest error estimate. The strategies for
determining whether to refine by h or p will be described in Sect. 3.

The primary criterion for program termination is that the relative energy
norm of the error be smaller than a given tolerance τ , i.e., ||ehp||E(Ω)/||u||E(Ω) <
τ . An upper bound on the number of degrees of freedom is used as a secondary
criterion to avoid run away programs when convergence is slow.

3 The hp-Adaptive Strategies

This section describes the hp-adaptive strategies. The extension of the strate-
gies from 2D to 3D is straight forward, so there is little difference between these



descriptions and those in [13]. For brevity, many of the details have been omit-
ted. For a detailed description of the strategies, see [12]. The values used for the
parameters of the strategies were determined by a preliminary experiment to de-
termine a single value (or possibly two values dependent on possible singularity)
that generally works best using a subset of the test problems, and are generally
different than those used in the 2D experiment.

3.1 Use of a priori Knowledge of Solution Regularity

A consequence of the a priori error bound in 8 is that for smooth solutions
p-refinement will produce an exponential rate of convergence, but near singu-
larities p-refinement is less effective than h-refinement. For this reason, many of
the hp strategies use h-refinement in areas where the solution is irregular (i.e.,
locally fails to be in Hm for some finite m) or nearly irregular, and p-refinement
elsewhere. The simplest strategy is to use any a priori knowledge about irregu-
larities. Ainsworth and Senior [2] simply flag vertices in the initial mesh as being
possible trouble spots, and use h-refinement for elements that contain a flagged
vertex and p-refinement elsewhere. We will refer to this strategy by the name
APRIORI.

3.2 Type Parameter

Gui and Babuška [5] presented an hp-adaptive strategy using what they call a
type parameter, γ. We will refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi and ηi,pi−1, define

R(Ti) =

{
ηi,pi
ηi,pi−1

ηi,pi−1 6= 0

0 ηi,pi−1 = 0
(12)

where by convention, ηi,0 = 0, which forces p-refinement if pi = 1.
The quantity R is used to assess the perceived solution smoothness. Given the

type parameter, 0 ≤ γ < ∞, element Ti is refined by h-refinement if R(Ti) > γ
and by p-refinement if R(Ti) ≤ γ.

For the results of Sect. 4, we use γ = 0.6 if the solution has a singularity, and
γ = 1.2 otherwise.

3.3 Estimate Regularity Using Smaller p Estimates

One approach that estimates the regularity is given by Süli, Houston and Schwab
[15]. This strategy is based on 8 and an estimate of the convergence rate in p
using error estimates based on pi − 2 and pi − 1. We will refer to this strategy
as PRIOR2P.

Suppose the error estimate in 8 holds on individual elements and that the
inequality is an approximate equality. Let ηi,pi−2 and ηi,pi−1 be a posteriori error
estimates for partial approximate solutions over triangle Ti using the bases up to



degree pi − 2 and pi − 1, respectively. Then assuming equality in 8, substituting
in the error estimates and pi’s, and taking the ratio, one gets

ηi,pi−1
ηi,pi−2

≈
(
pi − 1

pi − 2

)−(mi−1)

(13)

and thus the regularity is estimated by

mi ≈ 1− log(ηi,pi−1/ηi,pi−2)

log((pi − 1)/(pi − 2))
. (14)

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.

3.4 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [9] proposed a strategy based on a prediction of what the
error should be if the solution is smooth. We call this strategy SMOOTH PRED.

When refining element Ti, assume the solution is locally smooth and that
the optimal convergence rate is obtained. If h-refinement is performed, then the
expected error on the two children of Ti is reduced by a factor of 3

√
2
pi

as
indicated by 8. (This is different from the 2D case where it is

√
2 instead of

3
√

2.) Thus if ηi is the error estimate for Ti, predict the error estimate of the

children to be γhηi/
3
√

2
pi

where γh is a user specified parameter. If p-refinement
is performed on Ti, exponential convergence is expected, so the error should be
reduced by some constant factor γp ∈ (0, 1), i.e., the predicted error estimate
of the p-refinement of Ti is γpηi. When the actual error estimate of a child
of Ti or p-refinement of Ti becomes available, it is compared to the predicted
error estimate. If the error estimate is less than or equal to the predicted error
estimate, then p-refinement is indicated for the child. Otherwise, h-refinement
is indicated since presumably the assumption of smoothness was wrong. For the
results in Sect. 4 we use γh = 4 and γp =

√
0.4.

3.5 Larger of h-Based and p-Based Error Indicators

In 1D, Schmidt and Siebert [14] proposed a strategy that uses two a posteriori
error estimates to predict whether h-refinement or p-refinement will reduce the
error more. We extend this strategy to bisected tetrahedra and refer to it as
H&P ERREST.

One error estimate is given by the local Neumann problem

Lei = f − Luhp in Ti (15)

ei = 0 on ∂Ti ∩ ∂Ω (16)

∂ei
∂n

= −1

2

[
∂uhp
∂n

]
on ∂Ti \ ∂Ω (17)



where
[
∂uhp

∂n

]
is the jump in the outward normal derivative of uhp across the

element boundary. The solution of this equation is approximated using the p-
hierarchical bases of exact degree pi + 1, i.e., bases up to degree pi are omitted.
It can be shown [13] that the norm of this approximation of ei is actually an
estimate of how much the error will be reduced if this element is p-refined.

A second error estimate is given by approximately solving the local problem

Lui = f in Ti (18)

∂ui
∂n

= 0 on ∂Ti,1 (19)

ui = 0 on ∂Ti,2 (20)

where ∂Ti,1 is the edge and two faces that would be bisected if Ti is h-refined,
and ∂Ti,2 is the rest of the boundary of Ti. The solution of this equation is
approximated using an h-refinement of Ti and the error estimate ei = ui − uhp
is computed. The norm of this approximate solution is actually an estimate of
how much the error will be reduced if this element is h-refined.

For more flexibility, one of the error estimates can be multiplied by a user
specified constant to bias the refinement toward h- or p-refinement. In the results
of Sect. 4 the p-based error estimate is multiplied by 2.

The type of refinement that is used is the one that corresponds to the larger
of the two modified error estimates.

3.6 Decay Rate of Coefficients

In one dimension, the approximate solution in element Ti with degree pi can be
written

ui(x) =

pi∑
j=0

ajPj(x) (21)

where Pj is the jth degree Legendre polynomial scaled to the interval of element
Ti. Mavriplis [8] estimates the decay rate of the coefficients by a least squares
fit of the last four coefficients aj to Ce−σj . Elements are refined by p-refinement
where σ > 1 and by h-refinement where σ ≤ 1. We refer to this strategy as
COEF DECAY.

In this paper we are using tetrahedral elements which have a p-hierarchical
basis that is based on Legendre polynomials [16]. In this basis, an element of
degree pi has 4 basis functions of degree 1 and (j + 1)(j + 2)/2 basis functions
of exact degree j, 1 < j ≤ pi, so we don’t have a unique Legendre polynomial
coefficient to use for each degree. Instead, for the coefficients aj we use the `1
norm of the coefficients of the degree j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 6=∅

|αk| . (22)



3.7 Root Test on Coefficients

Houston et al. [7] present an approach which uses the Legendre coefficients to
estimate the regularity of the solution. The regularity is estimated using the root
test yielding

mi =
log
(

2pi+1
2a2pi

)
2 log pi

. (23)

If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi − 1 and h-
refinement if pi > mi − 1. We use the modified aj of Sect. 3.6 and refer to this
strategy as COEF ROOT.

4 Numerical Results

This section contains the results of numerical experiments to compare the hp-
adaptive strategies’ performance on a suite of 8 test problems with various diffi-
culties that adaptive refinement should locate. Two metrics are used to compare
the strategies: the number of degrees of freedom required to reach a given error
tolerance, and the computation time required to reach the tolerance. The test
problems and numerical results for each problem are given in Sect. 4.1, with a
summary of the results in Sect. 4.2. Each problem is characterized as being easy,
hard or singular. A problem is singular if the solution has a singularity in the
closure of the domain. We consider a problem to be hard if it requires a large
amount of resources to resolve the difficulty, and easy otherwise. In this paper,
we consider a problem to be easy if it can be solved by most of the strategies to
a tolerance of 10−4 with fewer than 2 million degrees of freedom. For the hard
problems, many of the strategies require much more than 2 million degrees of
freedom for that tolerance, so a larger tolerance is used.

These test problems come from the NIST AMR benchmark suite [11]. Recall
that Poisson’s equation is −∇2u = f(x, y, z) and Laplace’s equation is Poisson’s
equation with f = 0. All problems have Dirichlet boundary conditions.

Each problem is solved with each hp strategy using the hp-adaptive algo-
rithm of Sect. 2. The problems are solved with low accuracy and high accuracy
tolerances. At the end of each run the number of degrees of freedom and total
“wall clock” time to solution are recorded.

The results are given in bar charts in Figs. 2–9. The gray bars indicate the
number of degrees of freedom required to reach the tolerance, and the black bars
indicate the computation time required to reach the tolerance. All results are
scaled by the value of the strategy that performed best, so, for example, a value
of 1.0 indicates the best strategy, and a value of 0.2 indicates the strategy needed
five times as many degrees of freedom or took five times longer than the best
strategy. Instances where both of the bars are missing indicate cases where the
strategy was unable to achieve the given tolerance within the allowed number of
degrees of freedom.



These computations were performed using the adaptive finite element code
PHAML Version 1.16.1 [10] run as a sequential code on a 2.6 GHz Intel Xeon E5-
2630 v2 based computer operating under the CentOS 5.11 release of Linux with
kernel 2.6.18-274.3.1.el5. PHAML was compiled with the Intel Fortran compiler
version 15.0.3. 1

4.1 Test Problems and Convergence Graphs

Polynomial. This is a simple problem with a polynomial solution. It is Poisson’s
equation on the unit cube. The solution is the polynomial

64qxq(1− x)qyq(1− y)qzq(1− z)q (24)

with q = 10. 64q is a normalization factor so that the L∞ norm is 1.0. The
tolerances are τ = 10−2 for low accuracy and τ = 10−4 for high accuracy. For
the APRIORI strategy, we choose to always refine by p, i.e., it is just p-adaptive
refinement. This is categorized as an easy problem. Results are shown in Fig. 2.
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Fig. 2. Relative performance of the strategies in degrees of freedom and wall clock time
for low accuracy (τ = 10−2) and high accuracy (τ = 10−4) solution of the polynomial
problem.

Peak. The peak problem contains a Gaussian peak in the interior of the
domain. It is Poisson’s equation on the unit cube. The solution is

e−α((x−xc)
2+(y−yc)2+(z−zc)2) (25)

where (xc, yc, zc) is the location of the peak, and α determines the strength of
the peak. We use α = 105 and (xc, yc, zc) = (0.5, 0.5, 0.5). The tolerances are

1 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards
and Technology. All trademarks mentioned herein belong to their respective owners.



τ = 10−2 for low accuracy and τ = 10−4 for high accuracy. The APRIORI
strategy refines by h if the element touches the center of the peak and by p
otherwise. This is categorized as an easy problem. Results are shown in Fig. 3.
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Fig. 3. Relative performance of the strategies in degrees of freedom and wall clock
time for low accuracy (τ = 10−2) and high accuracy (τ = 10−4) solution of the peak
problem.

Mild Wave Front. The 2D circular wave front problem is often used as an
example in adaptive mesh refinement papers. This is a 3D version of it with a
spherical wave front. It is Poisson’s equation on the unit cube. The solution is

tan−1(α(r − r0)) (26)

where r =
√

(x− xc)2 + (y − yc)2 + (z − zc)2. The location of the wave front is
defined by a sphere with radius r0 and center (xc, yc, zc). The scalar α determines
the steepness of the wave front. For the easy form of this problem we use α = 20,
(xc, yc, zc) = (−.05,−.05,−.05), and r0 = 0.7. The center is chosen outside the
domain so that only the wave front is a factor in the adaptivity, not the mild
singularity at the center of the sphere. The tolerances are τ = 10−2 for low
accuracy and τ = 2× 10−4 for high accuracy. For the APRIORI strategy, refine
by h if the element touches the sphere that defines the location of the wave front,
and by p otherwise. Results are shown in Fig. 4.

Strong Wave Front. In the hard version of the wave front problem the
location of the wave front is the same, but it is much steeper. The parameters
are α = 100, (xc, yc, zc) = (−.05,−.05,−.05), and r0 = 0.7. The tolerances are
τ = 5× 10−2 for low accuracy and τ = 6× 10−3 for high accuracy. Results are
shown in Fig. 5.

Boundary Layer. The boundary layer problem is a convection-diffusion
equation with first order terms on (−1, 1)× (−1, 1)× (−1, 1). The equation is

− ε∇2u+ 2
∂u

∂x
+
∂u

∂y
+
∂u

∂z
= f (27)
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Fig. 4. Relative performance of the strategies in degrees of freedom and wall clock time
for low accuracy (τ = 10−2) and high accuracy (τ = 2 × 10−4) solution of the mild
wave front problem.
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Fig. 5. Relative performance of the strategies in degrees of freedom and wall clock
time for low accuracy (τ = 5× 10−2) and high accuracy (τ = 6× 10−3) solution of the
strong wave front problem.



and the solution is

(1− e−(1−x)/ε)(1− e−(1−y)/ε)(1− e−(1−z)/ε) cos(π(x+ y + z)) (28)

where ε controls the strength of the boundary layer. We use ε = 10−1. The
tolerances are τ = 2 × 10−2 for low accuracy and τ = 10−3 for high accuracy.
In the APRIORI strategy we refine by h if the element touches any of the
boundaries with a boundary layer, and by p otherwise. This is categorized as a
hard problem. Results are shown in Fig. 6.
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Fig. 6. Relative performance of the strategies in degrees of freedom and wall clock time
for low accuracy (τ = 2×10−2) and high accuracy (τ = 10−3) solution of the boundary
layer problem.

Oscillatory. The oscillatory problem contains several waves that form spher-
ical shells which get closer together as you approach the origin. The PDE is a
Helmholtz equation on the unit cube. The equation is

−∇2u− 1

(α+ r)4
u = f (29)

and the solution is

sin

(
1

α+ r

)
(30)

where r =
√
x2 + y2 + z2. The number of oscillations, N , is determined by the

parameter α = 1
Nπ . We use N = 10. The tolerances are τ = 2 × 10−2 for low

accuracy and τ = 10−3 for high accuracy. For APRIORI, refine by h if the
element touches the origin and by p otherwise. This is categorized as a hard
problem. Results are shown in Fig. 7.

Fichera Corner with Vertex Singularity. The Fichera corner is the 3D
analogue of the 2D L-domain problem. It is Poisson’s equation on (−1, 1)3 \
[0, 1)3, i.e., a cube with one octant removed. In the vertex singularity form of
the problem, the solution is (√

x2 + y2 + z2
)q

. (31)
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Fig. 7. Relative performance of the strategies in degrees of freedom and wall clock
time for low accuracy (τ = 2 × 10−2) and high accuracy (τ = 10−3) solution of the
oscillatory problem.

The parameter q determines the strength of the singularity at the origin; the
Sobolev regularity is 1.5 + q. We use q = 1/2. The tolerances are τ = 10−2 for
low accuracy and τ = 2.5 × 10−4 for high accuracy. For APRIORI, refine by h
if the element contains the origin and pi + 1 > 1.5 + q, and by p otherwise. This
is categorized as a singular problem. Results are shown in Fig. 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

apriori

coef_decay

coef_root

hp_errest

prior2p

sm
ooth_pred

typeparam

Fichera Vertex Singularity, low accuracy

dof
time

 0

 0.2

 0.4

 0.6

 0.8

 1

apriori

coef_decay

coef_root

hp_errest

prior2p

sm
ooth_pred

typeparam

Fichera Vertex Singularity, high accuracy

dof
time

Fig. 8. Relative performance of the strategies in degrees of freedom and wall clock time
for low accuracy (τ = 10−2) and high accuracy (τ = 2.5×10−4) solution of the Fichera
corner with vertex singularity problem.

Fichera Corner with Vertex and Edge Singularities. In the vertex and
edge singularities form of the Fichera corner problem, the domain is the same,
but the Poisson equation is

−∇2u = 1/r (32)

where r =
√
x2 + y2 + z2. The solution is singular along the edges of the reen-

trant octant as well as at the origin. The exact solution is not known. To measure



the error, the computed solution is compared to a more accurate reference solu-
tion, which has an estimated energy norm error of 1.69 × 10−3. The tolerances
are τ = 5 × 10−2 for low accuracy and τ = 6 × 10−3 for high accuracy. For
APRIORI, refine by h if the element contains the origin or one of the reentrant
edges and pi + 1 > 1.5, and by p otherwise. This is categorized as a singular
problem. Results are shown in Fig. 9.
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Fig. 9. Relative performance of the strategies in degrees of freedom and wall clock
time for low accuracy (τ = 5× 10−2) and high accuracy (τ = 6× 10−3) solution of the
Fichera corner with vertex and edge singularities problem.

4.2 Summary and Observations

Table 1. Number of problems for which each strategy required less than twice as many
degrees of freedom as the best performing strategy.

low accuracy high accuracy
strategy easy hard singular easy hard singular

APRIORI 2 1 2 2 1 2
COEF DECAY 0 1 0 1 1 1
COEF ROOT 0 1 1 0 1 1
H&P ERREST 2 0 1 2 0 1
PRIOR2P 0 1 1 0 1 1
SMOOTH PRED 0 1 0 0 1 0
TYPEPARAM 0 2 1 2 2 1

In this section, we summarize the results in Sect. 4.1 to examine the rela-
tive performance of the strategies in different situations. The test problems are
grouped into six categories: easy problems, hard problems, and singular problems
at low accuracy and high accuracy.



Table 2. Number of problems for which each strategy required less than twice as much
computation time as the best performing strategy.

low accuracy high accuracy
strategy easy hard singular easy hard singular

APRIORI 1 1 1 1 1 1
COEF DECAY 2 1 1 2 1 2
COEF ROOT 2 1 1 0 1 1
H&P ERREST 2 0 1 2 0 1
PRIOR2P 2 1 1 1 1 1
SMOOTH PRED 3 0 0 2 1 1
TYPEPARAM 1 1 1 1 1 0

While the reader may draw personal conclusions from the data given in Sect.
4.1, we use the following approach to attempt to summarize those results. We
will consider a method to have performed well on a given problem if it is no more
than a factor of two worse than the best performing method for that problem, i.e.,
no more than twice as many degrees of freedom or twice as much computation
time. In Table 1 we give the number of problems in each of the six categories
for which each strategy performed well in terms of minimizing the number of
degrees of freedom to reach the error tolerance (hereinafter dof) and in Table 2
the number that performed well in terms of minimizing the computation time
to reach the error tolerance (hereinafter time). Bear in mind there are three
easy problems, three hard problems, and two singular problems. Based on these
numbers, we make the following observations.

The overall performance of the strategies can be assessed by examining the
row sums from Tables 1 and 2. For dof, APRIORI is best with TYPEPARAM
a close second. SMOOTH PRED is the worst and COEF DECAY is tied for
next to worst. But for time the results are just the opposite. COEF DECAY is
best with SMOOTH PRED tied for second, and TYPEPARAM is worst with
APRIORI tied for next to worst. This is counter intuitive, but may be due to
APRIORI and TYPEPARAM tending to perform more p refinement (typically
topping off at degree 8 to 10 for the low tolerance results) than SMOOTH PRED
and COEF DECAY (typically topping off at degree 5 to 7). The higher degree
elements can obtain higher accuracy with fewer degrees of freedom, but are
computationally more expensive in number of operations to evaluate the basis
functions, number of quadrature points needed, density of the stiffness matrix,
etc.

Looking at the counts for individual categories in the dof table, APRIORI
was best in the easy and singular problems for both low and high accuracy, while
TYPEPARAM was best for the hard problems in both low and high accuracy.
Also of note is H&P ERREST tying for best in the easy problems, again for
both low and high accuracy. We note there is very little difference between the
low accuracy and high accuracy results.

In the individual results for time, SMOOTH PRED works particularly well
for easy problems, but not for the hard and singular problems, especially at low



accuracy. COEF DECAY dominates Table 2 by tying for best in every category
except for easy problems at low accuracy, where SMOOTH PRED was best.
This indicates that COEF DECAY is a good choice as a general purpose strategy
when minimizing the computation time is the objective.

From Fig. 8 we see that APRIORI dominates in both dof and time for the
problem with a point singularity. We also observe this for the peak (Fig. 3)
and oscillatory (Fig. 7) problems. For all three of these problems, the APRIORI
strategy refines by h when an element contains a certain point and by p otherwise.
This suggests that APRIORI works well not only for problems with singularities
at known points, but also nonsingular problems where the difficulty is localized
around known points.

5 Conclusion

In this paper we presented the results of a study of strategies for the hp-adaptive
finite element method for 3D linear elliptic partial differential equations using
bisection of tetrahedra. The hp-strategies are methods for determining how to
select between the different possibilities of h- and p-refinement. Seven strategies
were described and compared in a numerical experiment using eight test prob-
lems. Two metrics for comparison were used: the number of degrees of freedom
needed to reach a tolerance in the relative energy norm of the error, and the
computation time needed to reach that tolerance.

We found that if the objective is to minimize the number of degrees of free-
dom, APRIORI works best for easy and singular problems, and TYPEPARAM
is best for hard problems. If the objective is to minimize the computation time,
COEF DECAY is a good general strategy, although SMOOTH PRED might be
considered for easy problems and APRIORI is good for problems with known
point singularities and problems where the difficulty is localized around known
points. These conclusions are similar to those drawn for 2D elliptic PDEs in [13],
which recommends APRIORI for problems with known point singularities and
COEF DECAY as the best choice as a general strategy.
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