Quantum Computations and Unitary Matrix Decompositions

Stephen S. Bullock

Mathematical and Computational Sciences Division
Information Technology Lab
National Institute of Standards and Technology
Outline

I. Quantum Data and Quantum Computation
II. Quantum Circuits Using \(QR \) and Cosine-Sine
III. Two-qubit Circuits and the Canonical Decomposition
IV. On-Going Work (Generalized Canonical Decompositions)
Quantum Computing

- replace bit with qubit: two state quantum system, states $|0\rangle$, $|1\rangle$

- quantum data states obey axioms of quantum mechanics

 - Single qubit state space $\mathcal{H}_1 = \mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle \cong \mathbb{C}^2$

 - $|\psi\rangle = |0\rangle + i|1\rangle$

 - n-qubit state space $\mathcal{H}_n = \bigotimes_1^n \mathcal{H}_1 = \bigoplus \bar{b}$ an n bit string $\mathbb{C}|\bar{b}\rangle \cong \mathbb{C}^{2^n}$

 - two-qubit example: $|\psi\rangle = |00\rangle + |11\rangle$

 * Both qubits in same state; equal chance of 0, 1
Quantum Computing Cont.

- density matrix ρ: Hermitian matrix describing stochastic dispersion of pure states $|\psi\rangle$
 - Choice of diagonalizations specifies mixture
 - For $\bar{x} = |\psi\rangle$ pure, unmixed density matrix is $\rho = |\psi\rangle\langle\psi| = xx^t = xx^*$
 - All states pure for rest of talk

- quantum computations: apply $2^n \times 2^n$ unitary matrix u to n-qubit data strings, i.e. $\bar{x} \mapsto u\bar{x}$

Thm: (’93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quantum computers would violate the Church-Turing hypothesis.
Example: \mathcal{F} the Two-Qubit Fourier Transform in $\mathbb{Z}/4\mathbb{Z}$

- Relabelling $|00\rangle, \ldots |11\rangle$ as $|0\rangle, \ldots, |3\rangle$, the discrete Fourier transform \mathcal{F}:

$$|j\rangle \xrightarrow{\mathcal{F}} \frac{1}{2} \sum_{k=0}^{3} (\sqrt{-1})^{jk} |k\rangle \quad \text{or} \quad \mathcal{F} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

- One-qubit unitaries: $H = (1/\sqrt{2}) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $S = (1/\sqrt{2}) \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$
Tensor (Kronecker) Products of Data, Computations

- \(|\phi\rangle = |0\rangle + i|1\rangle, \ |\psi\rangle = |0\rangle - |1\rangle \in \mathcal{H}_1 \)

 - interpret \(|10\rangle = |1\rangle \otimes |0\rangle \) etc.

 - composite state in \(\mathcal{H}_2: \ |\phi\rangle \otimes |\psi\rangle = |00\rangle - |01\rangle + i|10\rangle - i|11\rangle \)

- Most two-qubit states are not tensors of one-qubit states.

- If \(A = \begin{pmatrix} \alpha & -\beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \) is one-qubit, \(B \) one-qubit, then the two-qubit tensor \(A \otimes B \) is \((A \otimes B) = \begin{pmatrix} \alpha B & -\beta B \\ \bar{\beta} B & \bar{\alpha} B \end{pmatrix} \). Most \(4 \times 4 \) unitary \(u \) are not local.
Quantum Circuits

- Quantum computation complexity \sim size of quantum circuit

- Typical choices of gates
 - Any two-qubit
 - one-qubit, and CNOTs ($|b_1 b_2\rangle \mapsto |b_1 (b_1 \oplus b_2)\rangle$, ($|b_1 b_2\rangle \mapsto |(b_1 \oplus b_2) b_2\rangle$)
Quantum Circuits Cont.

- For $X = \text{NOT} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, sample quantum circuit:

\[
u = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

is implemented by

- good quantum circuit design: find tensor factors of computation u
Outline

I. Quantum Data and Quantum Computation
II. Quantum Circuits Using QR and Cosine-Sine
III. Two-qubit Circuits and the Canonical Decomposition
IV. On-Going Work (Generalized Canonical Decompositions)
Circuit Synthesis by QR Decomposition

- universality argument (1995): circuits for arbitrary u

- observation (2000): argument implements QR decomposition
 - In general, $m = qr$, with q unitary, r upper-triangular
 - q is made of Givens rotations
 - m unitary demands $r = q^*m$ unitary, i.e. r diagonal

- two-qubit Givens rotation: $G_{10,11}$ acts on $|10\rangle$ and $|11\rangle$ by 2×2 matrix v

$$G_{10,11} = \begin{pmatrix} 1 & 0 \\ 0 & v \end{pmatrix}$$
QR reduction of 4×4 unitary

\[
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
\end{pmatrix}
\xrightarrow{G_{10,11}}
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
\end{pmatrix}
\xrightarrow{G_{01,10}}
\begin{pmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
\end{pmatrix}
\xrightarrow{G_{10,11}}
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
\end{pmatrix}
\xrightarrow{G_{00,01}}
\begin{pmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
\end{pmatrix}
\]
Circuits for Givens Rotations

- Barenco et al.: $G_{10,11} = 2 \text{ CNOTs} + 4$ (variable) one-qubit gates

- a, b, c and d are computed from v

- Givens rotation $G_{01,10}$ on $|00\rangle$, $|01\rangle$ is the conjugation of $G_{10,11}$ by $X \otimes 1$

\[
G_{00,01} = (X \otimes 1)(t \otimes \text{c-v})(X \otimes 1) = \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}
\]
Summary of QR Circuit Synthesis

- **Breakthrough**: Every unitary u possesses a quantum circuit.

- Roughly, Givens rotations build circuit entry by entry.

- This design philosophy often ignores underlying structure.

- General philosophy recurs in circuit design:
 - Choose matrix decomposition
 - Produce circuits factorwise
Cosine-Sine Decomposition

Cosine-Sine Decomposition factors a $2^n \times 2^n$ unitary u:

$$u = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} v_3 & 0 \\ 0 & v_4 \end{pmatrix}$$

- v_1, v_2, v_3, v_4 are $(2^n/2) \times (2^n/2)$ unitary
- $c = \text{diagonal}(\cos t_0, \cos t_1, \cdots \cos t_{2^n/2-1})$
- $s = \text{diagonal}(\sin t_0, \sin t_1, \cdots \sin t_{2^n/2-1})$

Remark: Decomposition of unitary matrix, not arbitrary matrix

More structure?
Cosine-Sine Decomposition Cont.

\[
\begin{pmatrix}
 v_1 & 0 \\
 0 & v_2
\end{pmatrix} = \begin{pmatrix}
 v_1 & 0 \\
 0 & v_1
\end{pmatrix} \begin{pmatrix}
 1 & 0 \\
 0 & v_1^*v_2
\end{pmatrix} = v_1 \begin{pmatrix}
 v_1^*v_2
\end{pmatrix}
\]

- Side matrices of **C.S.D.** do not change top qubit
- Good choice (?) when measurement of single qubit is output
- **q-ph/0303039** (B-,Markov): Circuit for cosine-sine matrix
Outline

I. Quantum Data and Quantum Computation
II. Quantum Circuits Using QR and Cosine-Sine
III. Two-qubit Circuits and the Canonical Decomposition
IV. On-Going Work (Generalized Canonical Decompositions)
The Magic Basis of Two-Qubit State Space

- The **magic basis** of phase shifted Bell states is

\[
\begin{align*}
|m1\rangle &= (|00\rangle + |11\rangle)/\sqrt{2} \\
|m2\rangle &= (i|00\rangle - i|11\rangle)/\sqrt{2} \\
|m3\rangle &= (i|01\rangle + i|10\rangle)/\sqrt{2} \\
|m4\rangle &= (|01\rangle - |10\rangle)/\sqrt{2}
\end{align*}
\]

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a two-qubit computation U with $\det(U) = 1$

- Compute matrix elements in the magic basis
- (All matrix elements are real) $\iff (U = A \otimes B)$
The Two-Bit Entangler

- **Entangler unitary** E takes computational basis to the magic basis:
 $|00\rangle \leftrightarrow |m1\rangle$, $|01\rangle \leftrightarrow |m2\rangle$, $|10\rangle \leftrightarrow |m3\rangle$, $|11\rangle \leftrightarrow |m4\rangle$

 $$E = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & i & -1 \\ 1 & -i & 0 & 0 \end{pmatrix}$$

Corollary Consider a 4×4 unitary, $\det u = 1$. Then

$$(u = A \otimes B) \iff (EuE^* \text{ is real orthogonal})$$
An Example of the Isomorphism

We choose some orthogonal \(u, \det(u) = 1 \).

\[
\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}
\]

Then \(EUE^* \) is a tensor of one-qubit computations:

\[
EuE^* = \frac{\sqrt{2}}{2}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}
= \frac{\sqrt{2}}{2}
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}
\otimes 1
\]

Column by column, this amounts to application of the magic basis.
Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a matrix decomposition of the following form:

$$u = (b \otimes c)a(d \otimes f)$$

for $b \otimes c, d \otimes f$ are tensors of one-qubit computations and $a = EdE^*$ for a diagonal matrix $d = \sum_{j=00}^{11} e^{i\theta_j}|j\rangle\langle j|$, $\det d = 1$.

Note that a applies relative phases (complex multiples) to the magic basis.

Circuit diagram: For any u a two-qubit computation, we have:

```
  u
  |
  |
  b   a   d
  |
  c   |
```
Applications of the Canonical Decomposition

Two-qubit Circuit Design: [(F.Vatan, Colin Williams), (G.Vidal, C.Dawson), (V.Shende, I.Markov, B-)]

- Choose a universal gate library
- In two-qubits, provably optimal or near optimal circuits
 - Implement $b \otimes c$, $d \otimes f$ as tensor
 - Choose method for circuit for a

Entanglement Capacities: (J. Zhang, J. Vala, S. Sastry, KB Whaley) Only a block may entangle $|\psi\rangle$; other factors are local.

Quantum Circuit Structure: (V.Shende, B-, I.Markov) Recognize u with particularly simple circuits; produce circuits with special case a
Computing the Canonical Decomposition

Step #1: Compute the unitary SVD of \(v \) unitary:

\[
v = o_1 d o_2, \quad d \text{ diagonal}, \quad o_1, o_2 \text{ real orthogonal}
\]

Due to a theorem, this decomposition exists.

Step 1a: Suppose \(v = o_1 d o_2 \), and label \(p = o_1 d o_1^t \). Then \(v = p(o_1 o_2) \) and \(p = p^t \), \(p \) unitary. Moreover, we may compute \(p^2 = vv^t = o_1 d^2 o_1^t \).

Remark: For \(p^2 = a + ib \), \(1 = p^2(p^*)^2 = (a + ib)(a - ib) = (a^2 - b^2) + i(ba - ab) \). Thus the real and imaginary parts of \(p^2 \) are real symmetric matrices that commute, hence \(o_1 \) exists.
Computing the Canonical Decomposition Cont.

Step 1b: Diagonalize to find d^2. Write $p = o_1 o_2^t$, with determinants of o_1 and d both one.

Step 1c: Then $v = (o_1 o_2^t)(o_1 o_2)$ for $o_2 = o_1^t p^* v$.

Step #2: Canonical decomposition results by translation through entanglers. If $E^* v E = o_1 do_2$, then

$$v = (E o_1 E^*)(E d E^*)(E o_2 E^*) = (b \otimes c) a (d \otimes f)$$

WARNING! Entanglers do not function properly on inputs with det $\neq 1$.

23
Outline

I. Quantum Data and Quantum Computation
II. Quantum Circuits Using QR and Cosine-Sine
III. Two-qubit Circuits and the Canonical Decomposition
IV. On-Going Work (Generalized Canonical Decompositions)
Entanglement Monotones

- **Entangled $|\psi\rangle$:** any non-local $|\psi\rangle$, i.e. not tensor (Kronecker) product

- **Entanglement monotone:** functions that measure how far away a state $|\psi\rangle$ is from local (full Kronecker product)

- **Monotones usually map to $[0, 1]$, must return 0 on local states, may return zero on nonlocal states.**
 - only detect certain entanglement types
 - types thought to grow exponentially with n
Concurrence

• concurrence entanglement monotone: $-iY = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, with $S = \bigotimes^n_1(-iY)$ a $2^n \times 2^n$ complex matrix. For $\bar{x} = |\psi\rangle$, we have $C_n(|\psi\rangle) = |x^tSx|$.

• $S = \bigotimes^n_1(-iY)$ is antidiagonal, $S^t = S^{-1} = (-1)^nS$

• 4-qubit examples

 – maximal 1 on $|GHZ\rangle = (1/\sqrt{2})(|00\cdots0\rangle + |11\cdots1\rangle)$

 – vanishes on entangled $|W\rangle = (1/4)(|0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle)$
Concurrence Form

Definition: The concurrence bilinear form $C_n : \mathcal{H}_n \times \mathcal{H}_n \to \mathbb{C}$ is given by $C_n(\vec{x}, \vec{w}) = \vec{x}^t S \vec{w}$.

Remark: So $C_n(\vec{x}) = |C_n(\vec{x}, \vec{x})|$.

2-qubits: $C_2(\vec{x}, \vec{w}) = (\begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \end{array}) \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix}$
Generalized Entanglers

4-qubit entangler:

\[
E_0 = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Concurrence Canonical Decomposition

Theorem (B-, Brennen) Let v be a $2^n \times 2^n$ unitary, n even. Then $v = k_1 a k_2$ where the factors have the following properties.

- $k_j = E_0 o_j E_0^*$, where o_j orthogonal, $j = 1, 2$

- $k_j^t S k_j = S$, i.e. $C_n(k\vec{x}, k\vec{w}) = C_n(\vec{x}, \vec{w}) \forall \vec{x}, \vec{w}$ in n-qubit data space \mathcal{H}_n

- For a diagonal d, the central factor $a = E_0 d E_0^*$ applies relative phases to the concurrence-one columns of E_0

Algorithm: Computable in same manner as two-qubit canonical decomposition. Given scaling of matrix sizes, numerical issues arise in ≥ 12 qubits.
Application: Concurrence Capacity

Definition: The concurrence capacity of a given n-qubit quantum computation ν is defined by $\kappa(\nu) = \max\{C_n(\nu|\psi) : C_n(|\psi\rangle) = 0, \langle\psi|\psi\rangle = 1\}$.

Corollary: Let $u = k_1ak_2$ be the concurrence canonical decomposition of some $2^n \times 2^n$ unitary u. Then $\kappa(u) = \kappa(a)$.

- Calculation: For $n = 2p$, most a have $\kappa(a) = 1$ as $p \to \infty$.

- Conclusion: Most large unitaries are arbitrarily entangling with respect to the (single) entanglement monotone C_n.
On-going Work

- Most large u in even qubits carry some $|\psi\rangle$ of concurrence 0 to $u|\psi\rangle$ of concurrence 1.
 - Compute numerical examples?
 - How entangled are such $|\psi\rangle$ with respect to other monotones?

- Do the factors have reasonable quantum circuits?

- Odd n: a decomposition exists, do not know algorithm to compute it.

- Analyze particular u from well-known quantum algorithms
Ongoing Work: Numerical Issues

- Algorithm for $(n = 2p)$-qubit canonical is similar to $n = 2$

 - Diagonalize commuting real $2^n \times 2^n$ matrices a, b, with same orthogonal matrix o

 - Otherwise several matrix multiplications

 - 60-qubits: can’t distinguish 2^{60} eigenvalues with 16 digits

- n-odd: complicated decomposition exists, no algorithm