SToPWaTCH User's (Guide Version 1.0

William F. Mitchell
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

December 20, 1996

Abstract

SToPWaTCH I8 & Fortran 90 module for portable, easy-to-use measurement of execution
time. It supports four clocks = wall clock, CPU clock, user CPU clock and system CPU clock
= and returns all times in seconds. It provides a simple means of determining which clocks
are availahle, and the precision of those clocks. SToOPWATCH is used by instrumenting your
code with subroutine calls that mimic the operation of & stop watch. SToPWATCH supports
multiple watches, and provides the concept of watch groups to allow functions to operate
on multiple watches simultaneounsly.

The STorWarcH software and documentation have been produoced as part of work done
by the U.5. Government, and are not subject to copyright in the United States.

The mention of specific products, trademarks, or brand names in the STorWarch
docomentation is for purposes of identification only. Such mention is not to be interpreted
in any way as an endorsement or certification of such products or brands by the National
Institute of Standards and Technology. All trademarks mentioned herein belong to their
respective OwWners.

Contents

1 Introduction 2
2 Quick Start 3
3 Obtaining and Compiling STorWaATCH 4
4 Using STOPWATCH 5
4.1 Watches, Clocks and Watch Grouwps .~ 5
42 Operations on Watches L L L. e e e e e T
4.3 Operations on Watch Groups _ L. B
44 Options and System Imguiries B

5 Examples 10
& Trouble Shooting 11
T Subroutine cpu_second 13
8 Acknowledgments 14
8 Reference Manual 15
CREATE WATCHGROUPR e it e 16
CREATE WATCH e e i et et e 18
DESTROY WATCHGROUP, 21
DESTROY WATCH e e e e it et e e 23

END PAUSEWATCH e e 26

INQUIRY STOPWATCH e et e aa 29

JOIN . WATCHGROUE o e et e e 31

LEAVE WATCHGROUP e e i et e a 33
OPFTION STOPWATCH o . et i5
PATUSE_WATCH e e e et et e e 38

PRINT WATCH e e e e e e e et e e e 41

READ WATCH e e e e e e e e e 44

RESET WATCH e e e it et et 47

START WATCH e e i et e &0
STOPWATCH e e e e e e e 53

Chapter 1

Introduction

STorWarcH is a Fortran ™) module for measuring execntion time of program segments.
Measuring execution time is an important part of software development, especially for
benchmarking and performance tuning. Unfortunately, Fortran has never supported the
measurement of execution time, except through non-portable vendor extensions. Fortran
80 introduced a subroutine for measuring wall clock time, but overlooked the more desirable
CPT time. It is anticipated that the next Fortran standard, Fortran 85, will include a CPU
time subroutine, but it does not break the time into “user®™ and “system® time like many
CPU clock routines, and the standard still does not gouarantes that either the wall clock
or OPT clock routines will necessarily contain clock information. Moreover, direct use of
the routines can be unwieldy, requiring multiple variables to keep track of returned values,
differencing the returned values, and conversion of the values to useful units.

SToPWATCH is designed to be a portable, easy-to-use means of measuring execution
time. It supports the wall clock, CPU clock, & breakdown of the CPU clock into user and
gystem times, and returns all times in seconds. It provides & simple means of determining
which clocks are svailable, and the precision of those clocks. It is written in a style that
allows it to be used with the subset langnages ELFM) and F, as well as full Fortran 90 and
Fortran 95 compilers.

SToPWATCH is used by instrumenting your code with subroutine calls that mimic the op-
eration of & stop watch. The primary routines are start_watch, stop_watch, reset_watch,
read _watch and print_wateh, STorWarcd supports multiple watches, and provides the
concept of watch groups to allow functions to operate on multiple watches simultaneously.

Chapter 2

Quick Start

This section provides just emough information to start using the basic features of SToP-
WarcH. If you run into trouble or want o learn about the advanced features, read the rest
of the SToPWarcH User's Guide and the man pages.

1. Select a makefile that matches the configuration of your system. The makefile namas
are of the form mf < os>. < compiler>. < cpusec> where <o0s> iz the operating system,
< pompiler> 15 the Fortran %) compiler, and < cpusec> is the form of subroutine
cpu_second. If you don't find your system, select a makefile for a similar system
and modify it. The makefile containg examples of how to compile your program along
with STrorWarcH.

2. Using an example program as a model (for example, “simple”), modify the makefile

to compile your program.

3. In each program unit that calls & STOPWATCH subroutine, insert the statement
nae atopwatch

4. Declare one or more variables to be of type watchtype, for example
type (watchtype] w

5. Instrument your code as appropriate with subroutine calls:

call create_watch(w)
call start_watchiw)
call stop_watch{w)

call reset_watchiw)
call print_watch(w)
call read_watch{val,w,s]
call destroy_watch(w)]

where 5 in read_watch is one of the character strings ‘cpn’, ‘user’, "sys', or 'wall’,
depending on what clock you want to read, and val is a real variable (of default kind)
in which the clock value is returned.

Chapter 3

Obtaining and Compiling
StopWatch

Information on SToPWarcH is available at the World Wide Web page
http:/fmath.nist.gov/StopWatch.

STOPWATCH can be obteined by anonymous fip from
ftp:/fmath.nist. gov/pub/mitchaell fatopwatch/atopwatch-T.x.tg2
where x.x is the version number. This is a gzipped tar file which must be uncompressed
with gunzip and expanded by tar.

Untarring the file will create a directory called stopwatch with subdirectories doc and
arc. doc contains the User’s (Guide in postscript and html formats, man pages for every
STorWarcH subroutine, and an overview man page. src contains the source code for the
stopwatch module, example programs, and makefiles.

The makefiles illustrate how to compile SToPWarcH along with your program. A
makefile 1z provided for several systems. If your system matches one of these, then you need
only modify the makefile to use your Fortran 9 programs instead of the examples. If your
system is not listed, you might need to modify one of the makefiles to match your system
confignration. You might also need to create a new cpu_second subroutine; see section
7. if you succeed in running STOPWATCH on a different system, you can contribute your
makefile and for cpu_second by sending email to william.mitchelldnist.gov.
Contributions will be made available on the WWW page, so check there first before writing

FOur own.

Chapter 4

Using StopWatch

The entities in SToPWaATCH that have public accessibility are two derived types and fifteen
subroutines. Any program unit that references any of these entities must use the atopwatch
module, i.e., must contain the statement

use stopwatch
The derived types are:

» watchtype - used for declaring a variable to be a watch

» watchgroup - used for declaring a variable to be a handle for a group of watches

These two types have public accessibility, but the internals of the type are private. Any
operations performed on a variable of one of these types must be performed by one of the
STorWarTcH snbroutines.

This section describes, in general terms, the operations that can be performed by the
STOPWATCH subroutines. The formal interfaces and detsiled descriptions of the rontines
can be found in Section 9.

4.1 Waitches, Clocks and Watch Groups

A watch is a variable declared to be of type watchtype. It can be passed to subroutines as
an actnal argnment or through modules like any Fortran variable, but can only be operated
on by the SToPWATCH subroutines. Watches must be created by subroutine ereate_watch
before they are used. Attempting to use a watch that has not been created will generate
a Fortran 90 error, from attempting to pass & pointer with undefined association status
to the Fortran intrinsic function associated. Watches must be destroyed when no longer
useful. For example, consider a local variable of type watchtype in a subroutine. Since
the contents of & local variable are lost when the subroutine returns, the watch should be
destroyed before returning to the calling program. Failure to destroy watches can lead toa
memory leak.

» create_watch - creates a watch

¢ destroy watch - destroys a watch

Watches can optionally be given a name (up to 132 characters) throngh an optional
argnment, name, in ereate_wateh, This name is nsed in error messages and print_watch
to identify the watch in the printed output.

Different applications demand different definitions of "time". STorWarcH supports
four clocks in each watch, with each clock measuring a different concept of time. All of
them measure time in seconds.

» user - the amount of CPU time nsed by the user's program

» gys = the amount of CPT time nsed by the system in support of the user’s program
cpu = the total CPT time, i.e., user+sys

s wall = the wall clock time, 1.e., elapsed real time

It 15 not reguired that all clocks be nsed. A watch can be created with any comhbination
of the four clocks. You can also specify a set of defaulf clocks to be used whenever the clocks
are not explicitly determined.

Since Fortran 80 does not contain an intrinsic function for CPT time, the implementation
of the cpu, sys and user clocks is system dependent. Some implementations may support
only cpu and wall, not user and sys. Some implementations may support only wall. Since
the Fortran %) standard requires the existence of a system _clock subroutine, but does not
require that it provide clock information, it is possible that some implementations might
not support wall. Clock availability can be determined by inguiry stopwatch [see Section
4.4). Unavailahle clocks will antomatically be removed from the set of defanlt clocks, but
if a clock that is not available is explicitly requested, a warning message will be generated.

STorWaTCH supports multiple watches simultaneously. Often it is nseful to perform the
same operation on several watches. This is essential for correct operation of pause_watch
and end_pause_watch and is convenient for procedures like read_watch, print_watch
and reset_watch. To facilitate this, SToPWaTCH supports the concept of waich groups.
When calling & 5ToPWaTCH subrontine, a watch group can be specified instead of & watch.
The group is referenced by a variahle of type watchgroup. Watch groups must be created
before they are used. Attempting to nse a watch group that has not been created will
generate a Fortran 80 error, from attempting to pass a pointer with undefined association
status to the Fortran intrinsic function associated. Watch gronps must be destroyed when
no longer nseful. The watches themselves are not destroyed, only the grouping of them.
Failure to destroy watch groups can lead to a memory leak.

» create_watchgroup - creates a new watch group
» destroy watchgroup - destroys a watch group (but not the watches in the gronp)

Most STopWaTcH subrountines take watch as the first dommy argument, and accept
several forms of waich. The forms are:

» type (watchtype)] watch - a single watch
» type (watchtype) watch(:] = an array of watches

» type (watchgroup) watch - a watch group handle

In most STOPWATCH routines, an array of watches can be specified by an array con-
structor in the calling statement, for axample:

type (watchtype) watch :: wl, w2, w3
call print_watch((/wil,w2,w3f]]

Howewer, this can not be nsed in routines where watch has intent OUT or intent INOTUT,
becanse the array constructor is actually an expression, not & list of the variables. Currently
this includes the routines create_watch and destroy _watch.

Most STOPWATCH subrontines take clock as the (optional] second duommy argument to
determine which of the four clocks will be affected by the action. clock can be one of the
character strings "nser’, 'sys’, "cpu’, or 'wall', or can be an array of such character strings to
specify more than one clock. Since clock iz always intent IN, an array of clock types can be
built with an array constructor. However, note that Fortran 90 requires all character strings
in such a construction to have the same length. Thus 'sys’ and 'cpu’ should be padded with
a blank, as in:

gall atart_watch(watch, (f*nasar',‘sya ','cpu '/f]]

If the optional argument clock is omitted, the current set of default clocks is nsed. The
set of defanlt clocks is set with option_stopwatch (see Section 4.4) and initially consists
of all available clocks.

4.2 Operations on Watches

SToPWATCH is used by imserting subroutine calls into your program. These subroutine
calls correspond to the actions performed with a common stop watch. The basic operation
of a watch involves starting it, stopping it, and resetting it's value to 0.

» start_watch - starts an idle watch, like the Start (Stop button on a stop watch
» stop_watch - stops & running watch, like the Start /5top button on a stop watch

reset_watch = sets the clocks on a watch to 0.0, ike the Reset button on a stop watch
(O course, running a stop watch is of little nse unless yon can see what it says.

s read _watch - returns the current clock value of a watch, like looking at the display
of a stop watch

print_watch = prints the current clock value of a watch to an output device. To push
the analogy to the limit, imagine a stop watch with a printer attached to it.

read_watch returns the clock valne in the first argument. The result variable is eithar
a scalar, & pointer to an array of rank one, or a pointer to an array of rank two depending
on whether wateh and clock are scalars or arrays. [Unless it is a scelar, the result variable
shounld be deallocated after use to avoid memory leakage.

When measuring CPU time, it is often desirable to not include the time used by certain
parts of the code, such as printing or graphics. In a subrontine, you might not know which
of the clocks are currently ronning, so you can not simply stop them hefore the 170 and
start them up again after the [/0. For this, SToPWATCH provides the panse function.

s pause_watech - temporarily suspend the running watches

end_pause_watch = resume suspended watches

4.3

Operations on Watch Groups

Besides create_watchgroup and destroy _watchgroup, there are two operations that can
be performed on watchgroup variables:

s join_watchgroup - adds a watch to a watch group

4.4

leave_watchgroup - removes a watch from a watch group

Options and System Inquiries

Subroutines are provided to set several options within SToPWATCH, to determine the cur-
rent value of these options, and to determine system dependent values of the implementa-

tion.

option _stopwatch = sets options within STorWarcu.

inquiry_stopwatch = returns values of options and system dependent values

All arguments to these subrontines are optional. All argnments to option_stopwatch
are intent IN, and all arguments to inguiry stopwateh are intent OTUT. The options that
can be sst by option_stopwatch and read by inquiry_stopwatch are:

default_clock - character(len=*) or character(len=*)(:] (must be an array in in-
quiry stopwatch). Specifies one or more clock types to be used as the default clocks
when the clock argument is omitted. Initial default [/'cpu *,'nser’,'sys *'wall’/). Un-
available clocks will be automatically dropped from the list.

i0_unil_prini - integer. Specifies an I/0 unit for printed output from rontine print_wateh.
Initial default is 8. The specified nnit must be open for writing sequential formatted

output.

i0_unil_error - integer. Specifies an I/ 0 unit for printed error messages. Initial defanlt
is . The specified unit must be open for writing sequential formatted output.

print_errors = logical. Flag to specify whether or not error messages should be printed.
Initial default is .true.

abort_errors - logical. Flag to specify whether or not the program should abort on
an error. If the program does not abort, then the requested operation is ignored and
execution continues. Initial default i=s false.

print_form - character(len="). Specifies the form for printing time in print_watch.
The valid values are:

- 'sec’. Print seconds as a real number with two digits after the decimal point.

This is the default.
= "hh:mm:ss'. Print time as hours, minutes and seconds separated by colons.

= '|hh:jmm:|ss’. The same as 'hh:mm:ss" except hours and minutes are printed
only if they are nonzero.

In addition, ingquiry_stopwatch takes the following optional arguments:

epu_avail = logical. True if the cpu clock is available in the implementation.
user_avail = logical. True if the user clock is available in the implementation.
sys_avail = logical. True if the sys clock is available in the implementation.
wall_gvail - logical. True if the wall clock is available in the implementation.

epu_prer = real. The cpu clock precision in seconds, 1.e., the smallest amount of time
that the cpu, user and sys clocks can measure.

wall_prec = real. The wall clock precision in seconds.

version = character(len=18). The version number of STOPWATCH.

Chapter 5

Examples

The STorWarcH distribution contains several example programs to demonstrate how to
use ST0PWATCH, and to test the installation. These programs are located in the arc
directory. Omnce you select or create the correct makefile you should be able to compile
these examples with “make prog" where prog is the name of the source file without the .£30

extension.

simple. faf = This is a short example showing the simplest use of STOPWATCH.

adpanced, f80 = This example illustrates the use of some of the advanced features of
SToPWATCH.
overhead. f9) - This program prints the clock precisions, and measures the amount

of time used by calls to STOPWATCH subrontines. As long as the clock precision is
much larger than the overhead of a STOPWATCH subroutine, STOPWATCH should not

increase the time being measured.

tostow f80 = This is & program that tests most of the fonctionality of STOPWaATCH.
errors. f8f) = This is a program that tests many of the error conditions detected by
SToPVWATCH.

bomb. f8(t = This program attempts to make STOPWaTCH crash by using a watch
that has not been created. Running this program should indicate how your system
handles this error condition, but there is no gnarantee that your compiler will handle
the Fortran error consistently.

110

Chapter 6

Trouble Shooting

All STopWarcH subrontines take an optional argument err as the last dummy argument.
This is an INTENT{QUT) integer argument in which a status code is returned. The code
iz the sum of the values listed below.

Errors can also ba determined throngh printed error messages. An error message will
be printed to a specified [/Q unit (6 by defaunlt) if print_errorais TRUE (defanlt 8 TRUE;
see Section 4.4). The error message containg more detail about the canse of the error than
can be obtained from just the status code, so you should set prini_errors to TRUE if you
have trouble determining the canse of the error.

All errors are non-fatal. I aborf_errors 18 FALSE (defanlt 18 FALSE, see Section 4.4)
the requested operation is ignored and execution will continne.

The relevant statns codes and messages are:

]

1

16

32

= operation successful; no errors.

= Watch needs to be created. This occurs when you attempt 1o use a watch that has
been destroyed. Some compilers might also generate this error when you attempt to
use a watch that has never been created.

-~ Watch 18 in the wrong state for this operation. This occurs when you attempt to
start a watch that is already running, stop a watch that is not running, ete.

- Watch iz in an unknown state. This occurs if STopWarcu does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STOPWaTCH.

= Invalid clock type. This occurs if clock is present and one of the specified clocks
is not supported by the implementation. See inquiry stopwatch (Section 4.4) to
determine what clocks are available.

= Too many clocks specified. This occurs when the argnment clock is an array longer
than four.

= Number of names is not equal to number of watches. This occurs in ereate_watch
if the array of watch names is not of the same length as the array of watches.

= Character string too long. This occurs when & watch name with more than 132
characters is passed into create_watch.

11

128 - Watch not found in given group. This occurs when yon attempt to remove a watch
from a group that it does not balong to.

256 = [/ unit is not open for writing. This can occur from print_watch or when printing
ATl EFTOT Message.

512 = Failed to allocate required memory. When & SToPWATCH routine 15 called with
an array or group of watches, temporary memory is allocated. This error occurs if
the allocate statement returns a nonsero status indicating that memory could not
be allocated. Avoid memory leaks by always destroying watches and groups before
recreating them, destroying local variable watches and groups before returning from
a snbrontine, and deallocating array results from read_wateh.

1024 = Error occurred while deallocating memory. This error ocenrs if the deallocate state-
ment returns a nonzera status while deallocating temporary memory used for an array
or group of watches. The operation is performed, but be aware that other prohlems
could develop as a result of the deallocate error.

2048 - llegal output form. This error occurs in option_stopwatch or print_wateh if the
given print format is not one of the valid strings listed in section 4.4.

12

Chapter 7

Subroutine cpu_second

Althongh Fortran 80 standardized an intrinsic function for wall clock time, it does not in-
clude a function for CPU time. At the time of this writing, it is anticipated that a CPU time
intringic function will be added to the langnage in Fortran 95. If this happens, then STOP-
WarcH can become fully system independent once Fortran 95 compilers are widespread.
Meanwhile, STOPWATCH requires that a system dependent CPT] time subroutine be pro-
vided by the user. Several versions of this subroutine are included with the STorWarca
package. One of thess may work on your system. The version cpuser.nil f contains no CPU
clock information, and can be used on systems where there iz no routine to measure CPT
time. If this routine is used, only the wall clock will be available.

If none of these versions work on your system, you will have to write your own wersion.
The interface s

subroutine cpu_second(cpu,usar,ayal
real, intent{0UT) :: cpu, uaer, ays

The first argument is for CPU time in seconds. Where available, the second and third
argnments shonld break down the CPU time into “user” and “system™ CPU time. If the
underlying system does not provide for & way of accessing the breakdown (i.e., has only CPU
time), then return a negative constant in user and sys (for example, user=-1.; ays=-1.].
The valne returned in cpu (and user and sys where available) should be a nonnegative real
number such that the difference between two successive calls 1s the amount of elapsed CPT
time in seconds.

If you write a new version of epu_second becanse none of the supplied versions worked
on your system, please send this information to the author so that it can be included in the
next releass.

13

Chapter 8

Acknowledgments

I would like to thank:

Ron Boisvert and Roldan Pozo for many helpful suggestions.

Eite Tiesinga, Karin Hemington, Eoldan Pozo, Walt Brainard, Neil Campbell, Neil Carlson,
Jeroen Groenenboom, Alan Hoffman, Steve Lionel, Christian de Polignac, Mitsn Sakamoto,
David Vallance, and Mike Vermeulen for beta testing or otherwise providing assistance.

14

Chapter 9

Reference Manual

This section contains an alphabetical listing of all SToPWaATCH routines. Each routine is
described in detail, along with diagnostics and examples. The information in this section

can also be obtained online throngh the man pages.

15

CREATE WATCHGROUP

creates a STOPWATCH watch group

SYNOPSIS

mbrontine ereate_watchgroup fwateh, handis, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent{OUT) :: handle
integer, optional, intent(QOTT) :: err

DESCRIPTION

Creates a new watch grounp and returns & handle for it. A watch gronp must be created
by this routine before it i1z passed to any other SToPWarcH routines. In Fortran 90 it is
impaossible to test whether or not a watch gronp has been created, and using a watch group
that has not been created may cause the program to crash. It is not an error to create
a watch group that has already been created, however the prior information and memory
{ocations will be lost. Watch groups should be destroyed (see destroy watchgroup(d))
before they are recreated. Also, local variable watch groups should be destroyed before
returning from a subrountine, to avoid memory lealks.

One or more watches may be optionally specified. If watch is present, the watch gronp will
initially contain the specified watch(es). i waich is omitted, the watch group will initially
be empty. Watches can be added and removed from the group with join_watchgroup and
leave_ watchgroup. The argument watch can be a single variable of type waichiype (zee
stopwatch(3)) to start the group with one watch, or an array of type waichiype to start
the group with several watches.

The argnment handle is a variable of type watchgroup that will subsequently be used to
access the watch group.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
1z the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

1t

If abori_errors is TRUE (defanlt is FALSE), the program will terminate on an error con-
dition. Otherwise, the program will continue execution but the watch group will not be
created.

See option_stopwatch(3) for forther information on prini_errors, abori_errors and I1/0
units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to put a watch that has
been destroyed in the group. The watch must first be created again. See also the
comment about watches that have never been created in the BUGS section.

512 Failed to allocate required memory. When a group is created, memory is allocated for
the group. Also, when ereate_watchgroup is called with an array of watches, tempo-
rary memory 18 allocated. This error occurs if the Fortran allocate statement returns
& nonzero status indicating that memory could not be allocated. Avoid memory leaks
by always destroying watches and groups before recreating them, and destroying local
variahle watches and groups before returning from a subrontine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero statns while deallocating temporary memory used
for an array of watches. The group is created, but be aware that other problems conld

develop as a result of the deallocate error.

EXAMPLES

type (watchtype)] w(3]
type (watchgroup) gi, g2

integer errcode

call create watchgroup(handle=gl)
call create watchgroup(w, g2, err=arrcoda)

The first call creates an empty group gi. The second call creates the group g2 with three
watches, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable has been created (passed as
an argument to ereate_watch). If a watch that has never heen created is passed into
create_watchgroup, it might generate a Fortran error due to passing a pointer with
undefined association status to the Fortran intrinsic function associated. However, some
compilers will allow this as an extension to the Fortran 80 standard and recognize that the
pointer is not associated, in which case the “Watch needs to be created” error message is

generated.

17

CREATE WATCH

creates and initializes & STOPWATCH watch

SYNOPSIS

mbrontine ereate_watch (walch, clock, name, err)

type (watchtype), intent[QOTT) :: watch
OR type (watchtype), intent[QOUT) : watch(:)

character(len="*), optional, intent(IN) 1 clock
OR character{len=*), intent{IN) = clock(:)

character(len="*), optional, intent(IN) :: name
OR character{len=*), optional, intent(IN) :: name(:)

integer, optional, intent(OTT) :: err

DESCHRIPTION

Creates and initializes the specified clocks of the specified watches. In the initial state,
all clocks are not running and have the value 0. All watches must be created before they
are uged or added to a watch group. In Fortran 90 it is impossible to test whether or
not a watch has been created, and using a watch that has not been created may canse the
program to crash. It is not an error to create a watch that has already been created, however
the prior information and memory locations will be lost. Watches should be destroyed
(see destroy_wateh(d)) before they are recreated. Also, local variable watches should be
destroyed before returning from a subrountine, to avoid memory leaks.

Ome or more watches must be specified. The argument walch can be a single variable of
type waichiype (eee stopwatch(3)) to create one watch, or an array of type waichiype to
create several watches.

The optional argument clock specifies which clocks to create on the specified watchies).
If omitted, the current defanlt clocks (see option_stopwateh(d)) are created. If present,
clock must be a character string containing ‘cpu’, 'nser’, 'sys’, or *wall’, or an array of such
character strings.

The optional argument name allows you to attach a name to the watch. The name is nsed
when printing error messages, or when printing clock values using print_watch. If omitted,
the name of the watch is *‘nnnamed watch®. If present, it must be of the same rank and
dimension as walch. Watch names are limited to 132 characters.

DIAGNOSTICS

18

If present, the optional intent OTT integer argument err returns a status code. The code
iz the sum of the values listed below.

An error message will be printed to a specified I/ unit (unit 6 by defanlt) if print_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have trouhle determining the canse of the error.

If abort_errors is TRUE (defanlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watch(es) will not be created.

See option_stopwatch(d) for forther information on prini_errors, abori_errors and 170
units.

The relevant statns codes and messages are:

1} Mo errors; execution successful.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwateh(3) to determine what
clocks are available.

32 Number of names is not equal to number of watches. This occurs if the array of watch
names, name, is not of the same length as the array of watches, watch.
fi4 Character string too long. This occnrs when a watch name has more than 132 char-
acters. The watch is created, but the name is truncated to the first 132 characters.
512 Failed to allocate required memory. Creating a watch involves allocating memory for
it. Also, when ereate_watch is called with an array or gronp of watches, temporary
memaory 15 allocated. This error occurs if the Fortran allocate statement returns &
nonzero status indicating that memory counld not be allocated. Avoid memory leaks
by always destroying watches and gronps before recreating them, and destroying local
variable watches and groups before returning from a subrountine.
1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used

for an array or group of watches. The watches are created, but be aware that other
problems could develop as a result of the desllocate error.

In addition to the ruon time diagnostics generated by STOPWATCH, the following problems

may arise:

» Jince watch has intent OUT, you cennot use an array constroctor as an actual argo-
ment to construct an array of watches. Some compilers will recognize this as a compile
time error, but will generate an obscure error message, snch as “no specific match for
generic name”.

o In Fortran 90, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to make a four character
string, for example, 'cpu °, and pad watch names so they all have the same length
(within an array constructor).

EXAMPLES

14

type (watchtype) wil, w2{3), =3
integer arrcode

call create watchiwl]

call create watch(w2, name=(/'part 1', 'part 2', ‘total 'f], err=errcode)
call create watch(w3, (f'cpn ', "wall'/), err=arrcoda)

The first call creates the defanlt clocks on & single watch with name "onnamed watch’. The
second call creates the default clocks on three watches given as an array and with names
‘part 1', 'part 2', and “total’, and returns a status code. The third call creates one watch
with the cpu and wall clocks, the name ‘unnamed watch’, and returns a status code.

BUGS

None known.

]

DESTROY WATCHGROUP

destroys a STOPWATCH watch group

SYNOPSIS

mbrontine destroy_watchgroup(handle, arr)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(OTT) :: err

DESCHRIPTION

Destroys a watch group. Only the group is destroyed, not the watches in the gronp. To
avoid memory leaks, watch groups should be destroyed when no longer useful, before being
recreated, and before returning from a swbroutine in which the watch group is a local
variahle.

The argument handle is a variable of type watchgroup that is the handle for the gronp to
be destroyed.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
15 the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have trouhle determining the canse of the error.

If abori_errors is TRUE (defanlt is FALSE), the program will terminate on an error con-
dition. (therwise, the program will continue execution but the watch group will not be
created.

See option_stopwatch(3) for forther information on print_errors, abori_errors and I/0
units.

The relevant status codes and messages are:

0 Mo errors; execution successful.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deal-
locate statement returns & nonzero status while deallocating memory used for the
group. The group iz destroyed, but be aware that other problems could develop as &
result of the deallocate error.

21

EXAMPLES

type (watchgroup) gil, g2
integer arrcode

call destroy watchgroup(gl]
call destroy watchgroup(g2, errcode)

The first call destroys the group gi. The second call destroys the group g2 and returnz &
status code.

BUGHS

MNone known.

DESTROY WATCH

destroys a SToPWATCH watch

SYNOPSIS

mbrontine destroy_watch (watch, clock, err)

type (watchtype), intent(INOTUT) :: watch
OR type (watchtype), intent(INOTT) :: watch(:)

character(len="*), optional, intent(IN) 1 clock
OR character{len=*), intent{IN) = clock(:)

integer, optional, intent(OTT) :: err

DESCRIPTION

Diestroys the specified clocks of the specified watches. If the watch has no remaining clocks
after the specified clocks are destroyed, then the watch is destroyed and associated memory
freed. To avoid memory leaks, watches should be destroyed when no longer useful, before
being recreated, and before returning from a subroutine in which the watch is a local
variable,

Cme or more watches must be specified. The argument waich can be a single variable of
type watchiype (see stopwateh(d)) to destroy one watch, or an array of type watchiype to
destroy several watches.

The optional argnment clock specifies which clocks to destroy on the specified watchies). If
omitted, the current default clocks (see option_stopwatch(3)) are destroyed. If present,
clock must be a character string containing ‘cpu’, 'user’, 'sys’, or ‘wall’, or an array of such
character strings.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
iz the sum of the values listed below.

An error message will be printed to a specified I/ 0 unit (unit 6 by defaunlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have trouble determining the canse of the error.

If abori_errors is TRUE (defanlt is FALSE), the program will terminate on an error con-
dition. Otherwise, the program will continue execution but the watch(es) will not be de-

20

stroyed.

See option_stopwatch(3) for further information on prini_errors, abori_errors and I/0

units.

The relevant status codes and messages are:

]
1

Bl12

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt io destroy a watch that
haz already been destroyed. The watch must first be created again. See also the
comment about watches that have never been created in the BUGS section.

Invalid clock fype. This occurs if clock is present and one of the specified clocks is
not supported by the implementation. See inquiry_stopwatch(3) to determine what
clocks are available.

Failed to allocate reqguired memory. When destroy_watch is called with an array
or group of watches, temporary memory 18 allocated. This error occurs if the For-
tran allocate statement returns & nonzero status indicating that memory could not
be allocated. Awvoid memory leaks by always destroying watches and groups before
recreating them, and destroying local variable watches and groups before returning
from a subrontine.

Error occurred while deallocating memory. This error occurs if the Fortran deallo-
eate statement returns a nonzero status while deallocating the memory for the watch
or temporary memory used for an array or gronp of watches. The watches are de-
stroyed, but be aware that other problems could develop as a result of the deallocate

ETTar.

In addition to the run time diagnostics generated by STOPWATCH, the following problems
MmAay ariss:

Since watch has intent OTT, you cannot use an array constructor as an actual argo-
ment to construct an array of watches. Some compilers will recognize this as a compile
time error, but will generate an obscure error message, snch as “no specific match for
generic name”.

In Fortran 3, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to make a four character
string, for example, 'cpn .

EXAMPLES

type (watchtype) wil, w2{3)
integer arrcode

call destroy watch{wi)
call destroy watch{w2, (f'sys ', 'user'f], err=errcode]

The first call destroys the defaunlt clocks on a single watch. Assuming the default clocks
hawve not changed since the watch was created, the watch will be destroyed. The second call
destroys the sys and user clocks on three watches given as an array and returns a status

code. Assuming the watch also had the cpn or wall clock, the watches are not destroyed.

BUGS

It cannot be determined whether or not & watch variable or watch group has been created
(passed as an argument to create_watch or create_watchgroup). If a watch or watch
gronp that has never been created iz passed into destroy watch, it might generate a
Fortran error due to passing a pointer with undefined association status to the Fortran
intrinsic function associated. However, some compilers will allow this as an extension to
the Fortran 80 standard and recognize that the pointer is not associated, in which case the
“Watch needs to be created” error message is generated.

25

END PAUSE WATCH

resumes & paused STOPWATCH watch

SYNOPSIS

mbrontine end_pause_wateh (walch, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Resumes the running status of the specified clocks of the specified watches that have previ-
ously been paused (see panse_watch(i)]. Pausing is useful when you want to temporarily
stop the clocks to avoid timing a small segment of code, for example printed ontput or
graphics, but do not know which watches or clocks are running. When pause_watch is
called, the information about which of the clocks were running is maintained, so that a
subsequent call to end_pause_watch will restart only those clocks that were ronning.

Omne or more watches must be specified. The argument walch can be a single variable of
type waichiype (see stopwatch(3)) to resume one watch, an array of type waichiype to
resume several watches, or & variable of type watchgroup (see stopwatch(3)) to resume the
watches in & group.

The optional argnment eclock specifies which clocks to resume on the specified watch(es].
If omitted, the current default clocks (see option_stopwatch(3)) are resumed. If present,
clock must be a character string containing ‘cpu’, 'user’, 'sys’, or ‘wall’, or an array of such
character strings.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code
is the sum of the values listed below.

An error message will be printed to a specified I/ 0 unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the cause of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have tronble determining the canse of the error.

el

If abort_errors is TRUE (defanlt is FALSE), the program will terminate on an error condi-

tion.

Otherwise, the program will continue execution but the watch{es) will not be resnmed.

See option_stopwatch(d) for forther information on prini_errors, abori_errors and 170

units.

The relevant statns codes and messages are:

]
1

12

1024

No errors; execution successful.

Watch needs to be created. This error occurs if you attempt {o resume a watch that
haz been destroyed. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when yon attempt to
regume & watch that is currently running.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STOPWaTCH.

Invalid clock type. This oceurs if clock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwatech(3) to determine what
clocks are available.

Failed to allocate required memory. When end_pause_watch is called with an array
or group of watches, temporary memory is allocated. This error occurs if the For-
tran allocate statement returns a nongzero status indicating that memory could not
be allocated. Avoid memory leaks by always destroying watches and groups before
recreating them, and destroying local variable watches and groups before returning
from a subroutine.

Error oceurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are resumed, but be aware that other
problems could develop as a result of the desllocate error.

In addition to the ron time diagnostics generated by STOPWATCH, the following problems

may arise:

In Fortran 9, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to malke a four character

3

string, for example, 'cpn .

EXAMPLES

type (watchtypel wil, w2(3)

type (watchgroup) gi
integer errcode

call end paunse watch(wl]

gall end panse watch(w2, err=errcoda)
call end paunse_watch(gl, {(/'cpn *, 'wall'f), errcode)

27

The first call resumes the defanlt clocks on & single watch. The second call resumes the
defanlt clocks on three watches given as an array and returns a status code. The third call
resumes the cpn and wall clocks on the watches in the group gf, and returns a status code.

BUGS

It cannot be determined whether or not & watch variable or watch group has been created
[passed as an argument to create_watch or create watchgroup). If a watch or watch
group that has never been created is passed into end_pause_watch, it might generate a
Fortran error due to passing a pointer with undefined association status to the Fortran
intrinsic function associated. However, some compilers will allow this as an extension to
the Fortran 90 standard and recognize that the pointer is not associated, in which case the
“Watch needs to be created” error message is generated.

INQUIEY STOPWATCH

returns SToPWATCH options and system dependent values

SYNOPSIS

mbrontine ingquiry stopwatch (defonlt clock, 10 unit_print, io_unit_errar, print_errors, aborf_srrors,
prinl_form, cpu_avail, user_avaid, ays_avail, wall_avail, cpu_prec, wall prec, version, err)

character(len="*), optional, intent{OTT) :: defanlt clock{4]

integer, optional, intent{QOTUT) :: io_unit_print, in_unit_arr

logical, optional, intent{QUT) == print_errors, abort_errors
character(len="*), optional, intent{OTT) :: print_form

logical, optional, intent(QTUT) = cpu_avail, user_avail, sys_avail, wall_avail
real, optional, intent{OTUT) :: cpu_prec, wall_prec

character(len=16), optional, intent{QTT) :: version

integer, optional, intent(QOTT) :: err

DESCRIPTION

Beturns the value of STOPWATCH options and other system and implementation dependent
values. All argnments are optional and have intent OUT.

The following argnments can be set by option_stopwatch. 5ee option_stopwatch(d) for
forther details on their meaning. defouli_clock iz the set of clocks that are used when the
elock argnment is omitted in a call to & STOPWATCH routine. do_unit_print returns the
unit for output from subroutine print _watch. 1o unii_error returns the unit for any error
messages printed by STopWarcH. If prini_errors is TRUE, then an error message will be
printed to fo_unil_error whenever an error condition occurs. If aborterrora s TRUE, then
the program will terminate when an error condition occurs. print_form is the format nsed
by print_watch{3) when the form argument is omitted.

The remaining argnments return system information that can not be changed.

Since an interface to the CPU clock 13 not part of the Fortran 90 standard, the availability
of clocks and clock precisions are implementation dependent. Not all clocks are available in
all implementations. The logical arguments cpu_avail, user_awayl, sys_avail and wall avail
return TRUE if the respective clock is available in this implementation.

The precision (the shortest time interval that can be measured) of the clocks also varies
between implementations. The real variables cpu prec and wall prec return the precision
of the CPU and wall clocks, in seconds. It is assumed that the user and sys clocks have
the same precision as the CPT clock. If the CPU clock is not available, then cpu_prec will
return 0., and similar for the wall clock.

The character string version returns the version number of STOPWATCH.

H

DIAGNOSTICS

If present, the optional intent OTT integer argument err returns a status code. The code
iz the sum of the values listed below.

An error message will be printed to a specified I/ unit (unit 6 by defanlt) if print_errors
is TRUE (defanlt is TRUE). The arror message contains more detail abont the canse of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have trouhle determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condi-

tion. Otherwise, the program will continue execution but the requested value(s) might not
be returned.

Ses option_stopwatch(d) for forther information on print_errors, abori_errors and 170
units.

The relevant status codes and messages are:

0 No errors; execution successful.

512 Failed to allocate required memory. This error occurs if the Fortran allocate state-
ment returns & nongero status indicating that memory could not be allocated. Awoid
memaory leaks by always destroying watches and groups before recreating them, and
destroying local variable watches and groups before returning from a subroutine.

EXAMPLES

logical user_is_there
real cpu.prec

call inguiry stopwatch{user avail=naer is thara)
call inguiry.stopwatch{cpuprec=cpuo prec)

The first call determines if the user clock is available in this implementation. The second
call determines the shortest time that can be measured by the CPU clock.

BUGS

None known.

K]

JOIN WATCHGROTUP

adds a STOPWATCH watch to a watch group

SYNOPSIS

mbrontine join_watchgroup fwatch, handie, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(QOTT) :: err
DESCRIPTION

Adds the specified watchies) to the specified watch group. The watch{es) and gronp must
have been previously created with create_watch and create_watchgroup.

Omne or more watches must be specified. The argument waich can be a single variable of
type watchiype (see stopwatch(d)) to add one watch, an array of type walchiype to add
several watches.

The watch group is specified by handle, a variable of type watchgroup.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
iz the sum of the values listed below.

An error message will be printed to a specified I/ 0 unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have trouble determining the canse of the error.

If abori_errors is TRUE (default is FALSE), the program will terminate on an error condi-
tion. (therwise, the program will continue execution but the watch(es) will not be added
to the gronp.

See option_stopwatch(d) for forther information on prini_errors, abori_errors and 170
units.

The relevant statns codes and messages are:

1} Mo errors; execution successful.
1 Watch needs to be created. This error occurs if you attempt to add a watch that

31

has been destroyed to a group. The watch must first be created again. See also the
comment abont watches that have never been created in the BUGS section.

512 Failed to allocate required memory. Memory is allocated in the group when a watch
is added. Also, when join_watchgroup iz called with an array or group of watches,
temporary memaory 18 allocated. This error occurs if the Fortran allocate state-
ment returns & nongero statns indicating that memory could not be allocated. Awoid
memory leaks by always destroying watches and groups before recreating them, and
destroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error ocecurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are added to the group, but he aware
that other problems could develop as a result of the desllocate error.

EXAMPLES

type (watchtypel wil, w2(3)

type (watchgroup) gi
integer arrcode

call join watchgroup(wl, gl)
call join watchgroup(w2, gl, errcode]

The first call adds the watch wi to watch group gi. The second call adds three watch to
g1 and returns & status code.

BUGS

It cannot be determined whether or not & watch variable or watch group has been created
(passed as an argument to create_watch or create_watchgroup). If a watch or watch
group that has never been created is passed into join_watchgroup, it might generate &
Fortran error due to passing a pointer with undefined association status to the Fortran
intrinsic function associated. However, some compilers will allow this as an extension to
the Fortran 80 standard and recognize that the pointer is not associated, in which case the
“Watch needs to be created” error message i3 generated.

LEAVE WATCHGROUP

removes a STOPWATCH watch from a watch group

SYNOPSIS

mbrontine leave watchgroup/watch, handie, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(QOTT) :: err

DESCRIPTION

Removes the specified watch(es) from the specified watch group.

Ome or more watches must be specified. The argument walch can be a single variable of
type watchiype (see stopwatch(3)) to remove one watch, or an array of type waichiype to
remove several watches.

The watch group is specified by handle, a variable of type watchgroup.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code
is the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

I abort_errorsis TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watch(es) will not be remowved
from the group.

See option_stopwatch(3) for forther information on prini_errors, abori_errors and I/0
units.

The relevant status codes and messages are:
0 Mo errors; execution successful.

128 Watch not found in given group. This occurs when youn attempt to remove a watch
from & group that it does not helong to. One cause of this iz if you destroy a watch

34

and later try to remowve it from & group.

512 Failed to allocate required memory. When leave watchgroup is called with an
array or group of watches, temporary memory is allocated. This error occurs if the
Fortran allocate statement returns a nonzero status indicating that memory could
not be allocated. Avoid memory leaks by always destroying watches and groups before
recreating them, and destroying local variable watches and groups before returning
from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero statns while deallocating temporary memory used

for an array or gronp of watches or the memory used for an entry in the group. The
watches are removed from the group, but be aware that other problems counld develop

as & result of the deallocate error.

EXAMPLES

type (watchtypel wil, w2(3)

type (watchgroup) gi
integer arrcode

call leave watchgroup(wl, gi]
call leave watchgroup(w2, gl, errcode)

The first call removes the watch wi from watch group gi. The second call removes three
watch from g and returns a statns code.

BUGS

It cannot be determined whether or not & watch variable or watch group has been created
(passed as an argument to create_watch or create_watchgroup). If a watch or watch
group that has never been created iz passed into leave watchgroup, it might generate
a Fortran error due to passing a pointer with undefined association status to the Fortran
intrinsic function associated. However, some compilers will allow this as an extension to
the Fortran 80 standard and recognize that the pointer is not associated, in which case the
“Watch needs to be created” error message i3 generated.

OPTION STOPWATCH

sets STOPWATCH options

SYNOPSIS

mbrontine option_stopwateh (defaoult_clock, to_unit_print, io_unit_error, print_errors, abort_errors,
prinil_form, err)

character(len="*), optional, intent(IN) :: defanlt_clock(:)
OR character{len=*), optional, intent(IN} :: defanlt_clock

integer, optional, intent(IN) :: io_unit_print, io_unit_err
logical, optional, intent(IN) :: print_errors, abort errors
character(len="*), optional, intent(IN) :: print_form
integer, optional, intent(QTT) :: err

DESCRIPTION

Sets options that control the behavior of STOPWaATCH. All argnments are optional and
have intent IN {except the status code err which has intent OTUT). These options are globhal
in nature, and remain in effect until another call to option_stopwatch changes them.

The argument default clock determines what clocks will be used for all subsequent operations
in which the clock argnment is omitted. This allows you to specify what clocks you are
interested in once and for all, and not have to specify those clocks with every subroutine
call. The initial defanlt value is [/'cpu ', "oser’, 'sys *, "wall’f], ie., all clocks. However,
if any clocks are not available in the implementation, they will be antomatically remowved
from the list of default clocks.

Printed onutput can be redirected to any valid I/0O unit number. io_unif_print determines
the unit for output from subroutine print_wateh. io_anil_error determines the unit for
any error messages printed by STOPWATCH. When an [/0 unit is reset by one of these
variables, the unit must already be open for writing. The initial default is 6 for both I/0
units, which s standard ontput on many systems.

What to do when an error occurs is controlled by the two logical variables prini_errors and
abort errora. If print_errorsis TRIUE, then an error message will be printed to io_unit_arror
whenever an error condition occurs. In all cases where an error can be detected, the program
can continue to execute, although the behavior of SToPWarch might not be as expected.

If abort_errors is TRUE, then the program will terminate when an error condition oceurs.
The initial defaults are TRUE for prini_errors and FALSE for abor_errors.

The argument print_form determines the form for printing time when form is omitted in
prini_errors. The valid values are:

35

sec’, seconds
"hh:mm:es®, colon separated hours, minutes and seconds
*||hh:jmm:|ss', same as ‘hh:mm:ss’ except hours and minntes are printed only if nonzero

The default value is ‘sec’.

DIAGNOSTICS

If present, the optional intent OTT integer argument err returns a status code. The code
iz the sum of the values listed below.

The relevant status codes and messages are:

1} Mo errors; execution successful.

B Invalid clock type. This occurs if defauli_clock is present and one of the specified clocks
is not supported by the implementation. See inquiry stopwatch(l) to determine
what clocks are available.

16 Too many clocks specified. This occurs when the argument default_clock is an array
longer than four.
256 1/0 unit is not open for writing. The I/0 unit requested for i0_unif_prinf or io0_unil_error
is not open for writing.
f12 Failed to allocate required memory. This error occurs if the Fortran allocate state-
ment returns & nongero statns indicating that memory could not be allocated. Awoid
memaory leaks by always destroying watches and groups before recreating them, and
destroying local variable watches and groups before returning from & subroutine.
1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns a nonzero status while deallocating memory. Be aware that
other problems could develop as a result of the deallocate srror.
2048 Nllegal output form. This error occurs if print_form is not one of the strings listed
ahove.

In addition to the run time diagnostics generated by SToPWaTCH, the following problems
MmAay ariss:

» In Fortran 9, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to make a four character

string, for example, 'cpu "
EXAMPLES

call option stopwatch(defanlt clock="cpu', abort_error=.true.)
call opticn stopwatch(iomnit print=11, io_ umit_error=12]

The first call sets the defanlt clock to be the cpn clock and says to terminate the program
if an error occurs. The second call reassigns the I/ 0y units.

BUGHS

None known.

a7

PATUSE WATCH

pauses a SToPWATCH watch

SYNOPSIS

mbrontine pause_watch fwatch, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Pauses the specified clocks of the specified watches. This is useful when you want to tem-
porarily stop the clocks to avoid timing a small segment of code, for example printed ontput
or graphics, but do not know which watches or clocks are running. When pause_watch
iz called, the information about which of the clocks were running is maintained, so that &
subsequent call to end_paunse_wateh will restart only those clocks that were ronning.

One or more watches must be specified. The argument walch can be a single variable of
type walchiype (see stopwateh(l)) to pause one watch, an array of type watchiype to panse
several watches, or a variable of type waichgroup (see stopwatch(3)) to panse the watches
In a group.

The optional argument clock specifies which clocks to paunse on the specified watch(es).
If omitted, the current defanlt clocks (see option_stopwatch(d)] are pansed. If present,
clock must be a character string containing ‘cpu’, 'nser’, 'sys’, or *wall’, or an array of such
character strings.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
1z the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

If abort_errors is TRUE (defanlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watchies) will not be pansed.

See option_stopwatch(d) for forther information on prini_errors, abori_errors and 170
umits.

The relevant statns codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to pause a watch that
haz been destroyed. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

2 Watch i8 in the wrong state for this operation. This occurs when you attempt to
pause a watch that s currently pansed.

4 Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STOPWaTCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwatech(3) to determine what
clocks are available.

512 Failed to allocate required memory. When pause_watch is called with an array
or group of watches, temporary memory is allocated. This error occurs if the For-
tran allocate statement returns a nongzero status indicating that memory could not
be allocated. Avoid memory leaks by always destroying watches and groups before
recreating them, and destroying local variable watches and groups before returning
from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are pansed, but be aware that other
problems could develop as a result of the desllocate error.

In addition to the ron time diagnostics generated by STOPWATCH, the following problems

may arise:

» In Fortran %), the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to malke a four character
string, for example, 'cpn .

» Watches that are pansed can not be started, stopped, reset, or pansed again nntil

they are resuomed by end _pause_wateh., However, they can be read and printed.

EXAMPLES
type (watchtypel wi, w2({3)

type (watchgroup) gl
integer arrcode

call paunse watchiwi]
call panse watch(w2, err=errcode]

Ja

call panse watch(gl, (f'cpu ', 'wall'/), errcoda)

The first call panses the default clocks on & single watch. The second call panses the default
clocks on three watches given as an array and returns & statns code. The third call panses
the cpn and wall clocks on the watches in the group g1, and returns a status code.

BUGS

It cannot be determined whether or not & watch variable or watch gronp has been created
[passed as an argument to create_watch or create watchgroup). If a watch or watch
gronp that has never been created is passed into panse_watceh, it might generate a Fortran
error due to passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension tothe Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs
to he created” error message is generated.

40

PRINT WATCH

prints the current value of a STOPWATCH watch

SYNOPSIS

mbrontine print_wateh (watch, clock, title, form, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

character(len="*), optional, intent(IN) :: title, form

integer, optional, intent(OTT) :: err

DESCRIPTION
Prints the specified clocks of the specified watches. A title line is printed followed by two

lines for each watch, the first containing the name of the watch and the second containing
the values of the specified clocks. Output is written to & user specified I/0 wnit (see

option_stopwateh(3)) which iz § by defanlt.

Omne or more watches must be specified. The argument walch can be a single variable of
type watchiype (see stopwatch(3)) to print one watch, an array of type walchiype to print
several watches, or a variahle of type watchgroup (see stopwatech(d)) to print the watches
In a group.

The optional argnment eclock specifies which clocks to print from the specified watch(es].
If omitted, the current defanlt clocks (see option_stopwateh(d)) are printed. If present,
clock must be a character string containing ‘cpu’, 'user’, 'sys’, or ‘wall’, or an array of such
character strings.

The optional argument title is a character string to be printed before printing the watch
values. If omitted, the string “Times printed by StopWatch:™ is printed.

The optional argument form determines the form for printing time. The valid walues
are:

*sec’, seconds
*hh:mm:ss’, colon separated hours, minutes and seconds
*||hh:jmm:|ss', same as ‘hh:mm:ss’ except hours and minntes are printed only if nonzero

K omitted, the current default form is used. The defaunlt form 18 imitially 'sec' and can be

41

reset by option_stopwateh(3).

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code
is the sum of the values listed below.

An error message will be printed to a specified I/ 0 unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the cause of
the error than can be obtained from just the status code, so you should set prini_errors to
TRUE if you have tronble determining the canse of the error.

If abori errorsis TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continne execution but the watch(es)] will not be printed.

See option_stopwatch(3) for forther information on prini_errors, abori_errors and I/0
units.

The relevant status codes and messages are:

0 Mo errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to print & watch that has
been destroyed. The watch must first be created again. See also the comment abount
watches that have never been created in the BUGS section.

4 Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STOPWaTCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwatech(3) to determine what
clocks are available.

256 I/0 unit is not open for writing. The I/0 unit to which print_watch expects to
write is not open for writing. The I/0 unit number is set by io_unif prinf in op-
tion_stopwatch and 15 § by default.

512 Failed t{o allocate required memory. When print_watch is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran
allocate statement returns & nonzero status indicating that memory comld not be
allocated. Avoid memory leaks by always destroying watches and groups before recre-
ating them, and destroying local variable watches and groups before returning from a
subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are printed, but be aware that other
problems could develop as a result of the deallocate error.

2048 Tlegal ontput form. This error occurs if form iz not one of the strings listed above.

In addition to the ron time diagnostics generated by STOPWATCH, the following problems
may arise:

o In Fortran 90, the character strings in an array constructor must all have the same

42

length. Pad three letter clock names with a blank on the right to make a four character
string, for example, 'cpu "

EXAMPLES

type (watchtypel) wi, w2{3)
type (watchgroup) gi

integer arrcode

call print watch(wi]
call print watch(w2, title='Array of 3 watches', err=errcode)
call print watch(gl, (/'cpu ', 'wall'/f), errcoda]

The first call prints the defanlt clocks from a single watch, and the defanlt title. The second
call prints the defanlt clocks on three watches given as an array and the title “Array of 3
watches", and returns a status code. The third call prints the cpu and wall clocks on the
watches in the group g1, and returns a status code.

BUGHS

It cannot be determined whether or not & watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If a watch or watch
gronp that has never hesn created is passed into print_wateh, it might generate a Fortran
error due to passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension to the Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs
to be created” error message is generated.

43

READ WATCH

reads the values from a STOPWATCH watch

SYNOPSIS

mbrontine read _watch (read result, watch, clock, err)

real, intent(QOUT) :: read_result
OR real, pointer 1 read_result(:)
OR real, pointer 1 read_result(:,:)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

character(len="*), optional, intent{IN) :: clock
OR character{len=*), intent{IN) = clock(:)

integer, optional, intent(OTT) :: err

DESCRIPTION
Eeturns the value of the specified clocks from the specified watches in read_regulf.

Cme or more watches must be specified. The argument waich can be a single variable of
type watchiype (see stopwateh(d)) to read one watch, or an array of type watchiype to
read several watches. waich can not be a wailchgroup becanse there s no natural order of
the watches in the group to use in constructing an array for the resuli.

The optional argnment clock specifies which clocks to read from the specified watch(es).

If omitted, the current defanlt clocks (see option_stopwatch(3)) are read. If present,
elock must be a character string containing ‘cpu’, 'nser’, 'sys’, or "wall’, or an array of such

character strings.
The type of read_result must agree with the form of the argnments wateh and clock:
K watch is a scalar and clock is & scalar, then read_reswlf must be a resl scalar,

K watch is an array and clockis a scalar, then read_resulf must be a pointer to a rank 1 real
array. The i*® entry of the result is the specified clock value on watch().

I walch is a scalar and clock is either an array or omitted, then read_resuli must be a pointer
to a rank 1 real array. The i*® entry of the result is the value in clock(1) on the specified
waich. In the case that clock 13 omitted, note that the default clocks specify the contents
of the result, and the defanlt clocks can be determined nsing inquiry stopwateh(3).

K waich 18 an array and clock is either an array or omitted, then read_resulf must be &
pointer to a rank 2 real array. The [i,_f]“" entry of the result is the value in clocky) on
watch(i).

K read_resulf 1z a pointer to an array, it will be allocated by read _watch, and should be
deallocated after use to avoid memory leakage.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
1z the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

If abort_errors is TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watch{es) will not be read.

See option_stopwatch(3) for forther information on prini_errors, abori_errors and I1/0
units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to read a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

4 Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STorWarcH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is
not supported by the implementation. See inquiry_stopwatch(3) to determine what
clocks are available.

A12 Failed to allocate required memory. When read_wateh is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran
alloecate statement returns & nonzero status indicating that memory coumld not be
allocated. Avoid memory leaks by always destroying watches and groups before recre-
ating them, and destroying local variable watches and groups before returning from a
subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are read, but be aware that other
problems could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by STOPWATCH, the following problems
may arise:

45

o In Fortran 90, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to make a four character

3

string, for example, 'cpn .

EXAMPLES

type (watchtypel wil, w2(3)
Teal x

real, pointer :: y(:], =(:,:])

integer errcode

call read watchix, wl, ‘uzar']

call read watch(y, wl, err=errcode)

call read watch(z, w2, (f'cpu ', 'wall®/], errcods]
deallocata(y, =)

The first call reads the nser clock on a single watch. The second call reads the defanlt clocks
on a single watch and returns & status code. y is allocated with dimension equal to the

number of default clocks. The third call reads the cpu and wall clocks from three watches
given as an array and returns a status code. The deallocate statement frees the memory

allocated in read wateh.

BUGHS

It cannot be determined whether or not & watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If a watch or watch
gronp that has never been created is passed into read _wateh, it might generate a Fortran
error due to passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension to the Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs
to he created” error message is generated.

RESET _WATCH

resets & ATOPWATCH watch to 0.0

SYNOPSIS

mbrontine reset_watch fwatch, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Resets the specified clocks of the specified watches to 0. Clocks can be reset regardless of
whether they are running or not.

Ome or more watches must be specified. The argument walch can be a single variable of
type watchiype (see stopwatch(l)] to reset one watch, an array of type wafchiype to resat
several watches, or & variable of type watchgroup (see stopwatch(3)) to reset the watches
in a group.

The optional argnment ciock specifies which clocks to reset on the specified watch(es). If

omitted, the current defanlt clocks (see option_stopwatch(l)) are reset. If present, clock
must be a character string containing ‘cpun', *weer’, 'sys’, or 'wall', or an array of such

character stringgs.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code
is the sum of the values listed below.

An error message will be printed to a specified I/ Q) unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the cause of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

If abori errorsis TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watch(es) will not be resst.

a7

See option_stopwatch(3) for further information on prini_errors, abori_errors and I/0

units.

The relevant status codes and messages are:

]
1

Bl

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt to reset a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when you attempt to reset
& watch that is corrently paused.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STorWarTcH.

Invalid clock type. This oceurs if elock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwateh(3) to determine what
clocks are available.

Failed to allocate required memory. When reset watch is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran
allocate statement returns & nonzero status indicating that memory comld not be
allocated. Avoid memory leaks by always destroying watches and groups before recre-
ating them, and destroying local variable watches and groups before returning from a
subroutine.

Error oceurred while deallocating memory. This error accurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or gronp of watches. The watches are reset, but he aware that other
problems could develop as a result of the deallocate error.

In addition to the ruon time diagnostics generated by STOPWATCH, the following problems
may arise:

In Fortran 9, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a blank on the right to make a four character
string, for example, 'cpu "

EXAMPLES

type (watchtype) wil, w2{3)
type (watchgroup) gi

integer arrcode

call reset_watch(wl]
call reset_watch(w?, err=arrcoda)
call reset watch(gl, (/'cpu ', 'wall'/f), errcoda]

The first call resets the default clocks on a single watch. The second call resets the defanlt
clocks on three watches given as an array and returns a status code. The third call resets
the cpu and wall clocks on the watches in the group gf, and returns a status code.

BUGS

It cannot be determined whether or not & watch variable or watch gronp has been created
[passed as an argnment to create_wateh or create watchgroup). If a watch or watch
gronp that has never been created is passed into reset_watch, it might generate a Fortran
error due o passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension tothe Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs

to be created” error message is generated.

44

START WATCH

starts a STOPWATCH watch

SYNOPSIS

mbrontine start _watch (waich, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Starts the specified clocks of the specified watches. Any time previously accumulated in the
clock is NOT cleared before starting. ([[se reset_watech to clear accomulated time.)

Ome or more watches must be specified. The argument walch can be a single variable of
type waichiype (see stopwatch(l))] to start one watch, an array of type wafchiype to start
several watches, or & variable of type watchgroup (see stopwatch(3)) to start the watches
in a group.

The optional argnment ciock specifies which clocks to start on the specified watch(es). If
omitted, the current defanlt clocks [see option stopwateh(d)) are started. [f present,
clock must be a character string containing ‘cpu’, 'nser’, 'sys’, or *wall’, or an array of such
character stringgs.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code
is the sum of the values listed below.

An error message will be printed to a specified I/ Q) unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the cause of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

If abori errorsis TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continue execution but the watch{es) will not be started.

gl

See option_stopwatch(3) for further information on prini_errors, abori_errors and I/0

units.

The relevant status codes and messages are:

]
1

Bl

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt to start a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when you attempt to start
a watch that is currently running or pansed.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not occur, and
indicates an internal bug in STorWarTcH.

Invalid clock type. This oceurs if elock is present and one of the specified clocks is
not supported by the implementation. See inguiry stopwateh(3) to determine what
clocks are available.

Failed to allocate required memory. When start_watch is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran
allocate statement returns & nonzero status indicating that memory comld not be
allocated. Avoid memory leaks by always destroying watches and groups before recre-
ating them, and destroying local variable watches and groups before returning from a
subroutine.

Error oceurred while deallocating memory. This error accurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used
for an array or group of watches. The watches are started, but be aware that other
problems could develop as a result of the deallocate error.

In addition to the ruon time diagnostics generated by STOPWATCH, the following problems
may arise:

In Fortran 9, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a blank on the right to make a four character
string, for example, 'cpu "

EXAMPLES

type (watchtype) wil, w2{3)
type (watchgroup) gi

integer arrcode

call start watch(wl)
call astart watch(w?, err=errcoda)
call atart watch(gl, (/'cpu ', 'wall'/f), errcode]

The first call starts the default clocks on a single watch. The second call starts the defanlt
clocks on three watches given as an array and returns an status code. The third call starts
the cpu and wall clocks on the watches in the group gf, and returns a status code.

Gl

BUGS

It cannot be determined whether or not & watch variable or watch gronp has been created
[passed as an argnment to create_wateh or create watchgroup). If a watch or watch
gronp that has never been created is passed into start_watch, it might generate a Fortran
error due o passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension tothe Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs

to be created” error message is generated.

STOP_WATCH

stops a STOoPWATCH watch

SYNOPSIS

mbrontine stop_watch fwaich, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len="*), intent{IN) = clock(:)

integer, optional, intent(QTT) :: err

DESCRIFPTION
Stops the specified clocks of the specified watches.

One or more watches must be specified. The argument walch can be a single variable of
type walchiype (see stopwateh(d]) to stop one watch, an array of type watchiype to stop
several watches, or a variehle of type walchgroup (see stopwatch(3]) to stop the watches
In a group.

The optional argument clock specifies which clocks to stop on the specified watch(es). If
omitted, the current defanlt clocks (see option stopwateh(3)) are stopped. If present,
clock must ba a character string containing ‘cpu’, 'nser’, 'sys’, or *wall’, or an array of such

character strings.

DIAGNOSTICS

If present, the optional intent QOTUT integer argument err returns a status code. The code
15 the sum of the values listed below.

An error message will be printed to a specified I/ () unit (unit 6 by defanlt) if prini_errors
is TRUE (defanlt is TRUE). The error message contains more detail about the canse of
the error than can be obtained from just the status code, so you should set prni_errors to
TRUE if you have tronble determining the canse of the error.

If abort_errors is TRUE (defaunlt is FALSE), the program will terminate on an error condi-
tion. Otherwise, the program will continne execution but the watch(es) will not be stopped.

Ses option_stopwatch(d) for forther information on print_errors, abori_errors and 170

Gl

units.

The r
0
1

a

4

Bl12

1024

elevant status codes and messages are:

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt o stop a watch that has
been destroyed. The watch must first be created again. See also the comment abount
watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when you attempt to stop
a watch that is currently pansed or not running.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the
state (running, stopped, etc.) that the watch is in. This error should not oceur, and
indicates an internal bug in STOPWATCH.

Invalid clock type. This occurs if efock is present and one of the specified clocks is
not supported by the implementation. See inguiry_stopwatech(3) to determine what
clocks are available.

Failed to allocate required memory. When stop_watech is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran
allocate statement returns a nonzero status indicating that memory could not be
allocated. Avoid memory leaks by always destroying watches and groups before recre-
ating them, and destroying local variable watches and groups before returning from a
subrontine.

Error oceurred while deallocating memory. This error occurs if the Fortran deallo-
cate statement returns & nonzero status while deallocating temporary memory used

for an array or group of watches. The watches are stopped, but be aware that other
problems could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by SToPWaTCH, the following problems
MmAay ariss:

In Fortran 3, the character strings in an array constructor must all have the same
length. Pad three letter clock names with a hlank on the right to make a four character
string, for example, 'cpu .

EXAMPLES

type
type

{(watchtype) wi, w2{3)
(watchgroup) gl

integer arrcode

call
call
call

gtop_watch(wl]
gtop_watch(w2, err=errcode)
atop watch(gl, (/'cpu ', 'wall'f], errcoda]

The first call stops the defaunlt clocks on & single watch. The second call stops the defanlt

clocks on three watches given as an array and returns a status code. The third call stops
the cpn and wall clocks on the watches in the group g1, and returns a status code.

BUGS

It cannot be determined whether or not & watch variable or watch gronp has been created
[passed as an argnment to create_wateh or create watchgroup). If a watch or watch
gronp that has never been created is passed into stop_watch, it might generate a Fortran
error due o passing & pointer with nndefined association status to the Fortran intrinsic
function associated. However, some compilers will allow this as an extension tothe Fortran
90 standard and recognize that the pointer is not associated, in which case the “Watch needs

to be created” error message is generated.

Fify

