
Reconstruction and Identification of Features in Planar and

3D Objects

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Michael J. Donahue

The Ohio State University

1992

Adviser’s Approval

Adviser
Department of Welding Engineering

Dissertation Committee

Stanislav Rokhlin

Laslo Adler

Carolyn Merry

Roni Yagel

Copyright by

Michael J. Donahue

1992

To My Mother,

Ruth M. Donahue

ii

Acknowledgements

Let me express my genuine appreciation to my thesis advisor, Professor Stanislav

Rokhlin. Without his guidance and persistence this document could not have been

brought to fruition. Also my thanks to my dissertation committee, Professors Laslo

Adler, Carolyn Merry, and Roni Yagel; I sincerely appreciate their time, effort, and

enthusiasm.

I am also grateful to my fellow graduate students. I cannot mention them

all, but allow me to make special acknowledgements to Wei Huang, Ligou Wang,

and Dan Applegate. The camaraderie shared by graduate students is an impor-

tant aspect of the graduate school experience that should not be discounted. My

thanks also, of course, to my family and friends, for their steadfast support and

devotion throughout the many years of my education. In particular, let me express

my deepest appreciation to my mother, who more than anyone else has provided

support when I needed it most.

Finally, let me recognize the Edison Welding Institute, Kodak, and the Amer-

ican Society for Nondestructive Testing for providing financial support for this

research.

iii

Vita

May 31, 1962 . born—Columbus, Ohio

1981–1983 . Undergraduate Research Assistant,
University of Dayton Research Institute,
Dayton, Ohio

1984 . B.S. Electrical Engineering, The Ohio
State University, Columbus, Ohio

1984–1987 . Graduate Teaching Associate,
Department of Mathematics, The Ohio
State University

1985 . M.S. Mathematics, The Ohio State
University

1991 . Ph.D. Mathematics, The Ohio State
University

1987–Present. .Graduate Research Associate,
Department of Welding Engineering, The
Ohio State University

Publications

1. M. J. Donahue, A. P. Sprague and S. I. Rokhlin, “Point Matching Method
for Flaw Detection in Printed Circuit Boards,” in Review of Progress in
Quantitative NDE, D. O. Thompson and D. E. Chimenti eds., 8B, 1233–
1240 (Plenum Press, New York, 1989).

2. A. P. Sprague, M. J. Donahue and S. I. Rokhlin, “A Method for Automatic
Inspection of Printed Circuit Boards,” Computer Vision, Graphics and Image
Processing: Image Understanding, 54, 401–415 (1991).

iv

Fields of Study

Major Field: Welding Engineering

v

Table of Contents

DEDICATION . ii
ACKNOWLEDGEMENTS . iii
VITA . iv
LIST OF TABLES . x
LIST OF FIGURES . xii

Introduction and objectives . 1

Part I: Tomographic reconstruction of planar and 3D
objects . 7

CHAPTER PAGE
I Background to Part I . 8

1.1 History . 8
1.2 Theory . 10

II Simulation of radiographic projections of 3D objects 14
2.1 Problem description 14
2.2 Theory . 15

2.2.1 2D Simulations 19
2.2.2 3D Base elements 24
2.2.3 Beam geometries 27

2.3 Comparison of simulated and experimental radio-
graphs . 28

III Cone beam tomographic reconstructions 39
3.1 Theory . 39
3.2 Results . 43

vi

IV Limited angle tomographic reconstructions 48
4.1 Data interpolation by analytic continuation 48

4.1.1 Theory . 48
4.1.2 Implementation and results 52

4.2 Filtered backprojection reconstruction using a pri-
ori information . 57

4.3 Iterative reconstruction using a priori information 59
4.3.1 Theory . 59
4.3.2 Inconsistent data 67
4.3.3 Projection ordering 70
4.3.4 A priori data 74

V Summary to Part I . 79

Part II: Computer recognition of plane images via fea-
ture encoding and matching 83

VI Background to Part II . 84
6.1 Printed circuit boards 84
6.2 Fingerprint identification 86

VII Using level curves in image analysis 89
7.1 Introduction . 89
7.2 Problem statement 92
7.3 Tangent vector calculation 95

7.3.1 Method outline 95
7.3.2 Point normal determination 96
7.3.3 Determining the averaged tangent direction 100
7.3.4 Region contrast and consistency 102
7.3.5 Controlled tests 104

7.4 Curvature vector calculation 114
7.4.1 Problem formulation 114
7.4.2 First formulation of orthogonality condition 117
7.4.3 Second formulation of orthogonality condi-

tion . 120
7.4.4 Combining the two orthogonality formula-

tions . 124
7.4.5 Controlled tests 129
7.4.6 Extensions . 134

vii

7.5 Examples . 135
7.5.1 Tangent examples 136
7.5.2 Curvature examples 143

7.6 Summary . 146

VIII Feature extraction on printed circuit boards 153
8.1 Method Outline . 153
8.2 The Segment Graph 154
8.3 Feature extraction . 156
8.4 Comments . 159

IX Feature extraction from local image topology in fingerprints 162
9.1 Overview . 162
9.2 The feature extraction window and superwindow 164
9.3 Flow specific parametric filtering 166
9.4 Feature descriptions and definitions 168
9.5 Feature selection under noise 170

9.5.1 Feature preprocessing 170
9.5.2 Minutia classification 171
9.5.3 Defect classification and identification . . . 172

9.6 Feature extraction . 178
9.7 Pseudocode for the top several functions of the

program . 179
9.7.1 Pseudocode for the main routine 179
9.7.2 Pseudocode for control sp() 185
9.7.3 Pseudocode for process sp() 186

X Image identification through feature matching 188
10.1 Defect identification on printed circuit boards . . 189

10.1.1 Alignment . 189
10.1.2 Matching . 190
10.1.3 Output . 194
10.1.4 Generalizations of Comparison Algorithm 194
10.1.5 Experimental results 196

10.2 Latent fingerprint identification 197
10.2.1 Stage 1: Screening match 198
10.2.2 Stage 2: Detailed comparison 200
10.2.3 Deformations in fingerprints 214
10.2.4 Speed of fingerprint matching 215
10.2.5 Matching results 216

viii

XI Summary to Part II . 221

XII Summary and future work . 223

APPENDICES
A Radiograph simulation program details 227

A.1 Base element attenuation subroutines 227
A.2 Program organization 231
A.3 Data structures . 232
A.4 Attenuation subroutine format 235
A.5 Ray generation subroutine format 236

BIBLIOGRAPHY . 238

ix

List of Tables

TABLE PAGE

7.1 Experimental results of tangent calculation for a smoothed
edge passing through the center of the tangent window
at an angle of 40◦. Results in (a) are from a 9 × 9 win-
dow, (b) from a 19 × 19 window. Noise was introduced
by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. 105

7.2 Experimental results of tangent calculation for a sinu-
soidal wave passing through the center of the tangent
window at an angle of 40◦. Results in (a) are from a 9×9
window, (b) from a 19×19 window. Noise was introduced
by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. 106

7.3 Curvature calculation statistics at various curvature lev-
els and noise magnitudes. Noise was introduced by rotat-
ing the tangent directions from a sequence of computer
generated zero-mean uncorrelated Gaussian random vari-
ables. The curvature units are pixels−1, direction units
are degrees. 130

10.1 Matching results: file print MAQ1, latent LCP10. 218

10.2 Matching results: file print MAP6, latent LCP13. 219

10.3 Matching results: file print MAQ1, latent LCP14. 220

10.4 Matching results: file print MAQ6, latent LCP9. 220

x

10.5 Matching results: file print DAB1, latent LCP8. 220

xi

List of Figures

FIGURE PAGE

2.1 T-joint with trace of an X-ray path. 16

2.2 Illustration of intersection of line L with disk of radius R. 20

2.3 Illustration of intersection of line L with a rectangle of
width 2e1 and height 2e2. 23

2.4 Illustration of intersection of line L with a rotated and
translated rectangle. 25

2.5 The 6 building elements currently supported by the ra-
diograph simulation package, where ∗ indicates elements
admitting cut-planes. 26

2.6 Triangular prism constructed as a “free form” element. . 28

2.7 Simulated radiograph of triangular prism with parallel
beam geometry. 29

2.8 Simulated radiograph of triangular prism with cone beam
geometry. 30

2.9 Schematic of experimental sample. 33

2.10 Simulated radiographs of the experimental sample: 0◦,
45◦, 90◦ (top to bottom). 34

2.11 Actual real-time radiographs of the experimental sample:
0◦, 45◦, 90◦ (top to bottom). 35

xii

2.12 Tomographic reconstruction (FBP) from simulated data,
65 directions. 36

2.13 Tomographic reconstruction (FBP) from simulated data,
315 directions. 37

2.14 Tomographic reconstruction (FBP) from experimental data,
315 directions. 38

3.1 Tomographic reconstruction of experimental data using
Feldkamp’s cone beam algorithm. 45

3.2 Tomographic reconstruction of simulated data using Feld-
kamp’s cone beam algorithm. 45

3.3 Graphs of the projection intensities for experimental data
(a) and simulated data (b). 47

4.1 Illustration showing an inaccessible projection range (a)
and the corresponding missing range in the frequency
domain (b). 49

4.2 Illustration of the frequency domain showing the integra-
tion contour Γ for a Cauchy integral for data extrapola-
tion in the missing region. 51

4.3 FBP reconstruction of experimental data missing projec-
tion data from 20◦ about the vertical axis. 57

4.4 Reconstruction of experimental data missing projection
data from 20◦ about the vertical axis. This reconstruction
used the method of analytic continuation to interpolate
the missing data. 58

4.5 Simulated T-joint, top view. 60

4.6 T-joint simulated radiographs at 45◦ increments. 61

4.7 T-joint reconstruction from simulated data, 315 directions. 62

xiii

4.8 Reconstruction from simulated data, 20◦ missing angle. . 63

4.9 Reconstruction from simulated data, 20◦ missing angle,
lower 20% of frequency range filled with ideal data. . . . 64

4.10 Graphic illustrating the convergence technique upon which
the iterative reconstruction method is based. 66

4.11 Illustration of the first four iterates of the iterative re-
construction using the simulated projection data. The
0 function was selected as the initial iterate f0. (a) f1,
θ1 = 0

◦. (b) f2, θ2 = 105
◦. (c) f3, θ3 = 210

◦. (d) f4,
θ4 = 315

◦. 68

4.12 Graphic illustrating the convergence technique upon which
the iterative reconstruction method is based. 69

4.13 Comparison of the convergence rates of the iterated re-
construction method with different orderings of the pro-
jection data. 72

4.14 Iterated reconstruction method final iterate (f1260) using
complete experimental data set (315 projections). 74

4.15 Iterated reconstruction from experimental data without
projections from the 90◦ range about the vertical axis,
using 0 as initial iterate. 77

4.16 Iterated reconstruction from experimental data without
projections from the 90◦ range about the vertical axis,
using outer cylinder as initial iterate. 78

7.1 Schematic showing three level curves with associated tan-
gent and curvature vectors. 94

7.2 Illustration of a smooth approximation to a unit step
function with edge along the x-axis. Also illustrated are
several normal vectors to this surface. 97

xiv

7.3 Local coordinate system imposed onto each 2x2 neigh-
borhood. 99

7.4 Graph of results of tangent calculations for a smoothed
edge (see Fig. 7.6) passing through the center of a 9× 9
tangent window at an angle of 40◦. Noise was introduced
by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. The tangent
direction (in degrees), normalized error (EN), and nor-
malized contrast score (CN) are displayed as functions
of the signal to noise ratio. The error bars mark one
standard deviation. 107

7.5 Graph showing results of tangent calculations for a sinu-
soid (see Eq. 7.5) passing through the center of a 19× 19
tangent window at an angle of 40◦. Noise was introduced
by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. The tangent
direction (in degrees), normalized error (EN), and nor-
malized contrast score (CN) are displayed as functions
of the signal to noise ratio. The error bars mark one
standard deviation. 108

7.6 Tangent window pixel values for a smooth edge passing
through the center of the window at an angle of 40◦. . . . 109

7.7 Illustration of placement of curvature center point Pc. . . 116

7.8 Illustration of the first orthogonality formulation for cur-
vature calculation. 118

7.9 Illustration of the second orthogonality formulation for
curvature calculation. 121

xv

7.10 Calculated mean curvature as a function of noise-free
(“true”) curvature and standard deviation (1◦, 3◦, or 5◦)
of added Gaussian noise. The results using the first cur-
vature formulation (Section 7.4.2) are marked by pluses,
and the results using the second curvature formulation
(Section 7.4.3) are marked by triangles. A 3x3 tangent
grid with a 10 pixel internal spacing was used for these
calculations. 125

7.11 Normalized infinity error, λ/n (see Eq. 7.22), as a func-
tion of noise-free (“true”) curvature and standard devi-
ation (1◦, 3◦, or 5◦) of added Gaussian noise. A 3x3
tangent grid with a 10 pixel internal spacing was used for
these calculation. The angle of the noise-free curvature
vector with respect to this grid was fixed at 57◦. 128

7.12 Illustration of two shallow curves that are indistinguish-
able in the presence of noise. The curvature vector di-
rection in such situations has meaning only modulo 180◦. 137

7.13 Image of an inked fingerprint. Notice the missing hole on
the right hand side and the poor contrast at the top. . . . 137

7.14 Tangent directions calculated on a 10 row by 8 column
grid using a 19 row by 15 column tangent averaging win-
dow. Unmarked regions indicate either the contrast or
the consistency is poor. 139

7.15 Result of one pass of the directional filter. The tangent
window was 19 rows by 15 columns. Regions were left
unprocessed if the normalized contrast score was less than
0.07 or if the normalized consistency error was larger than
0.7. 141

7.16 Result after 8 passes of directional filter. Each of the
first 6 iterations only modified pixels untouched by pre-
ceding passes. The last two passes modified low contrast
regions using a 9 row by 7 column tangent window. The
smaller window allows for the capture of tangents in high
curvature regions. 142

xvi

7.17 Scanning electron microscope image of a membrane. Dark
areas are pores in the membrane. 144

7.18 Membrane image after two passes of directional filter us-
ing 15 row by 11 column tangent window. Thresholding
this image gives pore volume fraction in agreement with
results from manual inspection. 145

7.19 Fingerprint overlaid with results from curvature calcula-
tion. Points with curvature radius of less than 150 pixels
are marked with a ‘+’, and a radial line is drawn from the
point to the calculated curvature center, marked with a
‘◦’. 147

7.20 Curvature magnitude contours (units: 0.01× (pixels)−1)
overlaid on the fingerprint image. The high curvature
values correctly mark the fingerprint core in the center
of the image and the deltas below on either side. 148

7.21 Section of a printed circuit board overlaid with calculated
curvature. High curvature locates circular pads and re-
sistor elements. 149

7.22 (a) Radiograph of a steel specimen with 4 oval slots (which
simulate flaws). (b) Curvature overlay. High curvature
locates 3 of the 4 slots. 150

8.1 (a) Fragment of electric circuit; (b) The corresponding
segment graph representation. (From [1]) 155

8.2 Printed circuit board feature definitions. (From [1].) . . . 158

8.3 Feature extraction rules for short segments (a) and tall
segments (b). (After [1].) 158

8.4 Feature point encoding of printed circuit board defects.
(From [1].) . 159

8.5 Feature points extracted from circuit of Fig. 8.1. (From
[1].) . 160

xvii

8.6 Two metal trace patterns that are electrically distinct
but which generate the same feature points. (From [1].) . 161

9.1 Schematic illustration of the subregion grid. The edges
of the subregions are offset to aid visibility. 165

9.2 Schematic explanation of feature definition. Feature starts
at cross section A as a branch and ends at cross section
B as a root. 169

9.3 Schematic showing the definition of feature end classifi-
cation. 169

9.4 Schematic of false branches, indicated by letters C and
D. They are declared false since they are “short”. One
will be removed by program. 170

9.5 Schematic showing the definition of minutia direction . . 173

9.6 Schematic classification of feature defects. Gap ends are
marked by stars. (a) Type 0, forward. (b) Type 0, back-
ward. (c) Type 1, forward. (d) Type 1, backward. (e)
Type 2, forward. (f) Type 2, backward. 174

9.7 Illustration of measurements used by algorithm to define
Type 0 forward defect probability. 177

9.8 System flow chart for fingerprint latent processing. 180

9.9 Flow chart for mainline of flow correction program. . . . 181

9.10 Flow chart of mainline for program extract. 182

9.11 Flow chart of subroutine control extract in program ex-
tract. 183

9.12 Flow chart for subroutine process sp in program extract. 184

10.1 Algorithm for comparison of test board features against
reference board. 191

xviii

10.2 Matching of reference features P1, P2 with test board
features Q1, Q2. 192

10.3 Alternative approach to feature point organization for
comparison, using 2-dimensional grid cells. 194

10.4 (a) Section of reference board with solid circles marking
extracted features. (b) Section of test board with crosses
marking extracted features, including defects. 196

10.5 Unmatched feature points (from both boards) and wire
width violations (marked by arrows A) overlaid on the
test board image. 197

10.6 File curvature surface. 203

10.7 File curvature direction surface. 204

10.8 File ridge width surface. 205

10.9 Distribution density functions of curvature angle differ-
ence for true match (solid) and for false match (dashed). 207

10.10Distribution density functions of ridge width difference
for true match (solid) and for false match (dashed). . . . 208

10.11Distribution density functions of curvature difference for
true match (solid) and for false match (dashed) for latent
curvature cl in the range [0.008, 0.012). 209

10.12Curvature angle difference scoring function. 210

10.13Width difference scoring function. 211

10.14Curvature scoring function as a function of curvature dif-
ference (∆c) and latent curvature value (cl). 212

10.15Sample latent print LCP10. 218

10.16Sample file print MAQ1. 219

xix

A.1 Illustration of the ellipsoid (x1/e1)
2+(x2/e2)

2+(x3/e3)
2 ≤

1. 229

A.2 Subroutine for calculation of ellipsoid linear attenuation. 230

A.3 Flowchart for radiograph simulation package 233

xx

Introduction and objectives

With the increasing complexity of manufacturing techniques, the nondestructive

evaluation of products becomes an important component in maintaining product

quality and increasing structural reliability. One such method, developed originally

in medicine and more recently in industry, is computerized tomography. Here we

study the problem of tomographic reconstruction from incomplete data, which

is an important problem in industrial tomography not present in the medical set-

ting. Modern sophisticated nondestructive evaluation techniques, tomography and

others, generate large amounts of data. It is therefore important to develop com-

puterized methods to analyze this data. One such method that will be investigated

in this work is computer-automated feature extraction from images.

Radiography is commonly used for flaw detection in a variety of objects. How-

ever, radiographs can be difficult to interpret, especially if the object has a com-

plicated geometry or internal structure. Tomographic reconstructions allow one

to see into an object by producing a cross-sectional view of the object density.

Such reconstructions are easily interpreted and compared to part specifications.

1

Reconstructions of this type produce cross-sectional images of incredible accuracy,

often on the order of one part in a thousand (see [2]). However, conventional

tomographic reconstructions, which were developed in the medical field, require

radiographs from all directions surrounding the object. In industrial applications

body geometry, surrounding structures, or other restrictions can make such com-

plete data collection impossible. Reconstruction from a restricted data set of this

type is known as the limited angle observation problem. On the other hand,

industrial tomography, as compared to as medical tomography, does not have re-

strictions on radiation dosage (due to the absence of biological constraints) and

may have a priori information available. As an example of the latter, in industrial

applications one may test for voids in a material where the surrounding material

is known to be homogeneous. Alternatively, one could test manufactured parts

using the part specification for comparison. In both cases a significant amount of

information is available before the part undergoes any radiation exposure. (More

detailed background information on tomography is provided in Chapter I.)

Volume reconstructions from computerized tomography or multidirectional ra-

diography produce enormous amounts of data, which raises the additional problem

of automated defect recognition. Similar problems arise in real-time automated op-

tical and radiographic inspection systems, where automated inspection is required

in order to provide both reliability and speed. To deal with the vast amount of

data contained in a raw image, it is useful to reduce the image to a smaller set of

2

important features, and then do subsequent processing on this reduced set.

Feature extraction and identification is a general technique used in many areas

of computer vision. In radiographs, for example, material inhomogeneities and

discontinuities should be detected. Similarly, trace endings from printed circuit

board images should be extracted for optical detection of defects. Any new or

missing endings (as compared to the original circuit specification) correspond to

trace break or join defects on the board. Fingerprint identification is done in

an analogous fashion by matching fingerprint ridge endings and bifurcations. In

all examples of this type, if the features can be reliably extracted, then image

recognition can be done in a robust manner.

Objectives

This dissertation research has two major objectives. First, to develop new meth-

ods in the limited angle problem using a priori information available in industrial

settings. Second, to develop methods for automated feature extraction and iden-

tification from general images.

These objectives will be met as follows. First a study of 3D cone beam to-

mography will be done, including algorithmic implementation and a theoretical

understanding of the reconstruction limitations arising from beam scanning geom-

etry. Then the limited angle problem will be considered, with possible solutions

involving analytic continuation and iterative processing using a priori information.

3

As an aid to these studies I will implement a 3D radiograph simulation program.

As a first step towards feature extraction and identification, I will present a method

for the extraction of image topological information from general images and show

the use of this information for feature detection in a variety of images. A detailed

study will then be made of feature extraction and image identification, with ap-

plications including the use of the above topological information to radiographic

images, printed circuit boards and fingerprints.

This dissertation is structured as follows. Part I is devoted to tomographic

reconstruction of objects. First is some historical and theoretical background ma-

terial and a review of reconstruction techniques currently in use. Following this

I present an elegant radiograph simulation technique for 3 dimensional bodies,

based on the superposition of analytically calculated radiographs for several base

element types such as spheres, ellipsoids, and rectangular solids. This is useful in-

dependently for the study of radiographs of complex objects, but was also needed

to generate simulated radiographs for the tomographic reconstruction algorithms

developed as part of this work. These simulations were used, for example, in the

development of the 3 dimensional cone beam reconstruction algorithm presented

in Chapter III. This algorithm is an implementation of an idea of Feldkamp [3].

Chapter IV contains new results in tomographic reconstructions from limited

angle data. Section 4.1 details the development and results of the implementa-

tion of an analytic continuation technique suggested by Palamodov and Denisjuk

4

[4]. This technique uses the known data to extrapolate data in the missing di-

rections. To my knowledge this is the first actual implementation of this method.

In comparison, Section 4.3 is more pedestrian. This section concentrates on the

iterative (algebraic) reconstruction technique and the use of a priori data. Several

new ideas are introduced to the reconstruction method, but the main thrust of the

section is towards a quantitative evaluation of the effects of projection order and

two different types of a priori information.

The second part of this dissertation focuses on feature recognition in planar

images. In general the material in this part could be developed for the detection

of flaws (or other features) in radiographs or tomographic reconstructions, but the

funding for our research was such that instead the examples presented relate to

printed circuit board inspection and fingerprint identification.

Chapter VII presents some general techniques for image analysis on grey level

images, including examples spanning a variety of images. The succeeding chapter

presents feature extraction on printed circuit boards, where several new algorithms

are suggested. Chapter IX provides extensive detail on an original fingerprint fea-

ture extraction system. This system, developed on an IBM PC platform, compares

favorably in terms of extraction quality with commercial systems. Finally, Chap-

ter X details methods for feature classification through matching. In particular,

Section 10.1 describes a method for determining which printed circuit board fea-

tures (extracted using the methods of Chapter VIII) correspond to circuit defects,

5

and Section 10.2 develops a complex method for latent fingerprint identification

based on features extracted using the methods of Chapter IX.

6

Part I

Tomographic reconstruction of
planar and 3D objects

7

CHAPTER I

Background to Part I

1.1 History

Tomography is the reconstruction of a body from its projections. In practice, a

body of unknown varying densities is exposed to X-ray radiation from one direction

and a radiograph (or rather a digital representation of one) is produced. Then the

body (or alternately the X-ray source) is rotated, and a radiograph is taken from a

different direction. This process is repeated for many angles completely surround-

ing the body. The obtained radiographic data, referred henceforth as “projection”

data, is then mathematically inverted to recover the original (unknown) body den-

sities.

The history of tomography traces back to 1917, when J. Radon published a

solution to the inversion problem for what is now known as the Radon transform

[5]. (In 2 dimensions the Radon transform is equivalent to the X-ray transform

used in X-ray transmission tomography.) Although Bracewell and Riddle [6, 7]

studied the Radon inversion problem in radio astronomy from the 1950’s, the field

8

9

was relatively dormant until the early 1960’s, when A. Cormack constructed a

parallel beam X-ray scanner which used an algebraic reconstruction technique for

radiological applications [8, 9]. Great interest in the medical community led to the

development of the first commercial CAT (Computer Axial Tomography) scanner

in 1972 by Hounsfield [10]. In 1979 Cormack and Hounsfield received the Nobel

prize in medicine for their (independent) accomplishments.

Rapid advances in computerized tomography through the 1970’s was due mainly

to developments in reconstruction algorithms. The early devices used an algebraic

reconstruction technique (ART), which has been replaced in modern implementa-

tions with a more computationally efficient technique called filtered backprojection

(FBP). The filtered backprojection method was used as early as 1967 in radio as-

tronomy [7], but was introduced to the medical literature by Ramachandran and

Lakshminarayanan [11] and Shepp and Logan [12].

Although the filtered backprojection algorithm achieves excellent results in

medical tomography, it requires a large number of projections uniformly spaced

around the body. The algebraic methods are generally more easily adapted to

limited data type problems. This class of problems commonly occurs in industrial

tomography, and is discussed in more detail in Chapter IV, as well as in general to-

mographic reconstruction references [13, 14, 2]. The particular problem of having

only a restricted range of projection angles available is known as the limited an-

gle problem. Significant contributors to this problem since the late 1970’s include

10

Lewitt [15], Louis [16, 17], Tuy [18], K.T. Smith [19], and M.E. Davison [20, 21].

Another area of development in the 1970’s was scanning beam geometry. Early

tomographic scanners and reconstruction methods used what is called “parallel

beam” geometry. Parallel scanning requires a collimated X-ray source and de-

tector, which are moved in parallel across the body being examined, producing

a radiograph strip for one projection direction. This parallel scan is required for

each projection direction. As this technique is time consuming and mechanically

complicated, later scanners make use of the “fan beam” geometry, in which an

X-ray point source (or approximation thereto) irradiates the entire object, pro-

ducing a radiographic projection from that direction at once. The extension of

this fan-beam geometry to 3 dimensions is known as the “cone beam” geometry,

and is discussed in detail in Chapter III.

1.2 Theory

Let α(x) denote the X-ray linear attenuation coefficient for a given body at point

x. (Although the linear attenuation is not the same as the object density, the

two are related, and henceforth the distinction will be disregarded.) Then X-rays

passing through the body at point x with intensity I suffer a relative intensity loss

of

∆I/I = α(x)∆x (1.1)

11

over a small distance ∆x. Therefore if I0 is the original intensity of the X-ray beam

before entering the body, and L denotes the line of travel of the beam, then the

intensity I1 upon exiting the body is given by

I1 = I0 exp
{

−
∫

L
α(x) dx

}

. (1.2)

The physics of X-ray radiation and absorption are discussed in many sources. For

example, see [22], pages 71–84.

To simplify discussion let us restrict our attention to the 2 dimensional case.

Analogous remarks apply to the higher dimensional situations as well. Let Lθ(t)

denote the line in the xy-plane which makes angle θ with the y-axis at distance t

from the origin. Then the projection Pθ(t) in the direction θ at offset t is given by

Pθ(t) =
∫

Lθ(t)
α(x(s), y(s)) ds, (1.3)

where s denotes a parameterization of the line L.

According to the Fourier Slice Theorem (see for example [14, page 11]), the 1

dimensional Fourier transform of Pθ(t) in t is the same as the 2 dimensional Fourier

transform of the original function α(x, y), only in polar coordinates. To be precise,

Fx→u,y→v(α)(σ cos θ, σ sin θ) = Ft→σ(Pθ)(σ). (1.4)

(Here F denotes the Fourier transform.) Therefore, by taking one dimensional

Fourier transforms of the (known) projection data, one can recover the 2 dimen-

sional Fourier transform of the original (unknown) attenuation function α(x, y).

12

Since the Fourier transform is invertible, it is possible to recover α(x, y) by taking

the inverse 2 dimensional Fourier transform of the transformed projection data.

This procedure is known as the Fourier inversion technique.

The chief difficulty with the Fourier inversion technique is that the typical nu-

merical method for the Fourier inversion (the inverse fast Fourier transform, IFFT)

requires a square grid, whereas the data obtained after taking the Fourier transform

of the projection data lies on a radial grid. Moreover, the necessary interpolation

is difficult to perform. However, the inversion steps can be combined and rewrit-

ten using polar coordinates. The resulting technique is the filtered backprojection

method (FBP), which is extremely fast and accurate. It is upon this method that

the cone beam reconstruction algorithm of Feldkamp [3] presented in Chapter III

is built. It is also the method used almost universally in medical CT machines.

The speed of the filtered backprojection method is based upon the computa-

tional refinements of the fast Fourier transform (FFT). In particular, the filtered

backprojection method requires a large number of projections that are spaced

evenly around the irradiated body. It is common in industrial applications that

some angles are inaccessible, whether due to part geometry (for example, the long

axes of a T-joint) or a surrounding structure. Although it is possible to modify the

FBP algorithm for such situations, the modifications are nontrivial and the results

are disappointing. (See in particular [20].) It is also difficult to incorporate many

types of a priori data into the FBP algorithm.

13

Algebraic reconstruction methods (ART, SIRT, SART—see [2]) are not based

on the Fourier transform, but rather on an iterative scheme for solving linear equa-

tions developed by Kaczmarz [23]. For this reason these methods are also known as

iterative reconstruction methods. They do not in general require modification to

handle irregularly spaced projection data and are more flexible with respect to the

introduction of a priori data than the Fourier reconstruction methods (including in

particular the FBP). Therefore, modern algebraic reconstruction methods, direct

descendants of the reconstruction algorithms used in the first CT scanners, are of

continuing interest to researchers.

CHAPTER II

Simulation of radiographic projections of 3D

objects

2.1 Problem description

To study tomographic reconstructions, it is necessary to understand the forma-

tion of the input data used in such reconstructions—the projection data. This

chapter details a radiograph simulation package developed both to promote an

understanding of projection data and to generate “ideal” (i.e., noise-free) data for

reconstruction algorithm testing.

Given a direction and a 3 dimensional object with known (X-ray) attenuations,

how can one determine the radiographic projection of the object in the given

direction? The radiograph is determined by the integral of the body attenuations

along the X-ray paths, so the most general way is to trace each X-ray path through

the object, sample the object attenuations along the ray, and use this information

to perform a numerical integration. This approach is very flexible, but also runs

high computational costs. A faster method is to restrict the allowed objects to be

14

15

those that can be constructed by the superposition of objects from some simple

family of base element types. If the radiographs of the base elements can be

calculated quickly in an analytic fashion, then the principle of superposition can

be used to quickly construct the radiograph of any object built from these elements.

It is this latter approach that is developed here. The reader may refer to [24] as a

general reference on ray tracing methods.

2.2 Theory

Refer to Fig. 2.1, which is an illustration of a T-joint with a sample X-ray path.

This path is a straight line, which we shall refer to as L. The intensity of the X

ray is attenuated as it traverses through the material. The attenuation depends

on the linear attenuation coefficient, µ, of the material, which is a function

primarily of material density. Formally, the resulting intensity I of an X ray with

initial intensity I0 passing along line L through an object with linear attenuation

coefficient µ(x) is given by

I = I0 exp
{

−
∫

L
µ(x) dx

}

. (2.1)

If the object is homogeneous (i.e., µ(x) is constant inside the body, 0 outside),

then this reduces to

I = I0 exp {−µ‖L ∩ Body‖} , (2.2)

where ‖L∩Body‖ is the length of the intersection of the line L with the body. We

will call µ‖L ∩ Body‖ the linear attenuation due to the body.

16

Figure 2.1: T-joint with trace of an X-ray path.

17

So assume that we have an object for which we know the linear attenuation

(as a function in 3-space), and suppose we would like to simulate a radiograph of

this object from a given direction. As in any computerized approach, we must first

change the problem into a discrete one. In particular, the simulated radiograph

will consist of a finite (though large) number of picture elements (called pixels) ar-

ranged in a rectangular grid, each corresponding to one photon path. (Alternately,

each pixel can be associated to a narrow pencil beam of X rays.) The simulation

software must calculate the attenuation (via Eq. 2.1 or 2.2) along the X-ray path

for each pixel in the display.

One straightforward technique for these calculations is ray tracing. In this

method the integral in Eq. 2.1 is directly approximated as the Riemann sum

I ≈ I0 exp

{

−
∑

k

µ(xk)∆x

}

, (2.3)

where the points xk are spaced ∆x apart along the line L. To get reasonable

accuracy from this method, the step size ∆x must be made small. When one takes

into account the fact that these calculations must be made for each pixel, and the

number of pixels is large, one sees that the computational requirements for this

approach are monumental. For example, the examples in this report are based

on a 200 × 200 pixel grid. If the summation above is taken over 100 steps (an

absolute minimum), then the linear attenuation function must be evaluated at 4

million different points. In addition there is the overhead of actually calculating

18

the coordinates of each point.

The ray tracing method has high computational requirements, although it is a

very general method that can be applied to any object geometry. Suppose, how-

ever, that the object is composed of several homogeneous pieces. Then the linear

attenuation can be calculated as in Eq. 2.2 for each piece, and then the resulting

linear attenuation for the entire object is given via the principle of superposition.

In particular, if the object is composed of n homogeneous pieces with linear at-

tenuations coefficients µ1, µ2, . . . , µn, and path-body intersection lengths of l1, l2,

. . . , ln (for a given X-ray path), then the attenuation for the object as a whole (for

the given X-ray path) is given by

I/I0 = exp(−µ1l1 − µ2l2 − . . .− µnln), (2.4)

where µklk (k = 1, 2, . . . , n) is the linear attenuation for piece k. In this method

only the intersection lengths lk need to be calculated for each path. If these lengths

can be easily computed then the number of calculations for an entire radiograph

simulation can be reduced by a factor of several hundred.

The method used by the simulation package detailed in this report uses the

latter approach. The package provides a number of base elements (spheres, rect-

angular solids, cylinders, et al.) which may be combined in arbitrary orientations

to form more complex objects. We have derived analytic expressions for the lengths

of intersection of arbitrary lines with these base elements, so the lengths required

19

in Eq. 2.4 can be quickly determined. This allows radiograph simulation in al-

most real time on a PC platform. The actual simulation time depends on object

complexity and size. As an example, simulating a radiograph of the T-joint of

Fig. 2.1 (see for example Fig. 4.5 or 4.6) on our experimental system (a floating

point coprocessor equipped 33-MHz 386 PC-compatible microcomputer) requires

18 seconds. The simulated T-joint was built from 2 rectangular solids, 2 cut cylin-

ders, 1 rectangular slot, and 1 cylindrical hole (the last two elements are simulated

flaws).

2.2.1 2D Simulations

As an aid to understanding 3D simulations, let us first consider simulations in 2

dimensions. Consider a single ray incident through a disk of radius R centered at

the origin, as illustrated in Fig. 2.2. The line L = Lθ,w can be specified by the

angle θ it makes with the positive x-axis and by the distance w of L from the

origin. In the figure, the line segments of length w and R form two sides of a

right triangle (one leg and the hypotenuse). The length of the remaining side is

√
R2 − w2, which by symmetry is half the total length of the intersection of line L

with the disk. Therefore,

Φ(Lθ,w) = 2
√
R2 − w2, (2.5)

where Φ(Lθ,w) denotes the length of the intersection of the line Lθ,w with the disk.

This is a simple case due to the rotational symmetry of the disk, i.e., notice

20

... x1

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......................

................
x2

......

......

......

......

......

......

......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
.........

.........
..........

...........
............

.............
...............

...................
...................................

...
....................

...............
.............
............
...........
..........
.........
.........
.........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......

..............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
..............

.............
.............
..............

.............
....................
................

...
.......

................

L

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...........
.....
.......
.....

..

...........................

θ

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

R

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....
............................

.......
.......
.......
.......
.......
.......
.......
................
..........

..
.
......
....

w

.........................

Figure 2.2: Illustration of intersection of line L with disk of radius R.

21

that Eq. 2.5 is independent of the angle θ. Let us next consider a more complicated

situation, the intersection of a line with a rectangle centered at the origin, as in

Fig. 2.3.

We could define the line L in terms of θ and w as in the previous example,

but it will ease future considerations to define L using vector notation. Let ~w

be the coordinates of the point on L that is nearest the origin (this makes ~w

perpendicular to L). Next let ~v be a unit vector parallel to L. Then any point on

L can be reached by starting at ~w and moving some distance (possibly a negative

distance) in direction ~v. Thus we can parameterize the line L by

(x1(s), x2(s)) = L~v, ~w(s) = s~v + ~w. (2.6)

Formally, the conditions on ~v, ~w are ‖~v‖ = 1 and 〈~v, ~w〉 = 0.

To calculate the length of the intersection of the line with the rectangle, it

suffices to determine the parameters smin and smax at the points where the line

intersects the sides of the rectangle. Since the parameterization is by arc length

(‖~v‖ = 1), the length of the intersection is just smax − smin.

The rectangle can be constructed as the intersection of 4 half spaces, i.e.,

R = {(x1, x2) : x1 ≤ e1} ∩ {(x1, x2) : x1 ≥ −e1} ∩

{(x1, x2) : x2 ≤ e2} ∩ {(x1, x2) : x2 ≥ −e2}, (2.7)

where each half space is determined by one of the sides of the rectangle R. Since

the points of L that lie inside the rectangle must also be in each of these half

22

spaces, we obtain the following 4 conditions on s:

−e1 ≤ x1(s) = sv1 + w1 ≤ e1

−e2 ≤ x2(s) = sv2 + w2 ≤ e2.

Solving yields

smin = max
[

min
(±e1 − w1

v1

)

,min
(±e2 − w2

v2

)]

smax = min
[

max
(±e1 − w1

v1

)

,max
(±e2 − w2

v2

)]

,

which yields the length of the intersection of L with the rectangle as

Φ(L~v, ~w) = max(smax − smin, 0). (2.8)

While it is possible to derive this result by other means, this approach general-

izes easily to more complicated geometries in 3 dimensions. One must only write

down a system of equations defining the body geometry, and then apply those

equations to the vector parameterization of the line (Eq. 2.6).

Of course, both of these examples assumed that the object (disk or rectangle)

was centered about the origin. Let us now develop a method to handle the general

situation. The technique may seem a bit excessive, but the generality is needed

for extension to the 3 dimensional situation.

Refer to Fig. 2.4, which shows a line L intersecting a rectangle with an arbi-

trary orientation. This rectangle can be obtained from a rectangle in the standard

23

... x1

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

................
x2

e1...
..

...............................

e2
......................................
...
.......
...

......

......

......

......

......

...........

..........
...............................

..............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
.............
..............

.............
..............

.............
..............

.............
.............
..............

.............
....................
................

...
.......

................

L

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
................
..........

............................

~w

•

•

•

.............
.............
.............
..........................
.............~v

......

......

.

......

......

.

......

......

.

......

.....

...

Figure 2.3: Illustration of intersection of line L with a rectangle of width 2e1 and
height 2e2.

orientation of Fig. 2.3 by first rotating about the origin the amount θ in the coun-

terclockwise direction, and then translating the rotated rectangle by ~P .

Note that the equations defining Eq. 2.8 work for any line L. Thus, rather

than attempting to generalize those equations for an arbitrary rectangle, we simply

introduce a new coordinate system (the x′1, x
′
2 axis in Fig. 2.4) and transform the

parametric equation for the line to the new coordinates. This requires operations

on the line that are basically just the inverse operations of the rigid body motion

applied to the rectangle.

Formally, let U be the orthogonal transformation given by

U =

(

cos θ sin θ
− sin θ cos θ

)

. (2.9)

24

This provides a rotation in the clockwise direction by the amount θ. Then define

T to be the rigid body motion

T~x = U(~x− ~P). (2.10)

Let ~v and ~w be the parameters defining the line in the original coordinate

system (refer to Eq. 2.6), and let ~v′ and ~w′ be the parameters with respect to the

new (rotated) coordinate system. Thus the line L~v, ~w in the original coordinate

system becomes L~v′, ~w′ in the new coordinate system. The new parameters are

given by

~v′ = U~v,

~w′ = T ~w − 〈T ~w,~v′〉~v′.

2.2.2 3D Base elements

We now turn to three dimensional simulations. As explained in the introduction,

the simulation package works on objects built up from a handful of basic elements.

The package currently supports 6 3-dimensional solid elements, listed in Fig. 2.5.

Some of the base elements may be modified by the introduction of cut-planes. A

cut-plane is a plane which intersects the base element, dividing it into two regions,

only one of which is retained. Thus one can work not only with the specified base

elements, but also with parts “cut-off” from those elements. Multiple cut-planes

may be introduced as needed, allowing for very abstract shapes. In fact, one can

25

..

x1

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

................
x2

..
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.................
............ x′1

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
................
............
x′2

...
....... L

.............
..............

..............
.............

..............
..............

.............
..............

..............
.............

..............
..............

.............
..............

..............
.............

..............
..............

.............
..............

..............
.............

..............
..............

.............
..............

..............
.............

..............
..............

...................................

L

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
..........

~w

...
....

~v

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
......................
.................

~P

θ
......
......
......
......
..

..........................

.................
.............

.............

Figure 2.4: Illustration of intersection of line L with a rotated and translated
rectangle.

26

BASE ELEMENT TYPES

Sphere
Ellipsoid∗

Cylinder
Elliptical Cylinder∗

Box∗

Free Form∗

Figure 2.5: The 6 building elements currently supported by the radiograph simu-
lation package, where ∗ indicates elements admitting cut-planes.

produce elements built from cut-planes alone. This is the “free form” base element.

It starts out filling all of 3-space, with each cut-plane throwing out one half-space.

For example, the “box” (parallelepiped) element type can be constructed as the

intersection of 6 half-spaces.

Since the box element type can be constructed from the free form type with 6

cut-planes (one for each face), why is the box type included among the base element

types? There are two reasons. One is convenience—it is easier to position a box

as a single element rather than as 6 intersecting half spaces. But the other reason

is computational speed. The box type is a specific alignment of half spaces which

allows simplifications in the attenuation calculations. In fact, of the 6 base element

types, only 3 are really necessary. The sphere is a special case of the ellipsoid type,

the cylinder a special case of the elliptical cylinder, and the box is a special case

of the free form type. But in the special cases, geometric considerations allow for

decreased attenuation calculation time.

The interested reader is directed to Appendix A for program implementation

27

details.

2.2.3 Beam geometries

The simulation package currently provides parallel and (point) cone beam geome-

tries. Each beam geometry has its own ray generation subroutine so that additional

beam geometries (for example, a finite source beam) can be introduced as needed.

Note, however, that complicated beam geometries can seriously increase program

execution times.

To see the effects of the beam geometry on the radiograph simulation, refer to

Fig. 2.6 through 2.8. Fig. 2.6 illustrates a simulated experimental setup, with rays

from an X-ray source directed toward one edge of a triangular prism. Fig. 2.7 shows

the simulation with a parallel beam geometry. This can be realized physically with

a finite source located relatively far from the object. Notice that the radiograph

simulation is darkest on the left side of the prism, where the X rays are attenuated

along the entire length of the prism, and lightest on the right, where only a small

amount of the prism intersects the X-ray beam.

Consider now Fig. 2.8, which is the same prism image via a simulated cone

beam. This simulates the result from a micro-focus X ray source place near the

prism. Notice that the shape of the image is no longer rectangular. This effect is

caused by X rays that enter the front face of the prism but that, due to the angle to

the source, exit through the top face of the prism before reaching the back plane.

28

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
..

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
...........
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.....

........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................
................

X-ray
Source

........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
........
...
........
.......
....

......

......

......

.

......

......

......

.

......

......

......

.

......

......

......

.

......

......

......

.

...................

Figure 2.6: Triangular prism constructed as a “free form” element.

Also notice that the left side of the image is still darkest, but there is variation on

this edge near the top and bottom (for the same reason).

2.3 Comparison of simulated and experimental radiographs

Let us consider the simulation of a sample we used in tomographic reconstruction

experiments, a schematic of which is presented in Fig. 2.9. This sample is an

aluminum cylinder (pipe) with a shaft of aluminum oxide. This shaft has two

small cylindrical voids running the entire length of the shaft. The simulation data

consists of 5 cylinder elements. The first two cylinders define the outer aluminum

29

Figure 2.7: Simulated radiograph of triangular prism with parallel beam geometry.

30

Figure 2.8: Simulated radiograph of triangular prism with cone beam geometry.

31

pipe, whereas the last three define the inner shaft with its two voids. The density

of the aluminum oxide shaft (0.015) is slightly higher than the density of the outer

aluminum pipe (0.01).

Fig. 2.10 shows three simulated radiographs taken from the side of the sample

at three different angles (0◦, 45◦, and 90◦). The axis of rotation is through the

axis of the outer pipe, so the attenuation from this pipe is independent of the

rotation angle. Notice how the inner shaft shifts to the left as the rotation angle

increases. In the top image (0◦), the voids in the inner shaft lie side by side relative

to the display plane. The dark line through the center of the shaft shows the higher

attenuation of X rays that pass between the two voids (as opposed to the X rays on

either side which pass through the voids). In the bottom image (90◦) the two voids

are aligned with the X ray paths, resulting in a light strip through the middle of

the shaft. These features are all visible in the actual real-time radiographic images

of the experimental sample shown in Fig. 2.11. (The dark strips on the outside of

the experimental radiographs is from lead shielding placed around the sample to

reduce X-ray scattering.)

As mentioned, this sample was used in tomographic reconstruction experiments.

In tomography, radiographs of a sample are obtained from many angles completely

surrounding the sample. This data is then used to mathematically reconstruct

the object. The number of required radiographs must be determined before data

collection begins due to the impossibility of realigning the sample to its original

32

position with sufficient precision. If the number of directions is insufficient, then

the reconstruction will suffer noticeable artifacts. On the other hand, one does not

want to collect more data than is necessary. We determined the optimal number

of directions with the aid of this radiograph simulation package. Fig. 2.12 shows

a tomographic reconstruction (using the filtered backprojection algorithm) with

simulated radiographs from 65 directions (spaced roughly 5.5◦ apart). Notice the

banding inside the pipe and the serious reconstruction artifacts outside. Fig. 2.13

shows a nearly perfect reconstruction based on simulated radiographs from 315

directions (spaced slightly more than 1◦ apart). Fig. 2.14 shows the reconstruction

from 315 actual real-time radiographic images.

33

unit: mm

1.0

15

4.0

 78.0

 4.0

Figure 2.9: Schematic of experimental sample.

34

Figure 2.10: Simulated radiographs of the experimental sample: 0◦, 45◦, 90◦ (top
to bottom).

35

Figure 2.11: Actual real-time radiographs of the experimental sample: 0◦, 45◦, 90◦

(top to bottom).

36

Figure 2.12: Tomographic reconstruction (FBP) from simulated data, 65 direc-
tions.

37

Figure 2.13: Tomographic reconstruction (FBP) from simulated data, 315 direc-
tions.

38

Figure 2.14: Tomographic reconstruction (FBP) from experimental data, 315 di-
rections.

CHAPTER III

Cone beam tomographic reconstructions

This chapter describes an implementation of a 3D cone beam reconstruction algo-

rithm based on some work by Feldkamp [3, 25]. The initial work on this topic in

our research group was performed by Ligou Wang [26]. Presented also are results

of applying this algorithm to both simulated and experimental data.

3.1 Theory

Consider the 3 dimensional analog to the tomographic reconstruction problem

outlined in Chapter I. The body being examined is now 3 dimensional, the X-ray

radiation fills a solid angle in 3 space, and the projection data is captured on a 2 di-

mensional detector array. The most common data collection geometry is to rotate

the X-ray source around the body tracing out a planar circle. (Equivalently, the

source may be held fixed and the body rotated about an axis perpendicular to the

X-ray radiation.) If the X-rays are essentially parallel (for example, if the source is

placed at a considerable distance from the object), then the reconstruction prob-

39

40

lem can be restricted to individual planes passing through the object, which are

perpendicular to the axis of rotation. On each of these (stacked) planes one per-

form the tomographic reconstruction using the standard 2 dimensional techniques.

Restacking these planar reconstructions results in a volume reconstruction.

There has been much work devoted to efficient implementation of such parallel

beam 3 dimensional reconstructions. See for example [27, 28]. However, X-ray

radiation from a physical source is never exactly parallel, and as the distance

from the source to the object increases so must the X-ray energy. X-ray radiation

scattering also becomes a larger problem. Moreover, with the advent of micro-

focus X-ray tubes the possibility of placing the source close to the object to take

advantage of geometric magnification is enticing. In this situation the X-rays are

no longer parallel, but rather spread out as a cone beam. Reconstructions with

this type of scanning geometry is referred to as cone beam tomography.

There are theoretical difficulties with the cone beam scanning geometry. Let

us call the midplane that plane through the object which contains all the source

locations, i.e., the circle describing the motion of the X-ray source lies in the mid-

plane. Then obviously object reconstruction in the midplane is equivalent to 2

dimensional fan beam reconstruction. Note, however, that there is no other plane

which contains all the source locations, and therefore no 2 dimensional tomographic

reconstruction algorithms can be applied outside the midplane. One straightfor-

ward possibility is to adapt an iterative technique (similar, for example, to the

41

one presented in Chapter IV) to this problem. However, with the amounts of data

necessary to process for 3 dimensional reconstructions the time savings using a

faster convolution technique could be considerable.

A convolution reconstruction method has been suggested by Feldkamp [3, 25].

(See also [2].) It is an extension of the 2D filtered backprojection method, which

provides an approximate reconstruction outside the midplane. (On the midplane

the reconstruction is identical to the filtered backprojection method.) Let Pθ(ρ, z)

denote the (2D) projection of the object in the θ direction, and let D denote the

distance from the source to the object. The first step is to adjust for distance

variations in the projection data:

P̃θ(ρ, z) =
D · Pθ(ρ, z)√
D2 + ρ2 + z2

. (3.1)

Next convolve each level (fixed z) of the modified projection P̃θ(ρ, z) by the usual

FBP filter h(ρ) in the ρ-variable. The filter h(ρ) is the inverse Fourier transform

of the truncated absolute value function, i.e.,

h(ρ) =
1

2

∫ W

−W
|ω|e2πiωρ dω. (3.2)

The filtering is usually done in the (discrete) frequency domain, where convolution

becomes multiplication, i.e., the discrete Fourier transform (in ρ) is taken of both

P̃ and h and then the transformed functions are multiplied together pointwise.

Applying the inverse Fourier transform to the product function yields the filtered,

space domain projection Qθ(ω, z). This intermediate step is exactly the same as

42

for the standard 2 dimensional filtered backprojection algorithm, but it is done for

each level z.

It remains only to do the backprojection. Here again some modifications are

required to adjust for distance variations:

α(s, t, z) =
∫ 2π

0

D2

(D − t)2
Qθ

(

Ds

D − t
,
Dz

D − t

)

dθ, (3.3)

where s and t are the rotated coordinates defined by

s = x cos θ + y sin θ

t = y cos θ − x sin θ.

(This presentation is taken from [2].)

Generally the preceding calculations are done with z fixed to reconstruct one

level of the object at a time. Then the individual level reconstructions can be

stacked to form the desired 3D reconstruction. Note too that the formulae require

that the point (x, y, z) be irradiated from all directions. Thus the volume that

can be reconstructed depends upon the X-ray beamwidth. (To be precise, the

volume that can be reconstructed is a sphere of radius D sinΩ, where Ω is half the

radiation beamwidth.)

As mentioned previously, this reconstruction method is only approximate. It

is exact in the midplane, but the accuracy drops as the angle from the midplane

increases. (See [29].) The inaccuracy takes the form of blurring in the vertical (z)

43

direction. In particular, Feldkamp showed that the algorithm is exact if the object

is homogeneous in the vertical direction [3].

Actually, any reconstruction method based on this scanning geometry will be

imprecise outside the midplane. There is a reconstruction stability condition,

known as Tuy’s condition [30], which provides restrictions necessary for a sta-

ble reconstruction. (See also [31, 29].) Briefly stated, the requirement is that for a

stable reconstruction any plane passing through the object must intersect at least

one source location. Notice that in the scanning geometry described above that

planes parallel to the midplane do not intersect any source locations. (The X-ray

source locations all lie in the midplane.) To avoid this difficulty it is necessary

to change the source scan location geometry from a simple circle, perhaps to a

sinusoidal shape surrounding the object or alternately to two intersecting circles.

3.2 Results

To test the effectiveness of this algorithm and its implementation, we applied it

to both simulated and experimental data. The experimental sample consisted of

a hollow aluminum cylinder surrounding an aluminum oxide pipe running parallel

to the sides of the cylinder. There were also two smaller holes inside the pipe

running the length of the pipe. The diameter of the pipe is approximately 1/8th

inch. X-ray projection data was collected from 315 equally spaced directions sur-

rounding the object, with the midplane running perpendicular to the long axis of

44

the cylinder. The source to object spacing was 1.7 meters. Since the projection

data was homogeneous in the vertical direction, the projection data was smoothed

in the vertical direction to reduce noise and artifacts from the image intensifier.

One level of a reconstruction of the experimental sample is given in Fig. 3.1.

(Due to the homogeneity of the experimental object in the z-direction, the level

reconstructions are all identical.) The reconstruction array is 200x200 pixels. Note

that the smaller holes inside the inner pipe are easily visible. Comparison to

Fig. 3.2, which shows the analogous reconstruction from simulated data, shows

that the reconstruction from experimental data has some blurring of the outer

cylinder towards the inside of the object. Since this effect is not apparent on the

reconstruction from the simulated data, it must be the case that this effect is not

due to the reconstruction but rather due to the data.

Fig. 3.3 displays corresponding cross sections from the experimental and sim-

ulated data. Note that the experimental projection intensities do not grow as

quickly inside the outer wall as do the intensities from the simulated data. Appar-

ently this difference produces the wall blurring effect evident in the reconstruction

from experimental data. It is not certain what the source of this difference is,

but the prime candidate seems to be an effect known as beam hardening [32]. It

is known that the attenuation of an X-ray beam as it passes through an object

depends not only on the object but also on the energy of the beam. High energy

beams are generally attenuated less than lower energy beams. Typical X-ray source

45

Figure 3.1: Tomographic reconstruction of experimental data using Feldkamp’s
cone beam algorithm.

Figure 3.2: Tomographic reconstruction of simulated data using Feldkamp’s cone
beam algorithm.

46

are polychromatic in nature, that is to say the beam contains photons having a

range of energies. The attenuation coefficient is no longer a function only of the

position but also of the photon energy, so Eq. 1.2 no longer directly applies. It is

possible to make partial corrections, see for example [33, 34], but a natural first

step would be to try to introduce the beam hardening effect to the simulated data.

This would produce a simulation more closely approximating actual experimental

data and would provide understanding of the nature of the effect.

47

(a)

(B)

Figure 3.3: Graphs of the projection intensities for experimental data (a) and
simulated data (b).

CHAPTER IV

Limited angle tomographic reconstructions

4.1 Data interpolation by analytic continuation

4.1.1 Theory

In practical tomography, the objects to be reconstructed are always of finite extent,

i.e., there is some sphere of finite radius R such that the object in question can

be completely contained inside it. From this condition it is easy to show that

the Fourier transform of the attenuation function is analytic (holomorphic) in the

corresponding frequency domain (R2 for planar objects, R3 for 3D objects). It

is well known that analytic functions are uniquely determined by their values on

any set containing a limit point. (See for example Theorem 10.18 of [35]). In

the limited angle problem, each range of missing angles leads to a missing cone

of data in the frequency domain. This is illustrated in Fig. 4.1. Therefore, it is

theoretically possible to recover the missing data in the frequency domain by the

method of analytic continuation. One such approach was suggested by Palamodov

and Denisjuk in 1988 [4]. This was a short (3 page) mathematical paper without

48

49

...

x
...

u

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

................
y

(a)

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

................
v

(b)

..

..

Inaccessible

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

...

......
...............
..........

...................
..
......
....

.......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
..
......
...............
..........

.................
....
........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

Missing

..

...
............................
..

..........................
...

Figure 4.1: Illustration showing an inaccessible projection range (a) and the cor-
responding missing range in the frequency domain (b).

numerical implementation. The barriers to such implementation are nontrivial,

and to the best of my knowledge our implementation is the first.

This approach uses a Cauchy integral along a line passing through the missing

cone, as illustrated in Fig. 4.2. The missing region intersects the line as an bounded

line segment. If we parameterize the line by arc length, and let the missing segment

be denoted as (−A,A), then the Cauchy integral can be written as

F (ω0) =
e
√

A2−ω2
0

π

∫

Γ

sin
(√

x2 − A2
)

|x− ω0|
F (x) dx, (4.1)

where F denotes the Fourier transform of the original attenuation function f , ω0

represents a point on the integration line L in the missing range (−A,A), and Γ

represents the integration path consisting of the line L minus the interval [−A,A].

50

In theory this technique allows the complete extrapolation of the missing data

in the frequency domain. Once accomplished, the original attenuation function f

can be recovered by simply taking the inverse Fourier transform of the recovered

frequency function F . There are practical difficulties, however. First, the theory

is for functions on the continuum, not for functions known only on a discrete grid

that are the was actually available. (In fact, in theory the available finite sampling

of the analytic function F does not determine F off the sample grid.) Also, the

Discrete Fourier Transform (DFT) used to calculate the function F is only an

approximation to the continuous space Fourier transform upon which the theory

is built. The worst aspect of this approximation is that the DFT provides data

on only a finite portion of the frequency domain. The approximation assumes

that the function f is essentially bandlimited, i.e., that F (ω) ≈ 0 for |ω| large

enough. But if the attenuation function f has sharp edges (common in industrial

applications) then the magnitude of the corresponding frequency domain function

F behaves asymptotically like |ω|−1, which is not insignificant in the context of

Eq. 4.1. (Note that if one supposes that the attenuation function f is bandlimited,

i.e., that F (ω) = 0 for ω sufficiently large, then f no longer has finite extent and

in fact F is no longer analytic!)

Another problem, possibly more serious, is the ill-posedness of the analytic

continuation itself. As shown by Palamodov and Denisjuk [4], the integral of

Eq. 4.1 is very sensitive to small changes in the function F along the integration

51

.. u

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...................

................

v

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

Unknown
Region

...

...

......

......

..
......
...

A−A

Γ

.......
.......
.......
.......
.......
.......
.......
..

...

Figure 4.2: Illustration of the frequency domain showing the integration contour
Γ for a Cauchy integral for data extrapolation in the missing region.

52

contour Γ. In particular, they show that the rate of growth of F (ω0) inside the

missing region can be exponential with respect to the size of the missing interval

and data noise. This follows from the exponential term in front of the integral in

Eq. 4.1.

The third difficulty in realizing Eq. 4.1 numerically is that the sampling grid for

the frequency domain function F is polar, whereas the integral in Eq. 4.1 requires

a rectangular grid. This difficulty occurs also in Direct Fourier Inversion meth-

ods for tomography. In fact, the success of the Filtered Backprojection method

for tomography is attributable to its avoidance of the interpolation problem by

performing the inverse Fourier transform using polar coordinates.

4.1.2 Implementation and results

The implementation of this algorithm was developed upon the filtered backpro-

jection program available from the implementation of Feldkamp’s cone beam al-

gorithm. This is used to transform the projection data into the Fourier frequency

domain via a 512 point FFT. The data in the frequency domain is in a radial

format, whereas to evaluate Eq. 4.1 we need sample nodes along the integration

contour. The more critical interpolation is in the radial direction. Zero padding

the projection data causes the FFT to provide proper radial interpolation. For ex-

ample, if the length of the projection data is double by the addition of zeros onto

either end, then the FFT will provide a new frequency data sequence of double

53

the length of the unpadded sequence, with the new nodes interpolated between

the previously existing nodes. If sufficient memory is available, the zero padding

can be done to whatever length necessary to provide accurate interpolation. We

chose an alternate approach which is slower but requires less memory. The FFT

provides samples of the Fourier transform of the original data sequence considered

as a summation of delta functions, i.e., suppose the space domain function f with

samples f(k) = fk (k = 0, 1, . . . , N − 1) is written as

f(x) =
N−1
∑

k=0

δ(x− k). (4.2)

Here δ(x) represents the Dirac delta function at the origin. In this manner the

values Fj of the sequence obtained from the FFT can be considered samples of the

Fourier transform of f , namely

F (j/N) =
N−1
∑

k=0

e−2πikj/N , (4.3)

and in general

F (ω) =
N−1
∑

k=0

e−2πikx/N . (4.4)

(Scaling factors have been ignored here as they differ depending on the form of the

FFT being used.)

This method allows the placement of interpolated nodes at any place along any

of the radial lines along a measured projection direction. The integration path

is perpendicular to the bisector of the missing angular range, so the interpolated

54

points can be made to lie on this path with increasing frequency as the path

approaches the missing range. The integral was numerically evaluated using the

trapezoidal method. This method proved adequate with simulated data, and it

was felt that higher order methods would be unstable with experimental data.

Moreover, it is known that in tomographic applications Fourier frequency domain

interpolations are generally more sensitive to radial interpolation than to angular

interpolation [14].

Careful attention must also be paid to ensure the function f meets the require-

ment necessary for Eq. 4.1 to be valid. First, it is necessary that f be zero outside

the interval [−1, 1]. This is a simple matter of rescaling, but it is critical that it

be done. If this condition is violated, then Eq. 4.1 fails miserably.

Another problem, one that is not directly addressed by Palamodov and Denisjuk,

is the fact that the FFT is equivalent to Fourier transform applied to delta func-

tions. However, the Fourier transform of a delta function is a non-decaying sinu-

soid, and so the integral in Eq. 4.1 does not converge. To solve this problem I

introduced the novel idea of convolving the delta functions in the space domain

with the characteristic function of a small interval. This is equivalent to mul-

tiplying the Fourier transform of the delta functions by a “sinc” function, i.e.,

sin(ax)/ax (the parameter a depends on the size of the support for the character-

istic function). When combined with the integral kernel of Eq. 4.1 the rate of decay

of the integrand is of order x−2, and so convergence is achieved. This also has the

55

effect of reducing the weight of the high frequency components in the integrand (x

here corresponds to frequency, and large x corresponds to high frequencies). This

is a desirable attribute since experimental noise tends to be disproportionately

large in the high frequencies. This effect can be increased by multiplying in the

frequency domain a second time by sin(ax)/ax, forcing the tail of the integrand

to decay like x−3. However, recall that such multiplications are equivalent to con-

volving the original delta functions in the space domain by characteristic functions

of intervals. The original delta functions are a pulse train of length N , which have

been scaled to fit inside the interval [−1, 1]. Each convolution blurs the pulses and

extends the nonzero function support by the size of the support interval for the

characteristic function. For example, if we scale the pulse train to fit inside the

interval [−0.5, 0.5], then we can convolve with the characteristic function of the

interval [−0.125, 0.125] no more than twice. These are in fact the values I settled

upon by experimental verification.

The exponential term in front of the integral prevents the use of this method

if the missing region is too large. Note, however, that the exponent depends upon

A2 − ω20, where ω0 is the point where the interpolation is desired. So even if the

missing range [−A,A] is large, the exponential term is manageable if the point ω0

is close to the boundary. In this manner values for F can be computed near the

boundaries of the missing interval [−A,A], and then these new values can be used

to decrease the size of the unknown region. This type of iterative method can be

56

used to extend the size of missing region that can be handled. However, any errors

in the interpolation get magnified each successive step, so there is still a bound on

the size of missing region that can handled. Using simulated data we found our

implementation could manage intervals [−A,A] for A not larger than 10. (Note

the scaling units here are fixed by the fact that the space domain function needs

to be scaled to fit inside the interval [−1, 1].)

Obviously this puts a bound on the size of the missing angle that can be handled

by this method. The bound depends not only on the size of missing interval that

can be managed, but also on the range of frequency components that need to

be recovered. Our experiments have shown that recovering the lower 20% of the

frequency response in the Fourier frequency domain will provide a satisfactory

tomographic reconstruction. With this criterion the largest missing angle that we

can handle is 20◦.

We tested our implementation on our experimental data by removing the pro-

jection data from the 20◦ range centered about the vertical axis. Note that projec-

tions from this direction are required to distinguish between the two smaller holes

inside the post. Fig. 4.3 shows the reconstruction (using the filtered backprojection

method) without any interpolation of the missing data, while Fig. 4.4 shows the

reconstruction using the analytic continuation method. Note that although the

second image has a horizontal sinusoidal artifact, it also has better shape defini-

tion around the borders and slightly better definition of the small holes inside the

57

Figure 4.3: FBP reconstruction of experimental data missing projection data from
20◦ about the vertical axis.

post. I believe that more work on the algorithm will allow for the removal of the

artifact and general resolution improvement.

4.2 Filtered backprojection reconstruction using a priori
information

Instead of trying to use the existing data to interpolate data in a missing range, we

can replace the missing data with a priori information. For example, let us consider

the T-joint presented in the radiograph simulation section of this dissertation,

Fig. 2.1. A top view of this T-joint is shown in Fig. 4.5 (actually a simulated

radiograph from the top). For this simulation two flaws have been introduced: a

rectangular slot between the beams and a cylindrical flaw in the flange material on

one side. The flange material has been modeled as quarter cylinders introduced as

58

Figure 4.4: Reconstruction of experimental data missing projection data from 20◦

about the vertical axis. This reconstruction used the method of analytic continu-
ation to interpolate the missing data.

elliptical cylinders with two cut-planes.

Fig. 4.6 shows simulated radiographs at 45◦ increments. You should be able to

imagine the rotated T-joint and verify these simulations. We produced simulated

radiographs of this T-joint from 315 equally spaced directions and performed to-

mographic reconstruction. The result is shown in Fig. 4.7. Note the reconstruction

artifacts at the corners of the beams. This is related to the high frequency content

of the image at the corners. Notice, however, that the introduced flaws are clearly

visible, even though they cannot be detected in the individual radiographs. (This

is one of the advantages of tomographic reconstruction.)

Next suppose that we cannot access the T-joint along the long end. Fig. 4.8

59

shows the tomographic reconstruction resulting from the omission of the radio-

graphs in the ranges 80◦–100◦ and 260◦–280◦. Notice that the introduced flaws are

visible, but serious artifacts have been introduced. Next we replaced the missing

data with data from an “ideal” T-joint. The ideal joint had neither flaws nor

flanges. Here only the lower 20% of the frequency components from the ideal data

were used. Fig. 4.9 shows the resulting reconstruction. The checkerboard banding

is a result of the frequency limitation on the introduced ideal data.

4.3 Iterative reconstruction using a priori information

4.3.1 Theory

The iterative reconstruction method is also known as the algebraic reconstruction

technique (ART). Specialized variants such as SIRT and SART differ on the han-

dling of discretization details [2]. (The method used in the work presented below

is essentially SART. Refer to either [14] or [2] for details.) The approach is based

on a scheme of Kaczmarz [23] for the solution of a system of linear equations. The

solution set to each equation is an affine hyperplane in some Hilbert space. If

there is a solution to the system of equations, then the intersection of the solution

sets for each equation is nonempty. Fig. 4.10 illustrates a simple example of this

procedure. Each line represents a solution set for one of four linear equations. An

initial point, f0, is chosen, perhaps arbitrarily. The first iterate, f1, is given by the

orthogonal projection of f0 onto the solution set S1. The second iterate, f2, is given

60

Figure 4.5: Simulated T-joint, top view.

61

Figure 4.6: T-joint simulated radiographs at 45◦ increments.

62

Figure 4.7: T-joint reconstruction from simulated data, 315 directions.

63

Figure 4.8: Reconstruction from simulated data, 20◦ missing angle.

64

Figure 4.9: Reconstruction from simulated data, 20◦ missing angle, lower 20% of
frequency range filled with ideal data.

65

by the orthogonal projection of f1 onto the second solution set, S2. In general,

the iterate fk is given by the orthogonal projection of fk−1 onto the solution set

Sk mod N , where N is the total number of equations (and therefore solution sets).

In this simple example, the solution sets are lines which lie in the plane R2, and

the equations are linear equations in two variables. For tomographic reconstruc-

tions the setting is more complicated. The solutions are functions on R2 (or R3)

corresponding to possible reconstructions, and the equations are determined by

the projection information, so the solution space is infinite dimensional. Suppose

the projection data Pk from the direction θk is given. Then the solution set Sk is

the set of all functions h satisfying

Projθk(h) = Pk.

To be precise, let us restrict our set of allowable solutions to the square inte-

grable functions h satisfying h(x) = 0 for all |x| > 1. (This is written h ∈ L2(Ω)

where Ω denotes the unit disk in R2.) The operation

〈g, h〉 :=
∫

Ω
g · h

provides an inner product on this space of functions. This inner product is used

to define the orthogonal projection onto the solution space Sk, namely

fk+1 = fk − Smearθk+1

(

Projθk+1
(fk)− Pk+1

)

. (4.5)

The operator Smearθk+1
“smears” a projected function of one variable back across

66

•f0

•
f1•f2

• f3

•
f4

•
f5

•f6
• f7

..

P4

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.... P2

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
... P1..

P3

......

......

......

......

......

......

......

..................

................

.........
....

.........
....

.........
....

.........
..

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............
.............
.............
.............
.............
.............
.............
.............

.............
.............

.............
.............

.........
....
.........
....

Figure 4.10: Graphic illustrating the convergence technique upon which the itera-
tive reconstruction method is based.

67

Ω to produce a function that is constant along lines parallel to θk+1 and satisfying

Projθk+1
(Smearθk+1

(Q)) = Q.

It follows that Projθk+1
(fk+1) = Pk+1, i.e., fk+1 ∈ Sk+1.

This forms the theoretical basis for the iterative reconstructive method. Fig. 4.11

illustrates the results obtained for the first few iterates for the simulated sample.

4.3.2 Inconsistent data

If each projection Pk is the precise projection from an actual function f , then

the intersection of the solution sets Sk will contain at least one point, and the

above iterative scheme will converge to the point in the intersection ∩kSk that is

closest to the initial iterate f0 [14]. In practice, however, noise and experimental

error cause the projections to be slightly incorrect, and in this situation it is likely

that the intersection ∩kSk will be empty. Fig. 4.12 illustrates this situation in 2

dimensions. Note that the iterative scheme no longer converges, but rather circles

around a range of values. This problem is generally handled by introducing a

relaxation parameter to Eq. 4.5, like so:

fk+1 = fk − λ · Smearθk+1

(

Projθk+1
(fk)− Pk+1

)

, (4.6)

where the relaxation parameter λ is chosen between 0 and 2. It can be shown that

if the projections are consistent, then the relaxed iteration converges to the same

point as before (i.e., λ = 1). However, the smaller the value assigned to λ, the

68

(a) (b)

(c) (d)

Figure 4.11: Illustration of the first four iterates of the iterative reconstruction
using the simulated projection data. The 0 function was selected as the initial
iterate f0. (a) f1, θ1 = 0◦. (b) f2, θ2 = 105◦. (c) f3, θ3 = 210◦. (d) f4, θ4 = 315◦.

69

..
P2

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....... P1

.. P3

•f0
•f1

•
f2•f3

•f4

•
f5

•f6
•f7

•
f8

•f9

.............
.............

.............
.............

.............
..........................

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............
.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............
.............
.............
.............
.............

.............
.............

.............
.............

Figure 4.12: Graphic illustrating the convergence technique upon which the itera-
tive reconstruction method is based.

slower the convergence. If the data is inconsistent, then for fixed λ the iterations

still do not converge, but the region around which the iterates circle is decreased.

Practical reconstructions typically assign a very small value to λ, usually on the

order of 0.05. Although the iterations do not converge completely, this value of λ is

small enough to force the size of the oscillations down to the point where practical

convergence is achieved. However, a value of λ this small also dramatically slows

the convergence. So in the present work a different approach was taken. For the

70

first iterate λ is set to 1, and for each successive iterate the value of λ is decreased

towards 0. One simple way to achieve this is by multiplying λ by a constant slightly

smaller than 1 after each iteration:

fk+1 = fk − rk · Smearθk+1

(

Projθk+1
(fk)− Pk+1

)

. (4.7)

For the work presented in this paper r was set to 0.998. The data sets worked with

contain 315 projections, so the relaxation value after one complete cycle through

the projections is r315 = 0.532. This method allows for quick convergence and still

guarantees convergence for inconsistent data.

4.3.3 Projection ordering

Another matter to be considered is the ordering of the angles θk. For example,

the work presented in this paper used 315 equally spaced angles, at 0◦, 1.14◦,

2.29◦, etc.. The natural ordering is θ1 = 0◦, θ2 = 1.14◦, and so on. However, if

this ordering is used then the projections Pk and Pk+1 are nearly identical, and so

there is little movement between the iterates fk+1 and fk+2.

To be rigorous, the similarity of two projections Pk and Pk+1 corresponds to the

angle between the solution spaces Sk and Sk+1. The angle between these subspaces

(as affine subspaces of the underlying Hilbert space L2(R2)) is not the same as the

spacing angle between the projection directions θk and θk+1. The actual relation

between the angular spacing ∆, taken in the range [0, 90◦], and the angle γ between

71

the corresponding solutions sets is

γ =

∆ if 0◦ ≤ ∆ ≤ arccos(1/4)

arccos
(− sin 3∆

3 sin∆

)

if arccos(1/4) ≤ ∆ ≤ 90◦.
(4.8)

(Refer to [36].)

The rate of convergence depends upon the angle between the solution sets. If

the angle is small, then the solution sets are similar, and the rate of convergence

is slow. This can be seen from the two dimensional model depicted in Fig. 4.10,

where large angles bring the iterate quickly closer to the intersection set.

It is therefore natural to expect that the rate of convergence can be improved

if the projections are taken in a different order. To investigate this conjecture,

and also to study the convergence rate, the iterated convergence procedure was

tested on the experimental data with three different orderings of the projections.

The base test used a spacing between projections of 105.1◦, i.e., θ1 = 0◦, θ2 =

105.1◦, θ3 = 210.3◦, (Note that this spacing allows the entire set of 315

projections to be used.) Fig. 4.13 plots the distance of the iterates fk from the

final iterate (essentially f∞), measured as the square root of the sum of the squares

of the pointwise differences. Also shown on this plot are the results using the

natural ordering as well as a between projection spacing of 90.3◦. The decay of

the relaxation parameter to 0 guarantees the eventual convergence of the iterates

with any ordering, but note that the actual limit arrived at depends upon the

ordering chosen. Note also that the ordinate variable marking the iterate count k

72

Figure 4.13: Comparison of the convergence rates of the iterated reconstruction
method with different orderings of the projection data. 4—1.14◦ increments,
¯—105.1◦ increments, 2—90.3◦ increments.

also effectively marks the size of the relaxation parameter λ = 0.998k−1. Thus we

see from Fig. 4.13 that the iterates using the natural ordering do not even begin to

converge until the iterate count gets rather high, i.e., until the relaxation parameter

becomes small. On the other hand, with the base ordering (105.1◦ spacing) the

convergence begins from the first iterate.

The third curve in Fig. 4.13 corresponds to a spacing of 90.3◦. Although the

rate of convergence is better than with the natural ordering, it is not nearly as good

as the convergence obtained using the base ordering of 105.1◦ spacing. According

to Eq. 4.8, the angle between the solution sets is 70.5◦, which is not substantially

different from the angle between the subspaces using the base ordering (74.9◦) or

73

much less than the theoretical maximum angle of 75.5◦. (The base ordering angle

of 74.9◦ is the closest to 75.5◦ available from the projection data of 315 evenly

spaced directions.)

Note, however, that with the 90.3◦ spacing every second projection is nearly

the same, e.g., the projection from 0◦ varies little (except for reflection) from

the projection from 180.6◦. So the iterates converge quickly to a function lying

(roughly) in the intersection of the solutions sets for directions 0◦ and 90.3◦. But

the final convergence is towards a function lying in the intersection of all the

solution sets—a much smaller set. In particular, the function toward which the

early iterates converge is not the correct limit function. On the other hand, the

base ordering of 105.1◦ provides projections around 360◦ in a much more evenly

balanced fashion. The first 12 directions in the base ordering are 0◦, 105.1◦, 210.3◦,

315.4◦, 60.6◦, 165.7◦, 270.9◦, 16◦, 121.1◦, 226.3◦, 331.4◦, and 76.6◦. It is not until

the thirteenth direction, 181.7◦, that a close to repetition occurs. (The projection

information from 181.7◦ will be very close to that from 0◦.) So the early iterates

converge towards the intersection of 12 solution sets from well spaced directions,

as opposed to the effective 2 solutions set intersection towards which the iterates

converge if a 90.3◦ spacing is used.

The final iterates do not contain large visual differences. The final iterate using

the base ordering (181.7◦ steps) is shown in Fig. 4.14.

74

Figure 4.14: Iterated reconstruction method final iterate (f1260) using complete
experimental data set (315 projections).

4.3.4 A priori data

This work makes use of two types of a priori data. The next section discusses the

use of allowed ranges for the reconstructed function, e.g., requiring all densities to

be non-negative. This type of a priori information is needed for all reconstructions

requiring a large number of iterations. The succeeding section discusses the use

of a good initial “guess” to start the iteration. For example, if one is checking for

flaws in a manufactured part then one could use an ideal unflawed part as the first

iterate. This allows for reconstructions with very large missing ranges.

75

4.3.4.1 Limit ranges

Physical objects must have nonnegative densities, so it is reasonable to require the

reconstructed function to have nonnegative densities as well. Similarly, it is often

the case that some upper bound can be placed on the densities as well. (Or perhaps

even several allowed ranges of densities.) Such restrictions can be incorporated into

the iterative reconstruction method by adjusting intermediate iterates to conform

to the restrictions. For example, each iterate fk can be modified before being used

to generate the next iterate fk+1. One simple way to modify the an iterate fk is

to simply change any negative value to 0 and any value above a preset maximum

to that maximum value.

On simulated data this type of adjustment accelerates the convergence by a

considerable amount. Unfortunately, on the experimental data this procedure

prevented convergence from occurring at all. However, instead of adjusting each

iterate, the process can be mollified by adjusting the iterates at larger intervals.

For example, adjust only f315, f630, f945, etc.. It is well known that after some

number of iterations (generally 3 or 4 times through the entire set of projections)

that if the projections are not consistent, then the iterates will diverge and so the

reconstruction quality deteriorates. (See, for example, [14, 2].) This effect was also

observed in the reconstructions presented here. But in these examples, at least,

the effect was caused by an accumulation of high density in some of the individual

reconstruction pixels. (The total mass contained in each iterate is constant.) The

76

discrepancy of the behavior with the theory outlined previously is apparently due

to the discrete nature of the implementation, as opposed to the continuous nature

of the model discussed in theory.

This obstacle to large iterate reconstructions can be overcome, however, by

using a priori range limitations as discussed above. This technique was employed

on all reconstructions presented in this work that required more than two passes

through the complete set of projection data, in particular it was used on the

examples presented in Fig. 4.13 and 4.14. For example, the experimental data set

consisted of 315 projections. In the iterative reconstructions, iterates f630, f945,

. . . , were modified by truncation to the range [0, 0.016]. The succeeding iterates

(f631, f946, . . .) were formed using the corresponding modified iterate.

4.3.4.2 Selection of the initial iterate

Another important factor in iterative reconstructions is the choice of the initial

iterate. In all of the preceding examples the initial iterate was chosen to be the

0 function. Clearly, if the initial iterate is close to the final iterate then the con-

vergence will be much quicker. So this then is a useful approach to using a priori

information. But there is also a deeper significance. It can be shown [14] that the

iteration converges to the unique element of the intersection of the solution set

that is closest to the initial iterate. So the choice of initial iterate can affect the

final reconstruction.

77

Figure 4.15: Iterated reconstruction from experimental data without projections
from the 90◦ range about the vertical axis, using 0 as initial iterate.

This effect is most apparent when the intersection of the solution sets is large.

(Of course, if this intersection consists of only one element then the initial iterate

does not affect the limit iterate, although it will affect the rate of convergence.)

Fig. 4.15 shows the iterated reconstruction of the experimental data without the

projections from the 90◦ cone about the vertical axis, starting with the 0 function as

the initial iterate. Compare this to Fig. 4.16 which shows the same reconstruction,

but using as the initial iterate a homogeneous circular shell matching the outer

shell of the reconstruction shown in Fig. 4.14. The normalized distance between

Fig. 4.15 and Fig. 4.14 (as defined in Section 4.3.3 and used in Fig. 4.13) is 0.39,

while the normalized distance between Fig. 4.16 and Fig. 4.14 is 0.27.

78

Figure 4.16: Iterated reconstruction from experimental data without projections
from the 90◦ range about the vertical axis, using outer cylinder as initial iterate.

CHAPTER V

Summary to Part I

Part I of this dissertation studies and presents new results in computer aided

tomography and feature detection and recognition. These are areas of increasing

importance in nondestructive evaluation. To understand the images examined here

it is useful to begin with a study of the formation of radiographic images.

Accordingly, a novel method is presented for the simulation of radiographs of 3

dimensional bodies. Not only can this be used to study the form of radiographs of

complex objects, but it was needed to generate noise-free projections for the tomo-

graphic reconstruction algorithms studied later in the dissertation. The technique

is based on the superposition of analytically calculated radiographs for several

base element types such as spheres, ellipsoids, and rectangular solids. The algo-

rithm was implemented, and the computational requirements were meager enough

that the implementation was able to generate sample radiographs in a matter of

minutes on an 386-based IBM PC. Although the technique is not as general as a

ray-by-ray tracing method (which does not assume any special body geometry), it

79

80

is general enough for most industrial purposes as manufactured parts are generally

built from standard geometric shapes. Moreover, the computational requirements

of this algorithm are many times less than the more general ray tracing algorithm.

As a further point, the base element nature of the presented algorithm should al-

low for a straightforward interface to design CAD packages. In this manner the

nondestructive evaluation of manufactured objects could be intimately linked into

the design process. It would be possible to introduce defects into a design and

generate radiographs of the affected region. This allows the designer to ascertain

what types of flaws will be detectable using radiography and allow adjustment to

the design or direction to evaluation.

The first tomographic reconstruction technique studied in this dissertation is

a 3D cone beam algorithm suggested by Feldkamp [3]. Although the algorithm is

not new, and has been implemented elsewhere, we developed our own implemen-

tation of this algorithm and tested it on both simulated and experimental data.

The implementation is nontrivial and provides useful background to the problems

and limitations inherent in 3 dimensional tomographic reconstructions. When

restricted to the 2 dimensional midplane, this algorithm reduces to the popular

filtered backprojection algorithm, and so in this manner our implementation could

also be used as a standard reconstruction technique against which other novel re-

construction approaches could be measured. In particular, a comparison is made

between reconstruction with simulated versus experimental data.

81

Following this an in-depth study of limited angle tomography is undertaken.

First a method of replacing the missing data via analytic continuation is under-

taken. A Cauchy integral using data from the known directions is used to extrap-

olate the unknown data from the missing directions. The technique was suggested

in a short mathematical paper by Palamdov and Denisjuk [4], though to the best

of my knowledge this is the first actual implementation of this idea. Numerical

instabilities make the algorithm difficult to implement, and a novel filter was intro-

duced by this author to make the problem more tractable. In the end, however, the

inherent instabilities prevented this technique from being successful if the missing

angular range were larger than about 20◦. Example results using this algorithm

on experimental data with a 20◦ wedge removed are provided.

This analytic continuation method is built upon Fourier transform methods,

and like all such approaches does not lend easily to the introduction of a priori

data. So to use a priori information (for example reconstruction value range re-

strictions) we made use of iterative (algebraic) reconstruction techniques. The base

algorithm used was an original implementation with modifications to the known

SIRT reconstruction algorithm. With this implementation quantitative justifica-

tion on experimental data is provided illustrating the known theoretical results

that the natural ordering of the projection data is suboptimal. Studies on this

result in the past have been of a qualitative nature or done on simulated data.

Another known effect of the iterative reconstruction method on experimental data

82

is iterate divergence after 1 or 2 complete iterations through the available data.

Presented in this dissertation is a new result showing that this divergence can be

controlled by using a priori bounds on the reconstructed densities. Finally, an

example is provided showing the effects of initial estimate selection on iterative

reconstruction of experimental data. This information used to make this selection

should also be considered a priori information.

A natural extension of the tomography work would be methods for automatic

detection of flaws (or other features) in radiographs and tomographic reconstruc-

tions. Our research funding, however, was toward different but parallel problems,

namely printed circuit board inspection and fingerprint identification. This is the

topic discussed in Part II.

Part II

Computer recognition of plane
images via feature encoding and

matching

83

CHAPTER VI

Background to Part II

There is an increasing need in industry for automated control and inspection.

Computer vision can play an important role in meeting these needs. Although

pixel by pixel image comparison (subtraction) can be a useful technique in well

controlled situations, general image recognition problems require more powerful

feature based techniques [37, 38, 39, 40]. This dissertation presents applications of

feature based methods to defect detection and fingerprint identification.

6.1 Printed circuit boards

There is an ever increasing need in industry for automatic inspection of printed

circuit boards (PCB’s). The chief requirements for such systems is high speed,

adaptability, and precision. Current inspection systems utilize design rule and/or

reference comparison methods [38, 41].

Design rule methods attempt to detect deviations in the board under test from

design specifications. The most notable such specification is wire width. Any metal

84

85

trace that falls below a certain width may be unable to carry the required amount

of current without unacceptable voltage drops, and is likely to indicate a trace

break and possible board underetching on the whole. Similarly, a too wide metal

trace is indicative of an overetched board and suggests the existence of inadvertent

short circuits. See [42, 43, 44, 45]. These methods typically use morphological

transformations such as dilation and eroding to detect design rule violations. Such

methods are memory and computationally expensive, or else require specialized

hardware. Moreover, certain types of defects, such as missing or additional traces,

cannot be detected by design rule methods.

Reference comparison methods compare the board under test against a refer-

ence (defect-free) board. Such comparisons can be made via pixel by pixel subtrac-

tion [46, 47], but this requires precise board alignment and tight manufacturing

tolerances. Feature based approaches are more robust and flexible [48, 43, 45].

These methods generally use morphological transformation such as eroding to de-

tect features, which are then collected into a graph representing circuit elements

and connectivity. The feature graph is then compared against a reference graph,

and any changes denote defects.

Chapter VIII presents a PCB feature extraction method published in Computer

Vision, Graphics, and Image Processing [1] that I co-authored with Alan Sprague.

The method presented there included both a design rule section for wire width

violation detection and a reference comparison section for detection of other types

86

of errors. It differs from previous methods chiefly by the absence of morphologi-

cal transformations, thereby reducing the computational requirements. Only the

reference comparison portion is presented in this dissertation.

6.2 Fingerprint identification

Fingerprint identification has a history dating back 100 years as a reliable method

for identity verification [49]. Although fingerprint patterns (whorls, loops, and

arches) are used for classification, actual identification is done at the minutia level

using ridge endings and bifurcations. Many people share the same patterns on

their fingers, but no two, not even identical twins, share the same distribution

of minutiae. Although single fingerprints will generally contain over 50 minutiae

(thumbprints often have over 100), identity can be established by matching only

a small fraction of them. In fact, the courts in this country have held that only

15 such points are needed to legally establish identity. This is a conservative

estimate—depending on the particular distribution involved only 6 or 7 may be

required.

There are two facets to fingerprint identification. The simpler problem is to

match two sets of 10-print inked fingerprint cards. Pattern classification can be

used to whittle the comparison set (of perhaps millions of prints) down to a handful,

which can be compared at the minutia level by hand. The more difficult task is to

identify a lone, poor quality, latent print lifted from the scene of a crime.

87

This task has traditionally been performed by human hands and magnifying

glass, comparing the prints of a few suspects against the latent. It is not possible

without automation to compare a latent print against more than a small number

of the inked prints the police may have on file. There are a number of factors

that make automatic latent fingerprint identification a difficult task. The latent

print generally contains only a small subset of the total number of minutiae, and

its orientation (relative position and angle of rotation) is often unknown. The

elasticity of human skin allows morphological variations to be exhibited between

separate registrations of the same finger. Moreover, the latent print is generally of

very poor quality, exhibiting false and missing minutiae due to dirt and smears.

Although there are now commercial systems to perform automatic fingerprint

identification, they are expensive, proprietary, and generally perform poorly with

regards to latent identification. Chapter IX and Section 10.2 present a method

for fingerprint minutiae extraction and latent identification that was developed by

this author with others under the direction of Prof. Rokhlin at The Ohio State

University. It has been implemented on a IBM PC-based platform and has shown

excellent promise. Included in the discussion are the results of latent matching

against our library file of 700 prints.

Of course, often a feature based method of image analysis can be aided by judi-

cious pre-processing and analysis of the digital image. The next chapter describes

a novel approach for the extraction of edge direction and curvature information,

88

and applications to orientation specific filtering. This material stands on its own

right, but was used especially in the fingerprint identification algorithm developed

in later chapters.

CHAPTER VII

Using level curves in image analysis

This chapter details techniques for the extraction of direction and curvature in-

formation from general images. This work has been accepted for publication in

Computer Vision, Graphics, and Image Processing.

7.1 Introduction

An image may be viewed as a surface h(x, y) over the xy-plane, where peaks in the

surface correspond to light areas of the image and valleys correspond to dark areas.

The topological properties of this surface are useful in many applications [50, 51].

In particular, the level curves contain information that can be used in adaptive

processing of the image for enhancement and pattern recognition. Tangents to the

level curves run parallel to ridges in the image, so the tangent directions can be

used for edge detection and enhancement. For example, obtaining this directional

information is a necessary step in the processing of fingerprints for automated

identification [52, 53] and for orientation specific filtering [54].

89

90

There are different approaches to extracting directional information. One com-

mon technique is to use an ideal edge as a template to detect the presence of an

edge and to determine its orientation. Hueckel [55] and O’Gorman [56] used a

modified form of this approach with least-squares minimization to match against

an edge of arbitrary orientation. Kawagoe and Tojo [52] used a different method

in their work with digitized fingerprints. On each 2 × 2 pixel neighborhood they

made a straight comparison against 4 edge templates to extract a crude directional

estimate, which was then arithmetically averaged over a larger region to obtain a

more accurate estimate. Our approach uses a gradient-type operator to extract a

directional estimate from each 2 × 2 pixel neighborhood, which is then averaged

over a larger region by least-squares minimization to control noise.

Curvature of level curves is sensitive to broader topological properties of the

image that can be used for feature detection and identification. For example, cur-

vature is large near corners and peaks in the image, which are typical feature points

used for pattern recognition [39]. Most previous work on curvature determination

([57], for instance) has centered on finding the curvature of a single parameterized

curve that has been previously extracted from the image by a separate algorithm

(a chain code algorithm, for example). Adjacent level curves, on the other hand,

locally form a family of parallel curves. Our algorithm extracts curvature using

data determined by these curves. This is accomplished without curve parameteri-

zation by fitting a family of concentric circles to the extracted tangent directions

91

via least-squares minimization.

The work [58] of Parent and Zucker is along similar lines. (See also [59].) They

also extract tangent directions and curvature directly from the image without curve

parameterization. In their work the tangent directions are quantitized to represent

finite ranges. At each point in the image and for each of the allowed directions a

probability is assigned. This probability is determined from two components. The

first component is the result of convolutions with local “line detector” operators.

The second component is a curvature compatibility factor, which measures how

closely the local tangent directions model a smooth flow. The tangent directions

are adjusted using an iterative relaxation approach. This algorithm goes further

by using the tangent and curvature information to essentially extract curve traces.

It is actually an integrated curve extraction algorithm.

The algorithm of Parent and Zucker assumes the existence of curves in the

image and it is optimized towards the extraction of these curves. The algorithm

we present does not assume the existence of curves and does not aim to extract

them. It extracts only the tangent directions and curvature for further processing

by other algorithms. It will work on any image possessing smooth level curves.

Moreover, our algorithm directly extracts the directional information using least-

squares minimization—no iterative processing is performed. Thus our algorithm

is considerably less complicated and should be much faster than the algorithm of

Parent and Zucker. On the other hand, the algorithm of Parent and Zucker ex-

92

plicitly handles curve intersections, an event our algorithm cannot interpret since

it does not deal with curve traces. However, our algorithm will find curve intersec-

tions to have large curvature, so such events can be managed during subsequent

processing.

In addition to the presentation of algorithms for the extraction of tangents and

curvatures from level curves in digitized images, we show results of controlled tests

of our implementation of these algorithms on computer generated data corrupted

by simulated noise. Example applications are also provided showing the use of

the tangent and curvature information in the image processing of fingerprints,

materials microstructures, printed circuit boards, and radiographs.

7.2 Problem statement

Let us first introduce some terminology. Fig. 7.1 shows three level curves with

tangent and curvature vectors marked. Let P be a point in the xy-plane as in-

dicated and consider the level curve passing through that point. Let ~r(s) be a

parameterization by arc length of this level curve, with ~r(0) = P . The derivative

~r ′(0) is the tangent vector to the level curve at point P . We are interested only

in the unoriented direction of this vector, since both its magnitude and sign (+ or

-) depend upon the parameterization. Choosing arc length parameterization forces

the magnitude of ~r ′(t) to 1, which makes the second derivative, ~r ′′(0), perpendic-

ular to the tangent vector with magnitude proportional to the rate of change in

93

direction of the tangent vector. The vector ~r ′′(0) is called the curvature vector

for the level curve at the point P . The direction of ~r ′′(0) is towards the center of

the curvature of the level curve ~r(s), and the magnitude of ~r ′′(0), called the cur-

vature of the level curve, is equal to the reciprocal of the curvature radius. This

is evident in Fig. 7.1 where the magnitudes of the illustrated curvature vectors are

largest on the inner level curve and smallest on the outer level curve.

We have so far assumed that the level set at the point P is one dimensional.

However, if P corresponds to a local extrema or plateau, then the level set will be

0 or 2 dimensional, respectively. In this case it makes no sense to talk of a “level

curve”, and accordingly the tangent and curvature are not defined. The algorithms

described in this chapter detect such occurrences.

In a digitized image the image values are only known on a discrete set of points

(the sample nodes), so the curve ~r(s) and its derivatives can only be approximated.

Rather than attempting to approximate ~r ′(s) and ~r ′′(s) at the point P , we find an

averaged value over a rectangular window around P using least-squares minimiza-

tion. The effects of random noise are minimized in the average, so this method is

noise tolerant. The choice of window size is application specific, depending on the

size of the features of interest (with respect to the pixel size) and the noise level.

There is generally a tradeoff between noise tolerance (large windows) and precision

(small windows).

94

P r″(0)→

r′(0)→

Figure 7.1: Schematic showing three level curves with associated tangent and
curvature vectors.

95

7.3 Tangent vector calculation

7.3.1 Method outline

At each point in the averaging window we calculate a vector ~n that is normal to

the surface z = h(x, y). The tangent vector to the level curve at this point (if

defined) lies in the xy-plane and is perpendicular to the normal. The averaged

tangent vector for an averaging window is that (unit) vector in the xy-plane which

comes closest to being perpendicular to all the surface normals in the window. We

could average the tangents directly, but there are advantages to working with the

surface normals. Consider, for example, the edge function defined by

g(x, y) =

{

1 if y ≥ 0
0 if y < 0,

which is a unit step with edge along the x-axis. Let h(x, y) be a smooth approx-

imation to g(x, y). Fig. 7.2 is an illustration of this surface and several of the

surface normals. Away from the x-axis the normals to h(x, y) are parallel to the

z-axis, and accordingly the tangents are undefined. As one moves near the x-axis,

the normal vectors tilt away from the z-axis. If the approximation of h(x, y) to

the step function g(x, y) is very tight, then along the x-axis the normal vectors

to the surface h(x, y) will be nearly perpendicular to the z-axis. In particular,

the steeper the surface the smaller the angle between the surface normal and the

xy-plane. Since noise corrupts shallow edges more easily than steep edges, we want

to weight normals from steep edges more heavily in the average than normals from

96

shallow edges. Thus there are two advantages in working with the normal vectors:

the normal vectors are always defined, and they carry information that is used to

weight the average.

Of course, in a digitized image the function h(x, y) is not known at every point

in the xy-plane. Rather the value is known (with limited precision) on a finite grid

of points, called the sample nodes. To simplify our discussion we shall assume

that these nodes are evenly spaced on a square mesh, although the algorithm is

easily adapted to other geometries. We call a set of 4 nodes that are corners of a

grid-minimal square a 2x2 neighborhood.

Our approach to calculating the tangent vector in a digitized image consists

of two steps. First we estimate the surface normal at the center of each 2x2

neighborhood with the normal to a plane fitted through the image values at the 4

sample nodes. We refer to this as point normal determination. These normals

are grouped into (possibly overlapping) regions called tangent windows. The

second step consists of finding, for each tangent window, a vector ~u lying in the

xy-plane that is nearly perpendicular to all the normals in that window. This

vector is called the averaged tangent vector.

7.3.2 Point normal determination

Let (x1, y1), (x2, y2), . . . , (xm, ym) be a collection of m sample nodes in the xy-

plane, and let a1, a2, . . . , am be the image values at these nodes. We fit to these

97

x

y

z

Figure 7.2: Illustration of a smooth approximation to a unit step function with
edge along the x-axis. Also illustrated are several normal vectors to this surface.

98

values a plane p(x, y) of the form p(x, y) = −n1x−n2y+c, which has normal vector

~n = (n1, n2, 1). (The digitized values are restricted to a finite range, ensuring that ~n

will not be perpendicular to the z-axis.) We want to select values for n1, n2, and c

to minimize the sum of the squared difference of the image values with the plane

values over the m sample nodes. That is,

min
n1,n2,c

∑

sample

nodes

|h(x, y)− p(x, y)|2 = min
n1,n2,c

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

a1
a2
...
am

−

−x1 −y1 1
−x2 −y2 1

...
...

...
−xm −ym 1

n1
n2
c

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

,

(7.1)

which is a standard least-squares minimization problem (see [60]). Let us set

~w1 = (−x1,−x2, . . . ,−xm)T , ~w2 = (−y1,−y2, . . . ,−ym)T , and ~w3 = (1, 1, . . . , 1)T .

Then this minimization problem can be viewed as finding that (m-dimensional)

vector in the span of {~w1, ~w2, ~w3} that is closest to the vector ~a = (a1, a2, . . . , am)
T .

This is given simply by the orthogonal projection of ~a onto the subspace spanned

by {~w1, ~w2, ~w3}.

For example, consider the 2x2 neighborhood depicted in Fig. 7.3. Here m = 4,

and ~w1 = (−1, 1, 1,−1)T , ~w2 = (−1,−1, 1, 1)T , and ~w3 = (1, 1, 1, 1)T . Since the

~wi’s are orthogonal and ‖~wi‖2 = 4 for each i = 1, 2, 3, it follows that the minimizing

99

-
x−1 1

6
y

−1

1 a1a2

a3 a4

Figure 7.3: Local coordinate system imposed onto each 2x2 neighborhood.

vector is

〈~a, ~w1〉~w1
4

+
〈~a, ~w2〉~w2

4
+
〈~a, ~w3〉~w3

4
=

−a1 + a2 + a3 − a4
4

~w1 +
−a1 − a2 + a3 + a4

4
~w2 +

a1 + a2 + a3 + a4
4

~w3

where 〈· , ·〉 denotes the usual scalar product.

Comparing to Eq. 7.1, we see that the minimizing values are

n1 =
−a1 + a2 + a3 − a4

4

n2 =
−a1 − a2 + a3 + a4

4
(7.2)

c =
a1 + a2 + a3 + a4

4
.

Therefore we approximate the surface normal at the center of the 2x2 neighbor-

hood by ~n = ((−a1 + a2 + a3 − a4)/4, (−a1 − a2 + a3 + a4)/4, 1))
T (the value of

c is irrelevant). Note that the magnitude of this vector depends on the angle it

makes with the xy-plane. If the normal is parallel to the z-axis then the magni-

100

tude is minimized to 1, and the magnitude grows as the angle with the xy-plane

is decreased. This variation is used to weight the average discussed in the next

section.

Of course, one can choose a neighborhood larger than 2x2 (see [61]). The

advantages of a larger neighborhood are increased directional accuracy and noise

tolerance. Noise tolerance is not an issue here, since we do an independent aver-

aging step to control noise (Section 7.3.3). Directional accuracy may be a factor,

however, depending on the type of edges examined. It is well known that gradient

type operators such as this one have orientation biases due to discretization. A

thorough study of this effect for step edges was done by Kitchen and Malin [62].

(Refer also to O’Gorman [56], which proposes the use of Walsh functions for edge

detection.) Nonetheless, we found this effect to be insignificant in our work, and for

the smooth edges studied in Section 7.3.5 the orientation bias was found to be less

that 3◦. Moreover, larger neighborhoods increase the computational requirement

and can have problems relating to edge curvature [59].

7.3.3 Determining the averaged tangent direction

We want next to find a vector (the unit tangent vector) that is nearly perpendic-

ular to the collection of normal vectors {~nk}, where the index k runs over all 2x2

neighborhoods in the tangent window. One approach is to calculate the tangent

direction to each normal, express that direction as an angle between say 0◦ and

101

180◦, and then calculate the arithmetic average of these directions. This is essen-

tially the method used by Kawagoe and Tojo [52]. There are some difficulties with

this procedure, however. For example, notice that the average of the directions

0◦ and 178◦ should be 179◦ (not 89◦). (See [63] for background on managing di-

rectional data.) We take instead a least-squares minimization approach. First we

discard the z-components (which are identically 1) to get the collection {~vk}, where

~vk = (nk1, n
k
2)

T . Note that the magnitude of the vector ~vk is given by the cotangent

of the angle between the normal vector ~nk and the xy-plane. Let ~u = (u1, u2)
T be

the unit tangent vector that we want to determine. Formally,

minimize
∑

k

|〈~vk, ~u〉|2

subject to ‖~u‖ = 1.

(See [60].)

Let F (u1, u2) be the minimization function, i.e., F (u1, u2) =
∑

k |〈~vk, ~u〉|2. Let

A =
∑

k(v
k
1)
2, B =

∑

k(v
k
2)
2, and C =

∑

k v
k
1v

k
2 . Then

F (u1, u2) = (u1, u2)

(

A C
C B

)(

u1
u2

)

. (7.3)

Thus F is the quadratic form associated with the (real) symmetric matrix

S =

(

A C
C B

)

.

The eigenvalues for this matrix are the extremal values of the function F for

‖~u‖ = 1. Let us order the eigenvalues so that λ1 ≥ λ2. Then the minimum value

102

for F is λ2, and the corresponding eigenvector is the solution to the minimization

problem, i.e., yields the averaged tangent direction. (If λ1 = λ2 then we have the

degenerate case where there is no preferred direction. This indicates a peak or

plateau in the image, or else a region that is overcome by random noise.)

The eigenvalues for S are

λ1 =
1

2

(

(A+B) +
√

(A−B)2 + 4C2
)

λ2 =
1

2

(

(A+B)−
√

(A−B)2 + 4C2
)

. (7.4)

If C = 0 then the original matrix S is diagonal and the eigenvector corresponding

to λ2 is either (1, 0)
T or (0, 1)T , depending on whether A < B or B < A. Otherwise

one has the relation

u2 = u1(λ2 − A)/C

= u1

B − A

2C
−
√

(

B − A

2C

)2

+ 1

 ,

which defines the averaged tangent direction.

7.3.4 Region contrast and consistency

In addition to determining the tangent direction, the calculations in the preceding

sections also give measures of region contrast and tangent consistency. For exam-

ple, if the contrast in a region is large, then many of the normal vectors calculated

in Section 7.3.2 will lie close to the xy-plane, and the projected vectors ~vk (from

Section 7.3.3) will be large. Conversely, if the contrast is small, then most of the

103

normal vectors will be nearly parallel to the z-axis, and the vectors ~vk will be

small. Thus the region contrast is gauged by

CR =
∑

k

∥

∥

∥~vk
∥

∥

∥

2

=
∑

k

(nk1)
2 + (nk2)

2 = A+B,

where A and B are defined in Section 7.3.3. Normalization of CR requires knowl-

edge of the maximum possible magnitude of the normal vectors (which depends

on digitization restrictions) in addition to the size of the averaging window (i.e.,

the number of vectors in the summation). For example, in our system the dig-

itized values lie between 0 and 255, and suppose we choose a 9 × 9 averaging

window. The maximum value for any ‖~vk‖ is 255/2 (refer to Eq. 7.2), and there

are 8×8 = 64 2x2 neighborhoods in the averaging region, so the maximum possible

value for CR is Cmax = (255/2)2 × 64. The normalized contrast score is defined

by CN = CR/Cmax.

Tangent consistency is measured by the extent to which the averaged tangent

direction ~u is perpendicular to the collection ~nk. This provides an estimate of the

noise level in the averaging window. Let ER denote the sum of the squared error,

ER =
∑

k

|〈~nk, ~u〉|2 =
∑

k

|〈~vk, ~u〉|2,

which is of course just the function F of Section 7.3.3 evaluated in the averaged

tangent direction. This minimal value of F is given in Eq. 7.4, i.e., ER = λ2. This

value can be normalized by dividing by CR. A value of zero indicates a perfect fit

104

(all the vectors ~nk are perpendicular to the averaged tangent direction), whereas

ER/CR = 1 indicates that all the vectors ~nk are parallel to the averaged tangent

direction—the worst case. Of course the latter does not occur since in this case

selecting the perpendicular direction as the tangent direction gives a perfect fit.

In fact, the minimization ensures that ER/CR ≤ 1/2. Therefore, the normalized

consistency error is defined to be EN = 2ER/CR.

Combined, the two parameters CN and EN give a measure of the reliability

of the calculated tangent direction. Ideally the region will be high contrast (large

CN) with high consistency (small EN).

7.3.5 Controlled tests

To test the stability of the tangent calculation and the usefulness of the consis-

tency score EN , we performed experiments with two idealized surfaces (a smooth

edge and a sinusoid) corrupted by simulated noise. The results are displayed in

Tables 7.1 and 7.2. Part (a) in each table presents the results using a small (9× 9)

tangent window, while part (b) shows the results using a larger (19× 19) tangent

window. The data in Table 7.1 (a) and Table 7.2 (b) are represented graphically

in Fig. 7.4 and Fig. 7.5, respectively. Graphs of the data in Table 7.1 (b) and

Table 7.2 (a) are very similar to Fig. 7.4, and so are not reproduced here. The

reader may examine the tabular data for details.

The first surface for which we performed tests was a smooth edge. The profile

105

Table 7.1: Experimental results of tangent calculation for a smoothed edge passing
through the center of the tangent window at an angle of 40◦. Results in (a)
are from a 9 × 9 window, (b) from a 19 × 19 window. Noise was introduced by
adding a sequence of computer generated zero-mean uncorrelated Gaussian random
variables.

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.6◦ – 0.00 – 0.15 –

100 39.6◦ 0.57◦ 0.06 0.01 0.16 0.01
50 39.6◦ 0.90◦ 0.11 0.02 0.17 0.01
25 39.6◦ 1.5◦ 0.20 0.04 0.19 0.01
10 39.6◦ 3.4◦ 0.38 0.06 0.24 0.02
5 39.7◦ 6.3◦ 0.54 0.08 0.34 0.04

(a)

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.4◦ – 0.00 – 0.07 –

100 39.4◦ 0.41◦ 0.14 0.01 0.08 0.00
50 39.4◦ 0.75◦ 0.23 0.02 0.09 0.00
25 39.4◦ 1.5◦ 0.38 0.03 0.11 0.01
10 39.4◦ 3.5◦ 0.61 0.04 0.17 0.01
5 39.6◦ 6.8◦ 0.75 0.04 0.28 0.02

(b)

106

Table 7.2: Experimental results of tangent calculation for a sinusoidal wave passing
through the center of the tangent window at an angle of 40◦. Results in (a)
are from a 9 × 9 window, (b) from a 19 × 19 window. Noise was introduced by
adding a sequence of computer generated zero-mean uncorrelated Gaussian random
variables.

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.7◦ – 0.00 – 0.11 –

100 39.8◦ 0.63◦ 0.05 0.01 0.11 0.00
50 39.8◦ 0.95◦ 0.09 0.02 0.12 0.00
25 39.8◦ 1.5◦ 0.17 0.03 0.13 0.01
10 39.8◦ 3.1◦ 0.34 0.06 0.16 0.01
5 39.9◦ 5.6◦ 0.50 0.07 0.22 0.02

(a)

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.9◦ – 0.00 – 0.11 –

100 39.8◦ 0.21◦ 0.05 0.00 0.11 0.00
50 39.8◦ 0.34◦ 0.10 0.01 0.12 0.00
25 39.8◦ 0.59◦ 0.18 0.01 0.13 0.00
10 39.8◦ 1.3◦ 0.35 0.03 0.16 0.01
5 39.9◦ 2.5◦ 0.52 0.03 0.22 0.01
2 39.9◦ 6.0◦ 0.72 0.04 0.39 0.03
1 40.5◦ 11◦ 0.83 0.04 0.68 0.05

(b)

107

Figure 7.4: Graph of results of tangent calculations for a smoothed edge (see
Fig. 7.6) passing through the center of a 9 × 9 tangent window at an angle of
40◦. Noise was introduced by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. The tangent direction (in degrees), nor-
malized error (EN), and normalized contrast score (CN) are displayed as functions
of the signal to noise ratio. The error bars mark one standard deviation.

108

Figure 7.5: Graph showing results of tangent calculations for a sinusoid (see
Eq. 7.5) passing through the center of a 19 × 19 tangent window at an angle of
40◦. Noise was introduced by adding a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. The tangent direction (in degrees), nor-
malized error (EN), and normalized contrast score (CN) are displayed as functions
of the signal to noise ratio. The error bars mark one standard deviation.

109

80 80 80 80 80 80 81 84 95
80 80 80 80 80 81 85 100 150
80 80 80 80 81 86 107 157 172
80 80 80 82 88 116 161 173 175
80 81 82 91 128 165 174 175 176
81 83 95 140 168 174 176 176 176
84 99 149 170 175 176 176 176 176

106 156 171 175 176 176 176 176 176
161 172 175 176 176 176 176 176 176

Figure 7.6: Tangent window pixel values for a smooth edge passing through the
center of the window at an angle of 40◦.

for this edge was defined by

h(t) =

{

128 + 48(1− e−2.3t) if t ≥ 0
128− 48(1− e2.3t) if t < 0

where t is the distance (in pixels) from the center of the edge. This profile has an

edge transition range, measured from the 10% down points, of two pixels. We used

this profile to generate a smooth step (similar to that depicted in Fig. 7.2) through

the center of a tangent window at an angle of 40◦. The resulting pixel values, after

the required rounding to integer, are shown in Fig. 7.6. Noise was added to this

in the form of a sequence of computer generated uncorrelated zero-mean Gaussian

random variables.

Table 7.1 (a) shows statistics for the tangent calculation using a 9× 9 tangent

window. (The window dimensions are chosen odd so that the center of the window

will correspond to a pixel sampling point.) The first column lists the signal-to-

noise ratio (SNR), defined here as the ratio of the variance of the original (no

noise) image to the variance of the added noise. For each SNR level, 104 trials were

110

performed, and the mean and standard deviation of the tangent angle, consistency

score, and contrast score were collected. Notice that even in the noise-free case,

the angle calculation is 0.4◦ off from the true value of 40◦. This is due to the

discretization of the edge and because the point normal calculation works under

the assumption that a plane is a good local approximation to the surface. The

magnitude of the error depends upon the angle and the shape of the edge. As

shown in [62], this error can be significant across a step edge. The effect is less

noticeable across a smooth edge. In fact, for the smooth edge described above, the

calculated angle differs from the true angle by less than 3◦ regardless of the edge

orientation. Nonetheless, one could improve the directional accuracy by improving

the point normal calculations (Section 7.3.2), either by increasing the size of the

local neighborhood or by using a higher order surface (instead of a plane), albeit

at the cost of increased computation time. The contrast scores are not affected by

the orientation of the edge, and the effect of edge orientation on the consistency

(error) scores is less than 10%.

The data from Table 7.1 (a) are displayed graphically in Fig. 7.4, where the

error bars denote one standard deviation from the mean. (The distributions about

the mean are not quite Gaussian, but are close enough so that roughly 68% of the

trials fell within one standard deviation of the mean, and approximately 95% fell

within two standard deviations.) We see from the graph that the mean direction

value is nearly independent of the noise level, but the variation of the direction from

111

the mean increases with increasing noise, as one expects. Let us now increase the

tangent window size to 19× 19, so that the window contains (roughly) 4 times as

many pixels as before (Table 7.1 (b)). Offhand, one expects the standard deviation

of the angle calculation to drop by 1/2. Comparing the results of part (a) with part

(b) from Table 7.1, one sees that this is not the case. Refer back to Fig. 7.6. In

this tangent window, directional information can only be obtained along the edge,

which is confined to a narrow strip passing through the center of the window. Any

directional information obtained in the larger flat regions on either side of the edge

can only be due to noise. Increasing the dimensions of this window to 19× 19 will

quadruple the flat area, but the area of the strip containing the edge only doubles.

So in the larger window we have twice as much true directional information and

four times as much noise. The two effectively cancel, as we see from the results in

Table 7.1, although for small noise levels the larger window is somewhat preferable.

This effect disappears if directional information is present throughout the tan-

gent window. Table 7.2 gathers the results for the same calculations as Table 7.1,

but with a sinusoid replacing the edge. (The results for the larger window are

shown graphically in Fig. 7.5.) Specifically, we used

h(x, y) = 128 + 48 sin
(

π

5
(y cos θ − x sin θ)

)

, (7.5)

where the coordinate origin corresponds to the window center and θ = 40◦. (This

sinusoid has a period of 10 pixels, which roughly approximates the ridge period in

112

the fingerprint image used in Section 7.5.) With the sinusoid, we see that increasing

the window size from 9 × 9 to 19 × 19 cuts the standard deviation of the angle

calculation by at least one half (and by as much as two thirds for low noise levels).

Let us next consider the tangent consistency score EN . To be a good predictor

of angle reliability, the value of EN should correlate closely to the standard devia-

tion of the angle calculation. If we compare values of EN in Table 7.1 (a) against

those in (b), we see that for any fixed angle standard deviation level the corre-

sponding mean EN values in (a) are smaller than those in (b). This is expected

and simply means that the larger window can tolerate larger errors and still keep

the same angle calculation variance. It is more meaningful to compare the results

from the smoothed edge with the sinusoidal at the same window size (i.e., com-

pare Table 7.1 (a) with Table 7.2 (a), and Table 7.1 (b) with Table 7.2 (b)). Doing

this we see that for any given angle standard deviation value, the corresponding

mean EN values are within 15% across the tables. For example, suppose we want

to consider the calculated tangent angle reliable if the standard deviation is less

than 5◦. Then for the 9 × 9 window, the angle is reliable if the value of EN is

less than about 0.47, regardless of whether we look at the single smoothed edge

(Table 7.1 (a)) or the sinusoid (Table 7.2 (a)). Thus we can use the value of EN

as a measure of angle reliability, independent of the image structure. Similarly, for

the 19× 19 window, the 5◦ standard deviation value corresponds to a EN score of

about 0.68.

113

Of course, for any one trial the value EN is a random variable, so its variance

is important as well. For example, for the 19× 19 window, the standard deviation

of EN with mean value 0.68 is 0.04. Thus if the observed value for EN is less than

0.6, then with better than 97% probability the noise is in the acceptable range.

For smaller windows the variance of EN is larger, so the estimate is less tight. For

EN with mean value of 0.47 in the 9 × 9 window case, the standard deviation is

0.07, so to reach the 97% assurance level we need EN < 0.34.

Consider now the contrast score CN . In the smoothed edge case, comparing the

results from the small window to the large window shows that for any given noise

level the CN score drops. This is correct since the larger window contains a larger

percentage of flat (zero contrast) area. (Recall that the CN score is normalized

by the window size.) For the sinusoid we see no difference between the CN scores

for the small versus large window, also a correct result. It is somewhat surprising

that the CN score for the small window, smoothed edge (Table 7.1 (a)) is larger

than the CN score for the sinusoids. However, the edge is much steeper than the

sinusoid slope, and for the small window the edge fills a significant amount of the

total area. Of more importance is the relative insensitivity of the CN score with

respect to the noise level, which is evident from the graphs of CN provided in

Figs. 7.4 and 7.5. Also the standard deviation of CN is less than 10%, so the CN

score is a reasonable predictor of the underlying (noise-free) image contrast.

As a final comment, note that an edge is not required for the tangent calculation

114

to return meaningful information. Indeed, the surface may be any for which the

level curves are defined (i.e., any inclined surface).

7.4 Curvature vector calculation

7.4.1 Problem formulation

Let us now consider the problem of calculating curvature from level curves. Most

previous work on image curvature has been restricted to calculating curvature

magnitude from a given boundary curve [39, 57]. In this approach one first uses an

edge detection algorithm to locate the image boundary, then pieces the boundary

together (using, for example, a chain code algorithm), and then approximates the

second derivative of the resulting (1-dimensional) curve. Conversely, our approach

uses the results of the tangent calculation only, without any intermediate process-

ing. Moreover, although our procedure works along single edges (especially if one

incorporates the extensions suggested in Section 7.4.6), it works best on striated

images such as fingerprints, where it can use in the calculations data from several

adjacent level curves.

Refer back to Fig. 7.1, and consider the curvature at the point P . We have

at our disposal not only the level curve through P , but also the adjacent level

curves, which we want to include in our calculation. Notice that the magnitude

of the curvature changes as one moves between level curves, increasing as one

moves closer to the curvature center, and decreasing as one moves farther away.

115

Similarly, as one moves along a level curve, the magnitude of the curvature is (or

is nearly) constant, but the direction of the curvature vector (towards the center

of the curvature) varies. Thus we see that the curvature vector is not constant in

any neighborhood of P . The curvature center, however, is (or is nearly) constant.

So instead of trying to find an average value for the curvature vector directly, we

calculate first an average value for the curvature center. Then the curvature vector

can be calculated from the relation ~r ′′(0) =
−−→
PPc/‖−−→PPc‖2, where Pc denotes the

curvature center.

The curvature center lies on the line L through P that is perpendicular to the

level curve tangent vector at P . Since we can calculate the tangent vector using

the technique discussed in Section 7.3, we need only calculate the position of Pc

on the line L. To this end choose another point near P that is not on L. If this

new point is close enough to P then we expect the two points to share the same

curvature center. Construct a line through the second point perpendicular to its

tangent. The curvature center Pc is on both lines and is therefore given by the

intersection of the two lines. (If the lines are parallel then the curvature is zero

and we consider the point Pc to be at infinity.)

Let us expand this idea to a larger region. In Fig. 7.7 there are nine points

(P1, P2, . . . , P9) with associated tangent vectors (~u1, ~u2, . . . , ~u9) inside a dashed

rectangle called the curvature window. (The size of the curvature window de-

pends upon the application, but is generally several times larger than the tangent

116

s

s s s

s s s

s s s

Pc

P1 P2 P3

P4 P5 P6

P7 P8 P9

XXXXXXXXXXXXXXXXXXXXXXXXXXX

»»»»»»»»»»»»»»»»»»»»»»»»»»»

PPPPPPPPPPPPPPPPPPPP

³³³³³³³³³³³³³³³³³³³³

HHHHHHHHHHHHHH

©©©©©©©©©©©©©©

¤
¤¤º

£
££±

¢
¢̧

6 6 6

C
CCO

B
BBM

A
AK

~u1 ~u2 ~u3

~u4 ~u5 ~u6

~u7 ~u8 ~u9

HH curvature
window

Figure 7.7: Illustration of placement of curvature center point Pc.

window.) Now we want to find a point Pc that can be regarded as the curvature

center for all points Pk inside the curvature window. In particular, each radius

vector
−−→
PkPc should be perpendicular to the associated tangent vector ~uk, i.e.,

〈−−→
PkPc, ~u

k
〉

= 0 for k = 1, 2, . . . , 9. (7.6)

Then the curvature vector at the center of the window would be
−−→
P5Pc/‖−−→P5Pc‖2.

Of course, it is unlikely that the nine lines will intersect in a point, so we cannot

expect there to be a point Pc satisfying the orthogonality conditions of Eq. 7.6. Let

us find instead a point Pc such that each radius vector
−−→
PkPc in the curvature window

is nearly orthogonal to the corresponding tangent vector ~uk. But how to quantify

the concept of “nearly orthogonal”? We consider two different formulations. The

first formulation is simple to implement, but is unstable if the tangent vectors are

117

nearly parallel. The second formulation does not suffer from this instability, but

is more difficult to implement.

It is interesting to note that similar problems arise in the application of com-

puter vision to mobile robots [64, 65, 66, 67]. Objects in successive image frames

appear to move outward as the robot moves towards them (pure translation). The

point from which the motion seems to originate is called the focus of expansion

(FOE). Lines drawn through the objects in their direction of apparent motion

should all intersect at the FOE. This does not occur, of course, due to noise and

quantization errors. So given the lines of motion, the problem is to find a point

which is as close as possible to all the lines. This is equivalent to the problem that

results from using the first orthogonality formulation described below.

7.4.2 First formulation of orthogonality condition

Each pair (Pk, ~u
k) defines a line on which we would like the center to lie—the

line Lk that runs through Pk and is perpendicular to ~uk. Let Pc be a candidate

point for the curvature center, and let d(Pc,L
k) be the perpendicular distance from

Pc to the line Lk, as illustrated in Fig. 7.8. The point Pc that we select as the

actual curvature center is the point that minimizes the sum of the square of these

distances, i.e.,

min
Pc

n
∑

k=1

〈−−→PkPc, ~u
k〉2 (7.7)

118

t

t
Pc

Pk
XXXXXXXXXXXXXXXXXXXXXXXXXXX

-L
k

¾
Lk

6

~uk

6

?

d(Pc,L
k)

Figure 7.8: Illustration of the first orthogonality formulation for curvature calcu-
lation.

where n is the number of points in the curvature window. Here we have assumed

that the ~uk are unit vectors, although we will later relax this restriction. In this

formulation (Eq. 7.7), points Pk that are far from Pc have a greater weight in

the sum than those close to Pc. The advantage in this is that the tangent vector

calculation is more reliable in regions of shallow curvature, so it is natural to weight

points away from the curvature center more heavily. Unfortunately, moving the

point Pc in towards the curvature window will generally reduce the sum as a whole

(since this reduces the size of the vectors
−−→
PkPc). Therefore this formulation tends

to pull the curvature center inward, increasing the calculated curvature. This is

related to the instability problem discussed below.

But let us first derive an explicit solution to Eq. 7.7. Impose a coordinate

system on the plane and consider points in the plane as position vectors. Let

119

~uk = (ak, bk)
T , ~Pc = (x, y)T , and rk = 〈~Pk, ~uk〉. Furthermore, let G(~Pc) = G(x, y)

be the function being minimized in Eq. 7.7. Then

G(x, y) =
n
∑

k=1

(rk − akx− bky)
2

= Ax2 +By2 + 2Cxy − 2Dx− 2Ey +M, (7.8)

where A =
∑n

k=1 a
2
k, B =

∑n
k=1 b

2
k, C =

∑n
k=1 akbk, D =

∑n
k=1 akrk, E =

∑n
k=1 bkrk,

and M =
∑n

k=1 r
2
k.

The minimization of G(x, y) requires the partial derivatives Gx = Gy = 0, so

Gx(x, y) = 2Ax+ 2Cy − 2D = 0

Gy(x, y) = 2By + 2Cx− 2E = 0.
(7.9)

In matrix form this becomes

(

A C
C B

)(

x
y

)

=

(

D
E

)

. (7.10)

Solving explicitly gives

~Pc =

(

x
y

)

=
1

AB − C2

(

B −C
−C A

)(

D
E

)

, (7.11)

provided that the discriminant AB − C2 6= 0, in which case this is the unique

solution to the minimization problem. On the other hand, the discriminant is zero

only if all the tangent vectors ~uk are parallel, in which case the curvature is zero

and we would like the center point ~Pc to be placed at infinity.

Unfortunately, this method is unstable if the tangent vectors are nearly parallel.

To see this, consider first the case where the tangent vectors are all exactly parallel.

120

Then Eq. 7.7 attains its minimum value along the entire line through the center

of the curvature window that is perpendicular to the tangent vectors’ direction.

We would like to select the minimization point to be infinity, but from Eq. 7.7 any

point along this line works as well. Now rotate any of the tangent vectors by a small

amount, so that the tangent vectors are not all parallel. Then the discriminant

AB − C2 6= 0, so there is a unique solution, but the discriminant is small so the

solution is unstable. In particular, even though the solution will lie close to the

aforementioned line, it will not necessarily lie near infinity. Moreover, since the

formulation penalizes large distances, it is likely that the solution will lie near the

center of the curvature window. This would imply a very large curvature, even

though the tangent vectors are only slightly perturbed from the parallel condition

indicative of zero curvature. Experimental results confirm that this effect is a

serious weakness of this formulation.

7.4.3 Second formulation of orthogonality condition

So we need a different formulation for the orthogonality condition. Let ~vk be a

unit vector perpendicular to
−−→
PkPc, and define ~ek = ~uk−〈~uk, ~vk〉~vk as illustrated in

Fig. 7.9. Now pick Pc to minimize

min
Pc

n
∑

k=1

‖~ek‖2 = min
Pc

n
∑

k=1

〈

~uk,
−−→
PkPc
‖−−→PkPc‖

〉2

. (7.12)

This formulation weights each point equally, but is more complicated than the

formulation of Eq. 7.7. In particular, notice that this new formulation suffers from

121

t t
PcPk

6

~vk

Á

~uk

-~ek

Figure 7.9: Illustration of the second orthogonality formulation for curvature cal-
culation.

discontinuities at Pc = Pk for each k = 1, 2, . . . , n. However, let us consider the

situation where the center point Pc is far from the curvature window, in which case

the terms ‖−−→PkPc‖ are nearly identical. Let us place our coordinate system origin

at the center of the curvature window and approximate each term ‖−−→PkPc‖ by ‖~Pc‖.

We then have the simplified formulation

min
Pc

n
∑

k=1

〈

~uk,
−−→
PkPc

〉2

‖~Pc‖2
. (7.13)

Introducing A, B, C, D, E, and M as in Eq. 7.8 yields the minimization function

G̃(x, y) =
Ax2 +By2 + 2Cxy − 2Dx− 2Ey +M

x2 + y2
. (7.14)

We want to find the global minimum of this function on the xy-plane. A

necessary condition for a local minimum is that the directional derivatives in the

radial and angular directions be equal to zero. So let us write G̃ in polar coordinates

(x = r cos θ, y = r sin θ):

G̃(r, θ) = A(cos θ)2 +B(sin θ)2 + 2C cos θ sin θ

122

+
−2Dr cos θ − 2Er sin θ +M

r2
. (7.15)

The partial derivatives are given by

G̃r(r, θ) =
2Dr2 cos θ + 2Er2 sin θ − 2Mr

r4
(7.16)

and

G̃θ(r, θ) = −2A cos θ sin θ + 2B cos θ sin θ + 2C
(

(cos θ)2 − (sin θ)2
)

+
2D sin θ − 2E cos θ

r
. (7.17)

Setting G̃r = 0 and G̃θ = 0, simplifying, and converting back to rectangular

coordinates produces the requirements

Dx+ Ey = M, (7.18)

(B − A)xy + C(x2 − y2) +Dy − Ex = 0. (7.19)

IfM is not zero then at least one of D or E will be non-zero, so these two equations

can be combined to yield a quadratic equation in one variable. The (at most) two

roots of this quadratic combine with Eq. 7.18 to produce (at most) two candidate

points for local minima of G̃. It is also possible that the global minimum of G̃ is

attained at infinity. Note that

lim
r←∞

G̃(r, θ) = A(cos θ)2 +B(sin θ)2 + 2C cos θ sin θ, (7.20)

which can be written

lim
r←∞

G̃(r, θ) = (cos θ, sin θ)

(

A C
C B

)(

cos θ
sin θ

)

. (7.21)

123

Comparing to Eq. 7.3 and Eq. 7.4 shows that the (boundary) minimum value at

infinity is given by the smaller matrix eigenvalue, namely

λ =
1

2

(

(A+B)−
√

(A−B)2 + 4C2
)

. (7.22)

(Notice that Eq. 7.13 implies that λ ≥ 0.) One now compares this value with the

value of G̃ evaluated at the (at most) two candidate points found previously. The

global minimum is the smallest of these three values, and the curvature center is

at the corresponding point.

If M is zero, then the curvature center should be placed at the center of the

curvature window (infinite curvature). However, M = 0 implies that D = 0 and

E = 0 as well. Introducing this into Eq. 7.14 shows that the minimizing set

consists of an entire line through the center of the curvature window. We can

therefore expect the same type of instability in this case as we had for the first

orthogonality formulation when the curvature was near zero. Moreover, this second

formulation will tend to force the calculated curvature center away from the origin

because if M 6= 0 then G̃ has a pole of order 2 at the origin. Thus the results

using the simplified formulation of Eq. 7.13 are unsatisfactory for high curvature

situations. (This is expected, of course, since the simplified formulation is based

on the assumption that the curvature center Pc is far from the curvature window.)

124

7.4.4 Combining the two orthogonality formulations

Fig. 7.10 shows the results of applying the two orthogonality formulations to noisy

images. For this example we used a curvature window consisting of 9 tangent

vector nodes, laid out in a 3 × 3 grid as in Fig. 7.7. Both the row and column

spacing was set to 10 pixels. We fixed a curvature center point Pc and calculated

the ideal tangent direction at each of the 9 nodes. The distance of the point Pc

from the center of the curvature window determines the magnitude of the curvature

vector
−−→
P5Pc/‖−−→P5Pc‖2 (where P5 is the window center), and the orientation of Pc

relative to the fixed 3× 3 tangent node grid determines the angular component of

the curvature vector.

Both orthogonality formulations produced perfect results on ideal data, so

we introduced noise by rotating the 9 tangent directions separately by random

amounts. The rotations were determined from a sequence of computer generated

zero-mean uncorrelated Gaussian random variables. The noise level was controlled

by adjusting the standard deviation of the random variables to 1◦, 3◦, or 5◦. The

curvature calculations were performed using the perturbed tangent directions. The

random variables were then resampled to generate new tangent perturbations, and

the process was repeated. Each point in Fig. 7.10 represents the mean curvature

value from 105 trials. The abscissa in Fig. 7.10 gauges the original (before noise)

curvature, while the ordinate provides the calculated curvature. (The results were

found to be independent of the angular component of the curvature vector.) The

125

Figure 7.10: Calculated mean curvature as a function of noise-free (“true”) curva-
ture and standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise. The results
using the first curvature formulation (Section 7.4.2) are marked by pluses, and
the results using the second curvature formulation (Section 7.4.3) are marked by
triangles. A 3x3 tangent grid with a 10 pixel internal spacing was used for these
calculations.

126

points marked with +’s are the results using the first orthogonality formulation,

while 4’s mark the results using the second orthogonality formulation. There is

one curve at each noise level for each formulation.

Ideally the data points in this graph should lie on the line of slope 1 through

the origin. However, in the low curvature region (10−3 to 10−2 pixels−1) the first

orthogonality formulation produces exaggerated curvatures from noisy data, as

expected. The second formulation performs better across most of the curvature

range, although for curvatures near 1 pixel−1 the calculated values fall below the

ideal values, as also anticipated. Since the first formulation works well for high

curvature situations, and the second formulation works well for low curvature sit-

uations, it is natural to combine the two formulations. Fig. 7.10 suggests that the

first formulation be used for curvatures above about 0.1 pixels−1, and the second

formulation below. (The actual curvature values are relative to the size of the

curvature window. Here the radius of the curvature window is roughly 10 pixels,

so a curvature of 0.1 pixels−1 corresponds to the curvature center ~Pc being posi-

tioned on the edge of the curvature window.) Therefore, we need an estimator

for the curvature that is reliable (with respect to noise) in some range around 0.1

pixels−1. Our experiments suggest that the value of λ from Eq. 7.22 provides such

an estimate. This value ranges between 0 if the tangent vectors are parallel to

n/2 if the tangent vectors are concentric about the center of the curvature window

(recall that n is the number of tangent vectors in the curvature window). The

127

examples presented in Section 7.5 use λ/n = 0.1 as the method crossover point,

i.e., if λ/n > 0.1 the first curvature formulation was used, otherwise the second.

Fig. 7.11 graphs λ/n under the conditions used to generate Fig. 7.10 (here

n = 9). We see that λ/n = 0.1 corresponds to a curvature of about 0.04 pixels−1,

a little lower than ideal, but still an acceptable method crossover point. Moreover,

if one examines the portion of the graph in Fig. 7.11 near curvature 0.1, one finds

a small indentation in the knee of the curve. This is due to discontinuities in

Eq. 7.22 as the curvature center ~Pc approaches tangent vector nodes ~Pk. Since the

tangent vector node spacing is 10 pixels, the curvature center enters the curvature

window at curvatures between 0.0707 and 0.1 pixels−1, depending on the angular

component of the curvature vector. Unlike the curvature calculations in Fig. 7.10,

the values graphed in Fig. 7.11 are dependent on the angular component of the

curvature vector, though only in the curvature range between about 0.05 and 0.12

pixels−1. (In Fig. 7.11 the angular component of the curvature vectors is fixed at

57◦.) Thus setting the method crossover point at λ/n = 0.1 is in fact a reasonable

choice.

If the minimization error (G(x, y) or G̃(x, y)) is not zero, then the curvature

center determined using the first method will lie closer to the curvature window

than the curvature center determined using the second method. There will gen-

erally be, therefore, some discontinuity in the calculated curvature at the method

crossover point. If necessary, one can force continuity by using a weighted average

128

Figure 7.11: Normalized infinity error, λ/n (see Eq. 7.22), as a function of noise-free
(“true”) curvature and standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise.
A 3x3 tangent grid with a 10 pixel internal spacing was used for these calculation.
The angle of the noise-free curvature vector with respect to this grid was fixed at
57◦.

129

of the two calculated curvature centers over a transition region. For example, let

~Pc1 be the curvature center calculated by the first method, ~Pc2 by the second. Then

use

~Pc =

~Pc1 if λ > 0.12n

λ−0.08n
0.04n

~Pc1 +
0.12n−λ
0.04n

~Pc2 if 0.08n ≤ λ ≤ 0.12n

~Pc2 if λ < 0.08n.

As an alternative to combining the two curvature formulations, one can explore

the possibility of using Eq. 7.12 directly. Minimizing this function requires numer-

ical methods, which may be poorly behaved in high curvature situations (due to

discontinuities at Pc = Pk). This is left for future study.

7.4.5 Controlled tests

To study the behavior of the combined curvature calculation method in a controlled

fashion, we repeated the experiment of Section 7.4.4 using λ/n to automatically

select the orthogonality formulation. The results are gathered in Table 7.3. The

curvature window consisted of 9 tangent vector nodes, laid out in a 3×3 grid with

both row and column spacing set to 10 pixels. As noted before, the dependence

of the curvature calculation on the orientation of the curvature vector (directional

component) was found to be minimal. Therefore only the dependence on the

distance component (“Noise-free Curvature”) is listed in Table 7.3.

The second column in Table 7.3 lists the noise level introduced into the data

(standard deviations of 1◦, 3◦, or 5◦). For most curvature/noise level combinations,

104 trials were performed, but in several instances 106 trials were necessary to

130

Table 7.3: Curvature calculation statistics at various curvature levels and noise
magnitudes. Noise was introduced by rotating the tangent directions from a se-
quence of computer generated zero-mean uncorrelated Gaussian random variables.
The curvature units are pixels−1, direction units are degrees.

Calculation Results
Noise-free Noise Curvature Mean Curvature Direction
Curvature Std. Dev. Relative Error (%) Std. Dev. Std. Dev.

1◦ 0.2 0.0007 0.3
0.001 3◦ -1.8 0.0021 1.0

5◦ -1.8 0.0035 1.7
1◦ -0.1 0.0007 0.3

0.005 3◦ -0.2 0.0021 1.0
5◦ -1.2 0.0035 1.7
1◦ -0.1 0.0007 0.3

0.01 3◦ -0.3 0.0021 1.0
5◦ -1.2 0.0036 1.7
1◦ -0.1 0.0007 0.4

0.03 3◦ -0.4 0.0022 1.1
5◦ -1.2 0.0038 1.8
1◦ 0.2 0.0008 0.4

0.04 3◦ 2.0 0.0027 1.2
5◦ 5. 0.0050 2.0
1◦ 0.2 0.0008 0.4

0.05 3◦ 1.5 0.0023 1.3
5◦ 4. 0.0039 2.2
1◦ 0.1 0.0012 0.8

0.1 3◦ 0.6 0.0036 2.5
5◦ 2. 0.0061 4.1
1◦ 0.3 0.027 2.5

0.5 3◦ 2. 0.089 7.8
5◦ 8. 0.22 14.
1◦ 0.9 0.11 5.0

1.0 3◦ 11. 0.87 17.
5◦ 27. 2.6 36.

131

provide the desired precision. The resulting statistics are presented in columns 3

through 5.

The results are divided into three columns: curvature mean error, curvature

standard deviation, and direction standard deviation. Recall that the result of the

curvature calculation is the curvature vector, with magnitude equal to the recip-

rocal of the curvature radius and direction towards the center of the curvature.

The curvature mean error is the difference of the mean value of the calculated

curvature magnitude from the curvature before noise, expressed as a percentage

with respect to the before noise value. The curvature standard deviation is the

standard deviation of the curvature magnitude about its mean value. The dif-

ference between the calculated curvature direction mean value and the noise-free

direction was insignificant. The standard deviation of the direction component

was significant, however, and is listed in the last column of Table 7.3.

The orthogonality formulation used for curvature calculation was selected au-

tomatically as detailed in Section 7.4.4, using λ/n = 0.1 as the method crossover

point. In these tests the curvature at the method crossover point was close to 0.04

pixels−1. This means that the method of Section 7.4.2 was used in those cases

where the curvature was more than 0.05 pixels−1, and the method of Section 7.4.3

was used where the curvature was less than 0.03 pixels−1. Near 0.04 pixels−1, the

algorithm chosen depended upon the noise sample. The trials at noise-free curva-

ture of 0.04 pixels−1 had each method selected roughly half the time. The results

132

in the range below 0.03 pixels−1 are most straightforward, so we shall discuss them

first.

The calculation errors were nearly independent of curvature in the range be-

tween 0.001 and 0.03 pixels−1. The curvature mean value is generally slightly

below the true value, and the error increases with increased noise. Notice that

in this range the standard deviation of both the curvature magnitude and direc-

tion increase linearly with standard deviation of the added noise. No results are

listed for curvature less than 0.001 pixels−1 because extremely shallow curvature

cannot be separated from noise. Even at a curvature of 0.001 pixels−1, the tan-

gent directions in the curvature window vary from the center direction by at most

0.58◦. Rotate these directions by noise with standard deviation as small as even

1◦ and the original curvature is completely lost. The net result is that for ex-

tremely shallow curvature (say less than 0.001 pixels−1), the curvature calculation

reports a small curvature, but it is not possible to distinguish between two differ-

ent but very small curvatures in the presence of noise. Along the same lines, the

returned direction in the small curvature situation has meaning only modulo 180◦.

For example, consider Fig. 7.12, which illustrates two curves ((a) and (b)) with

small curvature. Curve (a) has curvature direction near 90◦, whereas curve (b) has

curvature direction near 270◦. In the presence of noise, these two curves cannot

be distinguished—even though their curvature directions differ by 180◦. To allow

proper comparisons, it is necessary to restrict the curvature directions to a fixed

133

180◦ range, say between 0◦ and 180◦, and to introduce negative curvatures. If the

curvature direction is inside the restricted range, no change is made. However, if

the curvature direction is outside this range, then we subtract 180◦ degrees from

the curvature direction and multiply the curvature magnitude by −1. For example,

with this modification the curvature vector of curve (a) is unchanged, but curve (b)

would have curvature direction near 90◦ and a (small) negative curvature.

As the curvature increases from 0.03 through 0.04 pixels−1, the curvature cal-

culation method used shifts from the method of Section 7.4.3 to the method of

Section 7.4.2, until for curvatures ≥ 0.05 pixels−1 the method of Section 7.4.2 is

used almost exclusively. We see that the variance in the direction result increases

as the curvature center point Pc moves in towards the curvature window. The

curvature magnitude results, on the other hand, actually improve as the curvature

increases, until the curvature reaches 0.1 pixels−1. The dimensions of the curvature

window are such that at this point the curvature center is just inside the curva-

ture window. After this point the results degrade. In high curvature situations

there are problems analogous to the problems at very low curvature. For example,

suppose the true curvature is 1 pixel−1. Then the curvature center is only 1 pixel

away from the center of the curvature window. Since the curvature magnitude and

direction is measured relative to the window center, small changes in the location

of Pc have dramatic changes in the curvature values. For example, a location error

of only 1 pixel can move Pc from its original location to the exact center of the

134

curvature window, at which point the curvature magnitude is infinite and the cur-

vature direction is indeterminate. However, this error cannot change the calculated

curvature from a large value to a small value. We can say that the curvature is very

large, but we cannot say exactly how large. That is to say, the distribution of the

curvature magnitude about the mean is not symmetric. Consider, for example, the

test from the last line of Table 7.3, where the curvature mean value is 1.27 pixels−1

with standard deviation of 2.6 pixels−1. In this test only 27% of the trials were

above the mean value, indicating that the curvature values beneath 1.27 pixels−1

were mostly not far from that value. Indeed, the median value for this test was

0.92 pixels−1, and fewer than 4% of the values were below 0.5 pixels−1.

7.4.6 Extensions

The contrast (CN) and consistency (EN) measures of the tangent direction from

Section 7.3.4 give a measure of the reliability of the directional information. It is

natural, therefore, to weight the tangent directions in the minimization problems

of Eq. 7.7, 7.12, and 7.13 according to their reliability. In particular, one can

introduce weights w2k into Eq. 7.7 by

min
Pc

n
∑

k=1

w2k〈
−−→
PkPc, ~u

k〉2. (7.23)

For example, we can set wk = 0 if the contrast score CN for tangent vector uk is

too small, and otherwise set wk = 1− EN .

135

Let us rewrite Eq. 7.23 as

min
Pc

n
∑

k=1

〈−−→PkPc, wk~u
k〉2

where each weight wk becomes the magnitude component of the tangent vector

~uk. Although we originally specified in Eq. 7.7 that the vectors ~uk be unit vectors,

this restriction is not used in the derivation of the solution. Working through the

derivation with ~uk replaced by wk~u
k, we find that the solution to Eq. 7.23 is given

by Eq. 7.11 but with A =
∑n

k=1(wkak)
2, B =

∑n
k=1(wkbk)

2, C =
∑n

k=1w
2
kakbk,

D =
∑n

k=1w
2
kakrk, E =

∑n
k=1w

2
kbkrk, and M =

∑n
k=1(wkrk)

2. Weighting can be

added to Eq. 7.12 and 7.13 in a similar fashion.

One can generally improve the curvature results by averaging the tangent vec-

tors before the curvature calculation takes place. For example, consider images for

which the tangent vectors form a smooth flow, with a handful of singular points.

One wants to average the tangent vectors in the smooth regions without losing the

singular points. Kawagoe and Tojo [52], working on fingerprint classification, used

an effective relaxation technique along with singular region detection. Alternately,

one may be able to adapt the convex projection technique of Simard and Mailloux

[68] to this problem.

7.5 Examples

In our experimental system images are input from a standard video camera and

digitized using a Data Translation IBM-AT compatible frame grabber. The digi-

136

tized images have up to 256 grey levels and a full screen image is 512 pixel columns

by 480 pixel rows. The pixel aspect ratio is such that a rectangle 4 columns wide

by 5 rows high appears square. Since this makes the sample node grid non-square,

a modification is required to the point normal calculation. The details are straight-

forward, however, and are left to the reader.

7.5.1 Tangent examples

One sample use of the tangent calculation is in fingerprint identification. Ridge

flow directions must be established in order to locate both minutiae (ridge endings

and bifurcations) and flow singularities (cores and deltas). An inked fingerprint is

shown in Fig. 7.13. Notice the hole on the right side and the poor contrast due to

over inking at the top and lower left side. We applied the algorithm of Section 7.3

to this image using tangent windows of 19 rows by 15 columns. (When the pixel

aspect ratio of the frame grabber board is taken into account, this window is

approximately square.) The window size is chosen large enough so that noise can

be controlled, but small enough so that curvature inside the window is negligible.

We have found this size window, which will generally contain 2 ridges, to work well

in practice.

Fig. 7.14 shows the results of the tangent calculation for each point on a 10

row by 8 column grid. (Compare also to examples in [58, 59].) The corresponding

tangent direction is indicated by a line segment unless the contrast or consistency

137

(a)

(b)

Figure 7.12: Illustration of two shallow curves that are indistinguishable in the
presence of noise. The curvature vector direction in such situations has meaning
only modulo 180◦.

Figure 7.13: Image of an inked fingerprint. Notice the missing hole on the right
hand side and the poor contrast at the top.

138

is poor (refer to Section 7.3.4), in which case the point is left unmarked. This gives

a rough indication of which regions of the print are of good quality (marked) and

poor quality (unmarked). In our actual experimental system the good regions are

further classified by encoding the line segments with color. Notice that the hole on

the right side is left unmarked, as are sections of the top and bottom of the print.

Also notice that there are no tangent directions marked outside the fingerprint (in

the background on the extreme left and right). We see that in addition to giving

the ridge flow direction, the tangent calculation can also be used for fingerprint

segmentation.

A more general use of the tangent calculation is for adaptive filtering. For

example, if one wishes to enhance edges in an image, then knowledge of the tangent

direction allows one to select an appropriate orientation specific filter. In the

following examples we used 8 convolution-type filters (one each for 0◦, 22.5◦, 45◦,

. . . , 157.5◦). The kernel of the filter for the direction 22.5◦ was

0 0 −8 −6 0 0 0
−1 −9 −8 −1 0 0 0
0 0 0 0 0 2 4
0 0 0 2 11 18 7
0 2 11 18 11 2 0
7 18 11 2 0 0 0
4 2 0 0 0 0 0
0 0 0 −1 −8 −9 −1
0 0 0 −6 −8 0 0

with the resulting value scaled via division by 66. Each filter exhibits low-pass

(smoothing) behavior in the specified direction and high-pass (sharpening) behav-

139

Figure 7.14: Tangent directions calculated on a 10 row by 8 column grid using a
19 row by 15 column tangent averaging window. Unmarked regions indicate either
the contrast or the consistency is poor.

140

ior in the perpendicular direction. We then used the following procedure. At

each point in the image, calculate the tangent direction along with the contrast

and consistency scores. If the contrast and consistency are sufficiently good (as

determined by CN and EN), then select and apply the filter that has orientation

corresponding to the tangent direction. If the contrast or consistency of the region

is poor, then leave the image value at that point untouched.

The results of apply this procedure to the fingerprint of Fig 7.13 is shown in

Fig. 7.15. The tangent averaging window was 19 rows by 15 columns. Regions

were considered to be of poor quality (and hence left untouched) if the normalized

contrast score CN was less than 0.07 or if the consistency error EN was larger

than 0.7. Repetition of the filtering allows good regions to expand into poor

regions. (This effect was also noticed by Peli [54], who obtained similar results

using frequency domain analysis and filtering.) Fig. 7.16 shows the results after

8 iterations of the filter. To prevent over-filtering, the first 6 passes filtered only

those points that were not modified (due to poor contrast or tangent consistency)

in the preceding passes. After the sixth pass most noise had been eliminated from

the image, so for the final two passes a smaller 9× 7 tangent window was used for

increased directional precision.

As another example of the use of this directional enhancement, consider Fig. 7.17,

which is an image of a porous membrane obtained from a scanning electron micro-

scope. For experimental work we needed to determine the pore volume fraction.

141

Figure 7.15: Result of one pass of the directional filter. The tangent window was
19 rows by 15 columns. Regions were left unprocessed if the normalized contrast
score was less than 0.07 or if the normalized consistency error was larger than 0.7.

142

Figure 7.16: Result after 8 passes of directional filter. Each of the first 6 iterations
only modified pixels untouched by preceding passes. The last two passes modified
low contrast regions using a 9 row by 7 column tangent window. The smaller
window allows for the capture of tangents in high curvature regions.

143

Thresholding the image is made difficult by the vagueness of the pore boundaries.

Two passes of this directional filtering gives the image in Fig. 7.18. Thresholding

this image yields pore fractions that agree to within 1% with values obtained by

manual inspection.

7.5.2 Curvature examples

Regions of high curvature denote singular regions in images. Refer back to the fin-

gerprint image of Fig. 7.13. The most notable regions are the core (near the center)

and the two deltas (below and on either side of the core). Fig. 7.19 illustrates the

results of the curvature calculation. (Compare to [58].) The curvature is displayed

on a mesh of 20 rows by 16 columns. (This mesh size was chosen for presentation

purposes; a denser grid makes the results more difficult to read.) Curvature is not

calculated in poor regions (as defined by the tangent calculations), which explains

the lack of markings in the hole on the right side and in the lower left corner. Each

curvature window consisted of a 3×3 array of tangent vectors from Fig. 7.14. If the

calculated curvature radius is less than 150 pixels (roughly 1/3 the image height),

then the calculation window center is marked with a ‘+’ and a radial line is drawn

to the curvature center, marked with a ‘◦’. If the curvature radius is larger than

150 pixels, then a short line segment is drawn at the calculation window center

in the direction perpendicular to the calculated curvature direction. (Most of the

curvature radii are quite large; if every radial line were drawn then the image would

144

Figure 7.17: Scanning electron microscope image of a membrane. Dark areas are
pores in the membrane.

145

Figure 7.18: Membrane image after two passes of directional filter using 15 row by
11 column tangent window. Thresholding this image gives pore volume fraction in
agreement with results from manual inspection.

146

be a tangle of lines.)

Careful examination of this figure reveals that the regions with the largest

curvature (shortest radial lines) are the deltas and the areas just above and below

the core. This is borne out in the curvature magnitude contour plot of Fig. 7.20.

Actually, there is an implicit assumption in the curvature calculation that the

tangent flow is continuous. This assumption is violated across the fingerprint

deltas, but nonetheless the algorithm returns the desired result: large curvature.

The curvature can be used to locate features in a wide array of images. Fig. 7.21

shows the curvature results for a section of a printed circuited board. The curvature

accurately marks the circular wire pads and the resistor elements. In addition,

the tangent calculation has distinguished the circuit trace boundaries from the

featureless background board.

As a final example, Fig. 7.22 shows curvature for a low contrast radiograph of

a steel part with 4 shallow, oval slots (simulating flaws). Due to the poor contrast,

only 3 of the 4 slots are definitely detectable (the second slot from the left is

detectable mainly due to the presence of the other three slots). High curvature

locates the 3 detectable slots.

7.6 Summary

In this chapter we have presented algorithms for the extraction of tangent directions

and curvatures of level curves of images. The effects of noise on these algorithms

147

Figure 7.19: Fingerprint overlaid with results from curvature calculation. Points
with curvature radius of less than 150 pixels are marked with a ‘+’, and a radial
line is drawn from the point to the calculated curvature center, marked with a ‘◦’.

148

Figure 7.20: Curvature magnitude contours (units: 0.01 × (pixels)−1) overlaid on
the fingerprint image. The high curvature values correctly mark the fingerprint
core in the center of the image and the deltas below on either side.

149

Figure 7.21: Section of a printed circuit board overlaid with calculated curvature.
High curvature locates circular pads and resistor elements.

150

(a)

(b)

Figure 7.22: (a) Radiograph of a steel specimen with 4 oval slots (which simulate
flaws). (b) Curvature overlay. High curvature locates 3 of the 4 slots.

151

were studied under controlled conditions using simulated data and the usefulness

of the tangent and curvature information was shown by examples with several real

images.

The tangent direction is extracted by a least-squares minimization over the

surface normals (calculated for each 2 × 2 pixel neighborhood) in the averaging

window. Even with a signal-to-noise ratio (defined as the ratio of the variance of

the original image to the variance of the noise) as low as 10, a single edge passing

through the center of a 9× 9 window results in a tangent angle calculation having

mean value accurate to within 3◦. The standard deviation of this calculation

is less than 3.5◦, a value that drops to 1.3◦ when the edge is replaced with a

sinusoid passing through a 19 × 19 window. The minimization error from the

tangent calculation can be used to estimate the reliability of the calculated tangent

direction. This error grows with the variance of the calculated tangent direction,

and has a standard deviation < 10% for the larger 19× 19 window.

The usefulness of these calculations were illustrated by using the tangent in-

formation to select orientation sensitive filters for edge enhancement on images

of a fingerprint and of the microstructure of a porous membrane. The contrast

and consistency scores from the tangent calculation also effectively segmented the

fingerprint and a section from a printed circuit board.

Unlike most previous work on this topic, the curvature calculation does not

require a (single) parameterized curve, but works instead directly on the tangent

152

directions across adjacent level curves. The curvature is found by fitting concentric

circles to the tangent directions via least-squares minimization. Accuracy and

reliability were studied by controlled tests with simulated noise. The curvature

information can be used for feature detection and identification, as illustrated by

results showing high curvature locating cores and deltas on a fingerprint, circular

pads and circuit elements of a printed circuit, and slots simulating flaws in a

radiograph of a steel part.

CHAPTER VIII

Feature extraction on printed circuit boards

This chapter and Section 10.1 profiles a feature based method for flaw detection on

printed circuit boards. The material is culled from work done by the author with

Alan Sprague and published in Computer Vision, Graphics, and Image Processing

[1]. In that work an algorithm was developed that performed both a reference

comparison based on extracted features and a separate minimal wire width check.

The wire width check is beyond the scope of this dissertation, and will not be

presented here. The interested reader may refer to [1] for details.

8.1 Method Outline

The reference comparison begins with a digitized image of a printed circuit board.

It is assumed that the image has been previously thresholded into light and dark

pixels representing circuit traces and substrate respectively. A row by row scan

of this binary image is made and the light pixels are grouped together to form a

compact circuit representation we call the segment graph. The segment graph is

153

154

then analyzed to remove extraneous elements, resulting in the reduced segment

graph. A ruled based procedure uses the reduced segment graph to extract feature

points representing wire intersections, ends, and isolated pads. Circuit defects

such as wire breaks, bridges (shorts), and pores inside wires also generate feature

elements. A one-to-one comparison is made between the features extracted from

the board under test to the features extracted from an reference (defect free)

circuit board. (The reference board could be a computerized image generated by

circuit design software.) Any unmatched features, whether on the test board or

the reference, indicate a manufacturing defect on the test board.

8.2 The Segment Graph

The segment graph is the central tool in our extraction of features from the printed

circuit board. It is formed during the row by row scan of the board. Since metal

traces on the board appear as connected groupings of light pixels, any metal trace

present in a row scan displays itself as a connected run of light pixels. If two runs of

light pixels from successive rows overlap, then those runs correspond to connected

metal traces. We say that two runs R(j) and R(j+1) of light pixels from successive

rows j and j + 1 match if R(j) overlaps R(j + 1) but overlaps no other run of

light pixels in row j + 1, and also R(j + 1) overlaps no run of light pixels in row

j other than R(j). A segment is defined to be a maximal collection of matching

runs of light pixels. Refer to Fig. 8.1 (a) for an illustration of these definitions. In

155

Figure 8.1: (a) Fragment of electric circuit; (b) The corresponding segment graph
representation. (From [1])

this figure horizontal lines separate individually numbered segments. Consider for

example segment 4 in the upper left side of the figure. It is a continuous section

of metal which extends down to the level where it splits into two new segments

numbered 5 and 3. The bottom run of light pixels in segment 4 overlaps the top

runs of light pixels in both segment 5 and segment 3. Therefore the bottom run

of light pixels in segment 4 has no matching light pixel run in the succeeding row,

and thus marks one end of segment 4.

The segment graph is a directed graph embodying the relative positions

and connections between the segments. Each segment is a node (vertex) in the

graph. The edges (arcs) of the graph denote segment adjacency, i.e., electrical

conductivity. There is an arc connecting two nodes if the bottom run of light

156

pixels from one of the represented segments overlaps the top run of light pixels

from the other. The arc is directed from the upper segment to the lower one.

(The graph terminology is standard; refer to [69].) For example, refer to node 4 in

Fig. 8.1 (b). This node corresponds to segment 4 in (a). Recall that the bottom

pixel run from segment 4 overlaps the top pixel runs from segments 5 and 3. This

connectivity is incorporated into the segment graph as directed arcs from node 4

to each node 5 and node 3.

8.3 Feature extraction

Included in the data structure realizing the segment graph is the physical locations

(row and column) of each segment top and bottom. This information is needed not

only for feature matching, but also for feature extraction. The first step in feature

extraction is the removal of spurious segments, which we call coastal. A segment

is coastal if it is connected to exactly one other segment and its height (the distance

from the top pixel run to the bottom pixel run) is less than a predetermined value

called the coastal height threshold. (Particular examples of coastal segments

are irregularities along the top and bottom of horizontal wires.) In our work the

coastal height threshold was set to 3 times the minimal allowable wire width.

(The minimal allowable wire width is used by the wire width checking algorithm

in the detection of too narrow wires. The wire width checking algorithm is not

discussed here; refer to [1].) In Fig. 8.1 only segments 10 and 15 are coastal.

157

Coastal segments are repeatedly removed and the segment graph updated to form

the reduced segment graph.

Features are extracted from the reduced segment graph by a rule based pro-

cedure. There are 3 main feature types: ends, bifurcations, and dots. These are

illustrated in Fig. 8.2. The rules for extraction of these features depend upon

segment connectivity and height. (For purposes of feature extraction a segment

is considered short if the distance from the top to bottom row is less than a pre-

determined value. In our work this value was set to 3 times the minimum wire

width.) Feature extraction for short segments depends upon the total number of

connections to that segment. A short segment with no connections receives a “dot”

designation. See for example segment 19 of Fig. 8.1. If a segment is short and has

three connections, it generates a “bifurcation”, as segment 16 in Fig. 8.1. (Note

that segment 15 is a coastal feature and so is not present in the reduced segment

graph.) On the other hand, feature extraction for tall (i.e., not short) segments

depends on the number connections at each end (top or bottom). If one end of a

tall feature has no connections, then an “end” type feature is placed at that end.

See for example the bottom of segment 18. The complete set of rules for feature

extraction is given in Fig. 8.3.

Defects on the printed circuit board will introduce, modify, or delete features

as compared to the test board. Fig. 8.4 illustrates some possibilities. A break in a

wire trace introduces two ends (lower right corner), while an overetched circuit pad

158

Figure 8.2: Printed circuit board feature definitions. (From [1].)

number of feature type
connections and number

0 1 dot
1 1 end

k (k ≥ 2) k − 2 bifurcations

number of feature type
connections and number
at this end at this end

0 1 end
k (k ≥ 1) k − 1 bifurcations

(a) (b)

Figure 8.3: Feature extraction rules for short segments (a) and tall segments (b).
(After [1].)

159

Figure 8.4: Feature point encoding of printed circuit board defects. (From [1].)

can change an end type feature to a bifurcation (upper left corner). The reader

may entertain other examples as well. Fig. 8.5 shows the features extracted from

the circuit of Fig. 8.1, including two false ends caused by a break and two false

bifurcations caused by a pore in the leftmost wire trace.

8.4 Comments

The features extracted using the method described above can be matched against a

reference set for the determination of defects. An algorithm for such a comparison

is detailed in Section 10.1, including sample results using features provided by

the extraction method of this chapter. It is, however, worthwhile to note some

160

Figure 8.5: Feature points extracted from circuit of Fig. 8.1. (From [1].)

shortcomings of the feature extraction method at this time.

Please refer first to the metalization patterns of Fig. 8.6. Here we see two

electrically different patterns which are both encoded as four end type features.

Since the extracted feature set is the same, the matching algorithm cannot detect

any difference between them, and the fault will go undetected. To detect such

(presumably unlikely) occurrences, the algorithm would need to be modified to

include component information along with the feature type. (Component here

refers to electrically or graph theoretically connected material.)

There is also a difficulty with the extraction of features at X-shaped inter-

sections. The above algorithm extracts such an occurrence as two bifurcations.

However the matching algorithm requires some minimal spacing between feature

points on the reference board. To handle this difficulty it is necessary for the

161

Figure 8.6: Two metal trace patterns that are electrically distinct but which gen-
erate the same feature points. (From [1].)

extraction program to group together such bifurcation pairs as a single feature

element.

A final point to note is that the matching algorithm requires special “alignment”

features to place the test board in proper position with respect to the reference

board. These alignment points presumably have a topology not found elsewhere

on the board. The relaxation of this requirement is discussed in Section 10.1.

CHAPTER IX

Feature extraction from local image topology in

fingerprints

9.1 Overview

In this section we give an overview of the processing that we perform. We then note

some consequences of the method outlined, and some complications. Following

that is a detailed account of the minutiae extraction process with references to

subroutines.

A fingerprint is digitized as an image of 480 rows and 512 columns. Each pixel

has one of 256 intensity levels. The objective of processing is to extract minutiae

on the fingerprint. To do this we do not process the entire fingerprint at once;

rather, we process one much smaller region, called a ‘subregion’, at a time. This

is done because it is far easier to extract minutiae on a region in which all ridges

(and all valleys) flow left and right, than on a region where the direction of flow is

highly variable.

To extract minutiae on a subregion we perform the following processing steps.

162

163

1. Compute the average flow direction in the subregion. Flow is defined as

the direction of the ridge tangent vector. The method for extraction of this

information is detailed in Chapter VII.

2. Introduce a superwindow containing the subregion. The superwindow is a

rectangle, whose boundaries are parallel and perpendicular to the direction

of flow. The subregion is to be entirely within the superwindow.

3. Rotate the superwindow so that flow within it is horizontal (and its bound-

aries are horizontal and vertical).

4. Extract minutiae on the superwindow.

5. Extract local topology information (average ridge width and curvature).

Before giving a more detailed exposition, we note the following consequences and

complications on the foregoing description.

1. Since decisions regarding minutiae near the edge of a superwindow are unre-

liable, some decisions near the edge of a subregion are likely to be unreliable.

Therefore, subregions are designed to overlap so that minutiae in the over-

lap region (i.e., minutiae near the subregion edge) should be extracted in

multiple subregions.

2. Flow is computed for the entire image before any other processing is started.

This cuts down on redundant computation, since superwindows overlap greatly.

164

3. It may be that the direction of flow in one part of a subregion is much different

than the direction of flow in another part of it. To compensate for this

the program will automatically make the subregion (and the superwindow)

smaller in the troublesome area, or process the subregion several times, with

the flow direction declared to be different each time; the idea is that in each

part of the subregion the declared flow will be roughly correct one of the

times.

9.2 The feature extraction window and superwindow

The image is divided into a grid of overlapping subregions. The grid of subregions

is pictured in Fig. 9.1. In regions where the flow information is highly variable (e.g.

singular points such as the core and delta) the subregion grid is overlaid by a finer

grid approximately 1/4 the size, i.e., a subregion containing highly variable flow

is replaced by four smaller regions. These smaller regions are called reduced

subregions. Ideally, in each of these reduced subregions the flow variability will

be small. In reality this is often not the case. When the variability is still high

the reduced subregion is processed several times, with the flow direction declared

different each time.

To process a subregion, a slightly larger region, called a superwindow, is uti-

lized. For a given subregion (from the subregion grid) the corresponding superwin-

dow is defined by two conditions: (1) the edges of the superwindow are parallel and

165

Figure 9.1: Schematic illustration of the subregion grid. The edges of the subre-
gions are offset to aid visibility.

166

perpendicular to the flow in the subregion, and (2) a minimum border distance

from any point in the subregion to an edge of the superwindow is maintained.

A border is required so that at any point in the subregion, where for example

we are examining a possible minutia, we will process a neighborhood completely

surrounding the point.

The data in the superwindow region is extracted from the digitized image,

rotated, and stored in a temporary processing array. Of course the pixel values

in the original image are defined only on an integer grid. After rotation the pixel

locations do not in general lie on the same grid. The rotation routine simply

shifts the rotated pixel values to the nearest integer grid location. This allows the

rotation to be swift, but the resulting rotated image has a ragged appearance. The

rotated image is filtered to remove this artifact.

9.3 Flow specific parametric filtering

The rotated image is filtered both for the removal of rotation artifacts and also for

general image enhancement. Three filters are available: a lowpass filter, a weak

filter, and a strong filter.

lowpass filter The lowpass filter is a convolution filter with the following kernel:

1 1 1
1 1 1
1 1 1

This is an omni-directional smoothing filter. This is used when no directional

emphasis is desired.

167

weak filter The weak filter is a 5x1 convolution filter to accomplish horizontal

smoothing. The filter has kernel:

[

1 2 3 2 1
]

Note that this filter is applied to a superwindow after it is rotated, i.e., the

dominant flow direction is horizontal. Thus this filter smooths along each

ridge and along each valley.

strong filter The strong filter has the following 5x5 kernel:

0 −0.5 −0.5 −0.5 0
0 0 0 0 0
1 2 3 2 1
0 0 0 0 0
0 −0.5 −0.5 −0.5 0

In addition to the horizontal smoothing that the weak filter accomplishes, it

also enhances horizontal edges. Therefore it is preferable to the horizontal

filter in situations where contrast is poor. The strong filter tends to produce

more features than the weak filter. Therefore, if the strong filter is applied

and the number of features produced is larger than a set critical value (e.g.,

400), the program will repeat the filtering and segmenting procedures, re-

placing the strong filter by the weak filter.

The filter choice is made automatically, based on the amount of contrast in the

superwindow and on flow deviation, according to the following table:

168

deviation of flow angles
contrast low deviation high deviation
high weak filter lowpass 3x3 filter
low strong filter none

9.4 Feature descriptions and definitions

After filtering the superwindow is segmented (“thresholded”) into black and white

regions. The regions correspond to ridges and valleys (respectively) in the original

print. The segmentation is based on local (relative) grey levels and also the one

dimensional grey level gradient in the vertical direction.

A column by column scan is performed on the binary data, identifying ridges

and valleys by building collections of like colored pixels called features. A feature

is a ridge or valley that is maximal with respect to unique continuation, i.e., a

feature ends at either a ridge ending or ridge bifurcation. See Fig. 9.2.

Each end of each feature is classified as one of the types root, branch, gap, or

edge; the first three are displayed in Fig. 9.3, and the last category merely means

that the end falls off the edge of the superwindow. Note that these definitions are

color independent: a valley (white region) is handled in the exact same manner as

a ridge (dark region).

Note that when a superwindow is thresholded and segmented, typically 100 to

200 segments are generated. The program has space allocated for 480 segments.

If the segment data structure overflows, something is radically wrong with the

169

Figure 9.2: Schematic explanation of feature definition. Feature starts at cross
section A as a branch and ends at cross section B as a root.

Figure 9.3: Schematic showing the definition of feature end classification.

170

quality of the fingerprint in that superwindow. If this occurs, then the region is

considered to be of poor quality and no minutiae are extracted from it.

9.5 Feature selection under noise

9.5.1 Feature preprocessing

After the feature structure is built it is necessary to do some processing before

minutia extraction. In particular, small (false) holes, gaps, branches, and bridges

are removed (refer to are Fig. 9.4). Next the edges of the features are smoothed

and made square.

Figure 9.4: Schematic of false branches, indicated by letters C and D. They are
declared false since they are “short”. One will be removed by program.

171

9.5.2 Minutia classification

The two main types of minutiae are ridge bifurcations and ridge endings. Refer

to Fig. 9.3. If one considers the branch and root to be dark (i.e., a ridge) and

the gap to be light (i.e., a valley), then this pattern represents a ridge bifurcation.

On the other hand, if one considers the gap to be dark and the branch/root to

be light, then it represents a ridge ending. This observation is the basis for our

minutia extraction procedure. Instead of distinguishing between ridge bifurcation

and ridge endings, we look only for gap type endings. We place a minutia at

each gap type end. The code to do this is independent of the gap color. After

minutia placement the gap color can be considered and the distinction between

ridge ending and ridge bifurcation can be made. We have determined, however,

that this is not a useful distinction because it is not stable. If a finger is reprinted

then due to dirt or uneven inking of the finger a branch of a bifurcation can break

off and appear on the new print as a ridge ending (and of course the bifurcation

has disappeared). Likewise, a ridge ending can be falsely joined to a neighboring

ridge and thus appear as a bifurcation. Therefore, we make no distinction between

ridge endings and ridge bifurcations.

Instead of ending versus bifurcation distinction, we make a distinction based

on “minutia direction”. See Fig. 9.5. For each gap define the minutia direction to

be the flow direction oriented to point from the gap into the corresponding root.

Note that unlike the flow direction, which is defined in the range [0,π), the minutia

172

direction lies in the range (-π,π]. In terms of ridge bifurcation and endings this

definition has the following interpretation: Ridge bifurcations take the orientation

that points into the bifurcation, and ridge endings take the orientation that points

away from the ending. Notice that this definition is stable with respect to the

ridge-to-bifurcation and bifurcation-to-ridge mutations discussed above.

9.5.3 Defect classification and identification

Each gap type end in the current subregion is a potential minutia. However, due

to dirt, pores, or breaks in the print or due to artifacts of the segmentation and

processing routines, it may happen that the gap is a defect (i.e., a false minutia).

Defects occur in pairs, most of which can be classified into three main types with

two subdivisions for each type. Refer to Fig. 9.6.

Type 0 defects are illustrated in Fig. 9.6 (a) and (b). The forward type is a false

break in a ridge and the backward type is a hole. Note the marked corresponding

gaps. For the forward type the feature between the gaps has a root type end at

both the left and the right ends. The marked gaps are the gaps for each root.

Thus we consider the gaps to be at the same “level”—hence the classification as

Type 0 (i.e., the difference in “levels” is zero). Likewise for the backward type the

gaps are gap ends at opposite ends of the same feature. Again the same level and

again classified as Type 0.

Fig. 9.6 (c) and (d) show the standard Type 1 defects, forward and backward,

173

Figure 9.5: Schematic showing the definition of minutia direction

174

Figure 9.6: Schematic classification of feature defects. Gap ends are marked by
stars. (a) Type 0, forward. (b) Type 0, backward. (c) Type 1, forward. (d) Type
1, backward. (e) Type 2, forward. (f) Type 2, backward.

175

respectively. Consider the forward type first. Notice that the root for the left hand

gap is immediately below the root for the right hand gap. Thus a difference of one

level and hence the classification as Type 1. This type of defect is characteristic

of a false ridge break followed by a false joining of one end of the break to an

adjoining ridge. Next consider the Type 1 backward defect. Here the feature to

which the left hand gap belongs is immediately below the feature to which the

right hand gap belongs. Again a difference of one level and hence a Type 1 defect.

Compare to Fig. 9.4. This is exactly the false branch type that is one of the false

features that the remove false features() routine attempts to remove. At this

latter stage in processing, however, larger and more complicated defects can be

handled than for which the remove false features() routine is designed. Note

also that for Type 1 defects the corresponding gaps are of opposite colors, whereas

for Type 0 defects they are of the same color. The general rule is that even typed

defects (Type 0, 2, etc.) have corresponding gaps the same color, while odd typed

defects (Type 1, 3, etc.) have corresponding gaps of opposite color.

The rule for the subtype depends on the minutia direction. If the minutia on

the left has direction toward the right (and then the minutia on the right will have

its direction toward the left), then the subtype is forward (one looks in the ‘forward’

direction from either minutia to find the corresponding minutia). The backward

subtype is defined similarly. The general rule for counting levels thus depends on

the subtype. If the subtype is ‘forward’, then look at the corresponding roots for

176

each gap and count the number of features difference straight up or down between

them. For the backward type, work with the feature to which each gap belongs.

Using these rules the reader should have no trouble verifying the classifications for

Fig. 9.6 (e) and (f). Higher order type defects (Type 3, 4, etc.) could be defined

but at the current stage of development only Types 0, 1, and 2 are used.

The assignment of a gap type end into one of the above defect classes depends on

many factors. The corresponding gap must exist and must be fairly close, and also

the neighboring ridge geometry must be appropriate. As an example, consider the

Type 0 forward defect (false break) of Fig. 9.7. The probability depends directly

on the ratio of distance v2 with respect to the sum v1 + v3 and depends inversely

on the distances h1 and v4.

If a gap end is not classified as one of the above defects, then a check is made

to see if the local ridge geometry is appropriate for a true minutia. In particular, a

check is made to see if the features on either side bend together. If the local geom-

etry is inappropriate, the minutia is classified as being in a bad region. Alternately

the minutia is considered to be a true end.

Actually for each gap end a probability is computed for each category (true

end, Type 0 defect, Type 1 defect, Type 2 defect, and bad region), and the gap

end is classified according to the category with highest probability. If the gap is

classified as a true end, then the gap coordinates are stored as a minutia location.

If a gap is classified as a Type 0, 1, or 2 defect, then a corresponding gap has

177

v1 v2 v3v4

 h1

Figure 9.7: Illustration of measurements used by algorithm to define Type 0 for-
ward defect probability.

178

been identified and theoretically the defect may be removed (repaired). Ideally,

therefore, the defect classification routine should be run iteratively to make tenta-

tive classifications and those gaps that have high probability of being of Type 0, 1,

or 2 should be repaired after each step. This iteration has yet to be implemented.

9.6 Feature extraction

The minutiae from all the subregions are collected together in the structure ex-

tracted minutiae. Recall that the subregions are designed to overlap, so minutiae

in the overlap area should be listed more than once. The location can be shifted

somewhat due to inconsistencies in the segmentation routine and due to round off

errors. Thus each minutia in an overlap region is compared to other nearby minu-

tiae to identify repeats. If two minutiae in an overlap region are closer together

than approximately one ridge pair width (defined below) with minutia directions

closer together than 45◦, then the two are identified as one and the location and

minutia direction for the minutia is taken as the average.

It may also happen that a subregion of a good section of the print may by

chance have no minutiae in it. This does not mean that there is no information

to be extracted from the subregion. There is still local topology information such

as flow, curvature, and ridge width. This information is generated on a regularly

spaced mesh called the topology grid. Stored at each mesh point are the angle

and curvature scores (derived straight from the curvature grid), a probability field,

179

and a new field which is the average ridge pair width. This last field is determined

from the feature structure interpretation of the superwindow, and is defined to

be the average width (in rows) of a ridge/valley pair. It was decided to work

with pair widths as opposed to ridge (or valley) width since the latter depends

on ridge/valley thresholding (which at present is not completely reliable). The

probability field is a measure of the reliability of information in that area. It is

based on the curvature uncertainty (the probability is inversely proportional to

curvature/flow uncertainty), but is modified also by the ridge pair width stability.

In particular, if the ridge pair width is found to vary greatly over the small local

region, then it is likely that any information derived from this region is unreliable

(most likely because the region is of poor quality), and so the probability is reduced.

The flow charts for the upper level extraction routines are given in Fig. 9.8

through 9.12.

9.7 Pseudocode for the top several functions of the pro-
gram

The material below assumes the entire fingerprint is to be processed, i.e., fp sp=“f”.

9.7.1 Pseudocode for the main routine

Note that the main routine does nothing but call two routines and take care of some

distracting details. Since our policy in writing pseudocode is to omit distracting

details, our pseudocode for the main routine has only two statements. The major

180

Figure 9.8: System flow chart for fingerprint latent processing.

181

Figure 9.9: Flow chart for mainline of flow correction program.

182

Figure 9.10: Flow chart of mainline for program extract.

183

Figure 9.11: Flow chart of subroutine control extract in program extract.

184

Figure 9.12: Flow chart for subroutine process sp in program extract.

185

detail taken care of in the main routine is the processing of arguments that the user

provided when invoking the program. (See the section on running the extraction

program.)

1. Call control extract() to control all extraction that will be performed.

2. Callwrite minutiae() to write a file of all minutiae found during extraction.

9.7.2 Pseudocode for control sp()

1. Decide whether the subregion will be processed as a single standard sized

subregion, or split into 4 quadrants. The decision is based on flow deviation.

2. For this one subregion, or for the 4 quadrants it was split into in Step 1, and

for each rotational angle at which it must be processed:

(a) Call rotate and fill sp() to define a superwindow around the subre-

gion, download the superwindow from the image, rotate it the selected

amount, and store it in the global array superwindow.

(b) Call fill sp flow() to fill the global array sp flow, which contains flow

values (relative to the selected rotation) in the superwindow.

(c) Filter the superwindow using a strong filter, weak filter, or a low-

pass 3x3 filter (or none at all). The filter is applied by calling fil-

ter superwindow().

186

(d) Call segment sp() to threshold the superwindow. Until thresholding,

each pixel has intensity level between 0 and 255; in the thresholded

image each pixel is either black or white. The result is stored in the

global character array thresh sp (with values B and W).

(e) Call process sp() to clean up the superwindow and extract minutiae

on it.

(f) If a strong filter was used and too many features were created, then go

to 2c for the purpose of trying again, using a weak filter this time.

(g) Call report virtual minutiae to calculate average ridge pair width

and to store topological parameters (curvature, width, and probability)

in the vir min array.

9.7.3 Pseudocode for process sp()

1. Build the segment data structure, to represent the features in the superwin-

dow.

2. Remove small features (by calling remove small features()). All bridges,

all holes, and some small branches are removed. A feature is a bridge if all

of the following are true: (1) both ends are roots, (2) its length is less than

its width, (3) it is shorter than the gaps it abuts, and (4) the direction from

the left gap to the right gap is not too different from the flow direction. A

feature is a hole if both ends are gaps, and it is short or very thin. A feature

187

is a small branch if one end is a branch, the other end is a gap or falls off

the edge of the superwindow, and the feature is small or narrow. A small

branch is removed unless some neighboring feature is a skinnier branch.

3. Smooth edges (by calling smooth features()).

4. Call square feature ends(), to shorten long skinny ends of gap-type fea-

tures.

5. Repeatedly smooth edges (by calling smooth features()). Smoothing is

performed at most 5 times; quit earlier if a call to smooth features()

changes fewer than 10 edges.

6. Extract minutiae (by calling check minutiae()).

CHAPTER X

Image identification through feature matching

This chapter covers feature matching aspects and algorithms developed by the

author in two distinct contexts: defect detection in printed circuit boards and

latent fingerprint identification.

In printed circuit board defect detection features represent wire trace ends and

bifurcations. Defects manifest themselves as new, absent, or modified features.

Morphological variations in the test board relative to the reference board are in-

significant, and the image quality is good, so all differences in observed features

are of importance. This is in stark contrast to latent fingerprint identification.

Here features from a latent print (lifted, for example, from a crime scene) repre-

senting ridge endings and bifurcations need to be compared against a large library

of features from inked prints for identity determination. Generally the features

from the latent print represent only a tiny fraction of the total features found on

the inked print. Dirt and smearing and low quality samples in general introduce

false features and obscure true ones. Moreover, the elasticity of skin can introduce

188

189

significant morphological changes to a print.

Feature extraction methods for these two situations were described in previous

chapters. The present chapter is a natural continuation and conclusion to that

work, presenting not only matching algorithms but also results that depend not

only upon the matching algorithms but through them upon the quality of the

feature extractions. The simpler printed circuit board problem, considered first,

is from a coauthored paper [1], where the feature matching material presented in

this chapter was contributed by this author.

10.1 Defect identification on printed circuit boards

After extracting the feature points from the board under test, a comparison be-

tween the test board features and the reference board features is necessary. This

comparison requires two phases: alignment and matching.

10.1.1 Alignment

Alignment marks are normally placed far apart from each other on a board, so as

to minimize alignment errors. A two dimensional coordinate system is introduced

to the reference board such that the first alignment point of the reference board

has coordinates (0, 0) and the second alignment point lies along the positive x-

axis. The board under test has a coordinate system introduced implicitly from

the feature extraction process. The goal of the alignment phase is to convert the

implicit coordinate system of the test board into the coordinate system that has

190

been imposed on the reference board.

Suppose the test board hasN features at locations (x1, y1), (x2, y2), . . . , (xN , yN),

with (x1, y1) the coordinates of the first alignment point and (x2, y2) the coordi-

nates of the second alignment point. These coordinates are translated to bring the

first alignment point to the origin and then are rotated about the origin to bring

the second alignment point to the positive x-axis. The equations to do this are

x′i = xi − x1

y′i = yi − y1 i = 1, 2, . . . , N

and

x′′i = (x′ix
′
2 + y′iy

′
2)/(x

′
2x
′
2 + y′2y

′
2)
1/2

y′′i = (y′ix
′
2 − x′iy

′
2)/(x

′
2x
′
2 + y′2y

′
2)
1/2 i = 1, 2, . . . , N,

where (x′1, y
′
1), . . . (x

′
N , y

′
N) are intermediate results and (x′′1, y

′′
1), . . . , (x

′′
N , y

′′
N) are

the final results. Notice that (x′′1, y
′′
1) = (0, 0) and that x′′2 > 0 with y′′2 = 0.

10.1.2 Matching

The goal of the matching phase is to determine if the features of the board under

test correspond in a one-to-one fashion with the features from the reference board.

Let (a1, a2) be the coordinates of a feature from the reference board, and let

(b1, b2) be the coordinates of a feature from the board under test. These two

features are said to match if they are the same type of feature and if the distance

191

Use alignment points of test and reference boards to align boards.
For each feature point A of test board:

For each unmatched feature point B of reference board:
If A and B are the same type and distance between A and B is
less than fitting tolerance ε:

begin
Match A and B.
Break (i.e., proceed to next feature point on test board).

end

Figure 10.1: Algorithm for comparison of test board features against reference
board.

between them is less than a given fitting tolerance ε (i.e.,
√

(a1 − b1)2 + (a2 − b2)2 <

ε).

Now for each feature on the test board an attempt is made to find a match

with a feature of the same type from the reference board. If such a match can be

made, and if the feature from the reference board has not been previously matched

to another feature from the same test board, then both the feature from the test

board and the feature from the reference board are recorded as matched. Note

that this procedure assures that no two features of the test board get matched to

one feature of the reference board or vice versa. Pseudo code for this algorithm is

displayed in Fig. 10.1.

It is important that each feature from the test board not have the opportunity

to match more than one feature from the reference board. If this condition is

violated then incorrect pairings may result. For example, refer to Fig. 10.2. In

192

(a) Incorrect Match (b) Correct Match

P1 P2

Q1 Q2

P1 P2

Q1 Q2

Figure 10.2: Matching of reference features P1, P2 with test board features Q1, Q2.

this example P1, P2 are features from the reference board, and Q1, Q2 are features

from the test board. Feature Q2 has the option of matching to either P1 or P2. If

it were decided to match Q2 to P1, as on the left, then P2 and Q1 would be left

unmatched. However, if it were decided to match Q2 to P2, as on the right, then

all the points get matched.

This problem occurs when the fitting tolerance ε is too large. To avoid this

difficulty, ε should be chosen smaller than half the minimum distance between pairs

of points on the reference board. If this is done then it is impossible for a point

from the test board to be closer than ε to two points on the reference board. Note

that this condition depends only on the location of features on the reference board

and is independent of events on the board under test.

Another aspect of the matching algorithm is the procedure by which prospective

193

candidates for matching are brought together. That is, given a feature point from

the board under test, how does one locate a feature point from the reference board

to match with it? The simplest method is to check against every feature point

of the reference board. But this procedure can be very time consuming. For

example, suppose the reference board and the test board have 1000 feature points

each. Then for each feature point from the test board, 1000 comparisons must be

made. Hence the total number of comparisons for the whole test board is 1,000,000

comparisons.

A better approach is to divide the reference board into rectangular regions as

indicated in Fig. 10.3. For each subregion a list is made of the feature points of

the reference board that lie in that subregion. Then, given a feature from the test

board, one determines which subregions are close enough to that point so as to

possibly contain a match candidate. Hence, only these few subregions, each with

a very short list of features, need to be checked for matches (the actual number of

subregions that must be checked depends on the size of the regions, the location

of the test feature point with respect to the subregion boundaries, and the fitting

tolerance). Under ideal conditions each subregion will contain on the average about

one reference feature point, so the number of comparisons can be shaved to close

to the number of test feature points. For instance, in the previous example with

1000 feature points on both boards, the number of comparisons may be on the

order of only several thousand comparisons. This represents a considerable time

194

Figure 10.3: Alternative approach to feature point organization for comparison,
using 2-dimensional grid cells.

savings. Other more sophisticated data structures and algorithms for this problem

are described in [69, Chp. 5].

10.1.3 Output

The output from the comparison routine is a list of features missing from the test

board (features unmatched from the reference board) and a list of false features

on the test board (features unmatched from the test board). From this output it

is possible to identify the source of failure.

10.1.4 Generalizations of Comparison Algorithm

The above comparison algorithm can be generalized to meet requirements arising

from other applications. For example, consider an application in which alignment

195

points could not be easily introduced to the objects that are to be compared.

In this environment the alignment phase of the comparison is considerably more

difficult.

One solution is to arbitrarily choose a pair of features from the reference board

to be used as the alignment points. Then an attempt is made to find a pair of

features on the test board that are the same type and the same (approximate)

distance apart as the distinguished pair from the reference board. Suppose such

a pair can be found. Then treat this pair as alignment points and go through

the alignment/matching procedure. Repeat for each candidate feature pair from

the test board, and choose the results with the fewest errors as the outcome of

the comparison. This procedure may also be repeated by consecutively choosing

several pairs of features from the reference board to be used as alignment points,

and attempting to compare the test board with each.

Another generalization of the comparison algorithm is to step away from the

rigid condition of requiring one-to-one correspondence. For printed circuit boards,

if the features from the test board do not match exactly with those from the

reference board, then the test board is faulty. But in other applications a partial

match may be satisfactory. In these cases it would be necessary to judge the quality

of a partial match.

196

(a) (b)

Figure 10.4: (a) Section of reference board with solid circles marking extracted fea-
tures. (b) Section of test board with crosses marking extracted features, including
defects.

10.1.5 Experimental results

In our experimental system images are obtained using a standard video camera.

The video signal is digitized using a Data Translation IBM-AT compatible arith-

metic frame grabber. This board is also used for data transfer and data repre-

sentation on a monitor. The digitizing and processing boards are housed in a 33

MHz Intel 386 based computer with numeric coprocessor. The algorithm was re-

alized using the C programming language and compiled under version 5.0 of the

Microsoft compiler. Processing for the image displayed in Fig. 10.4—determining

feature points and finding design rule errors—takes slightly under 13 seconds. This

image has 190,000 pixels, and occupies just over 3 square inches on the PCB.

197

Figure 10.5: Unmatched feature points (from both boards) and wire width viola-
tions (marked by arrows A) overlaid on the test board image.

The output of the comparison algorithm is a list of those features on each

board that were left unmatched. Fig. 10.5 displays this output overlaid on an

image of the test board together with design-rule violations marked. In Fig. 10.5

the crosses represent unmatched features from the test board, and the solid circle

is an unmatched feature from the reference board. The empty circles are design

rule errors. The actual representation on the computer screen is colorized and may

be easily interpreted by the operator.

10.2 Latent fingerprint identification

For the purposes of matching, not all the information in a fingerprint image is

needed. So a subset of this information, consisting of minutiae and topological

198

data, is extracted. This extracted information is what is referred to in this paper

as ‘fingerprint data’. We are interested in two such sets of data: the ‘latent print

data’ and the ‘file print data’. The latent print is the unknown print (coming for

example from a crime scene), and the file print is one from some library of known

prints, to which we want to compare (match) the latent to determine if they are

from the same individual.

For reasons of efficiency the match is broken down into two stages. For each

file print a set of possible orientations for the latent (relative to the file print) are

considered. Each orientation is subjected to a screening test that has as its purpose

the quick exclusion of obviously incompatible prints. If an orientation passes the

screening test, then it is subjected to a more thorough examination.

10.2.1 Stage 1: Screening match

In the first stage of the matching algorithm, one minutia point is chosen from the

latent print and is designated as ‘the match point’. Then a subset of the latent in

the neighborhood of the match point is used to form a ‘screening latent’. The size

of this screening set is currently 8 minutiae. Fix a point in the file print; let us

call it the candidate point. The screening latent is translated so that the match

point overlaps the candidate point, and then the screening latent is rotated so that

the minutia direction of the match point is the same as the minutia direction of

the candidate point. Consider the screening latent to be ‘overlaid’ on top of the

199

file print. If the two prints are from the same individual, and if this is the proper

relative orientation, then the minutiae from the screening latent should overlap

minutiae from the file print. If half of the points in the screening latent “overlap”

points from the file print then we have a candidate orientation (for the latent print

relative to the file print) and the match passes to the second stage (the second

stage of the match will be described below). This screening is done for all points

in the file print, i.e., EACH point in the file print generates a candidate orientation.

Each candidate orientation that passes the screening gets sent to the second stage

match. If no point in the file print generates a candidate orientation that passes

the screening test, then the file print is decided to not match the latent. Note that

passing the screening test is a necessary condition for the latent to be considered

to match the file print, but it is not sufficient. Also it is possible that a single file

print will generate several candidate orientations that pass the screening test.

Before we describe the second stage of the match let us define what is meant

by minutiae “overlapping”. Of course some deformation and minutiae misplace-

ment is inevitable. As a result the latent points cannot be expected to line up

exactly with minutiae from the file print. For the first stage match two tolerance

parameters, ε1 (set to 26 pixels, i.e., approximately 2.5 ridge pair widths) and θ1

(set to π/6), are used to allow for this distortion. Let L be a minutia point from

the rotated/translated screening latent print, and let F be a minutia point from

the file print. Note that a minutia point consists of a location and a minutia angle.

200

In order for L and F to be considered as overlapped, it is required that the dis-

tance between their locations be less than ε1 and that the difference between their

minutia angles be less than θ1. Otherwise the minutiae L and F are considered as

non-overlapping.

10.2.2 Stage 2: Detailed comparison

Note that the screening match described above uses only minutiae data. In the

second match stage we use both minutiae and topological information. The total

match score (measure of how closely the file and latent correspond) is broken down

into two components: the minutiae score and the topological score.

10.2.2.1 Minutiae score

The minutiae scoring of the second stage of the matching is conceptually similar

to the screening test of the first stage. The main difference in the second stage

is that now the comparison is made using the entire latent minutia set instead of

the smaller screening latent set. The second difference is more subtle. Instead

of merely counting “overlapping” points, in the second stage we determine an

“overlap score”.

If a minutia from the rotated/translated latent has the exact same location and

minutia angle as a point from the file print, then the overlap score is maximized.

As the distance between the locations and the difference in minutia angles grows,

201

the overlap score decays until it reaches zero. The base tolerance parameters for

this scoring, which where determined experimentally, are ε2 (set to 16 pixels) and

θ2 (set to π/16).

Given a minutia point from the latent print, a minutia point from the file

point is considered to be a candidate match to the latent minutia if the distance,

d between the latent point and the file point is less than ε2 and the difference

between their directions, denoted by θδ, is less than θ2. The score given to such a

candidate match is

Match score =
6

5

(

5ε22
ε22 + 4d2

− 1

)

∗ PL ∗ PF +
(

0.5− 2θ2δ
)

, (10.1)

where PL and PF are the minutia probabilities for the latent minutia and the file

minutia, respectively. There is an additional bonus score of 2 ∗ PL ∗ PF added if

d < 7 pixels and θδ < π/24. The overlap score for a latent point is the highest

match score achieved across all candidate matches from the file print.

The overlap score is computed for each latent minutia point and the results are

summed. This total is the minutia match score for the given orientation.

In addition to the above (positive) constituent of the overlap score there are

also possible (negative) penalties. In particular, although we expect many minutia

points in the file print to be missing from the latent print (the latent print after

all is in general only a small piece of the file print and is also likely to be very

noisy), the converse is less likely. Therefore, a penalty of 8∗(PL−0.5) (valid latent

202

minutia have PL > 0.5) is assessed for each minutia point in the latent that has

no minutia partner in the file print that it “overlaps” (i.e., for which the above

positive constituent of the overlap score is non-zero). Also, recall that the feature

extraction algorithm yields ridge flow direction throughout the file print. In the

case of unmatched minutia the match scored is adjusted by 0.5 − 2 ∗ θ2δ , where

θδ is the difference (in radians) between the latent minutia direction and the flow

direction of the corresponding location on the file print. Note that this supplement

may be either positive or negative, depending on whether or not the two directions

agree.

10.2.2.2 Topology score

The main factors in the topology score are curvature, curvature direction, and ridge

width information which are passed through the topology grid. This information

can be plotted as surfaces with respect to x–y coordinate position (i.e., curvature,

angle, and width values plotted against position). Examples of such surfaces for a

sample file print are shown in Fig. 10.6 through 10.8. For a given fingerprint such

surfaces are referred to as the print’s topology surfaces.

If the latent and file print are registrations from the same finger then we ex-

pect the corresponding topology surfaces to be similar. In particular the peaks

and valleys should coincide. Of course they will not be exactly identical, so some

measure of closeness is needed. As a start we considered the absolute value of

203

Figure 10.6: File curvature surface.

204

Figure 10.7: File curvature direction surface.

205

Figure 10.8: File ridge width surface.

206

the difference between the curvature/direction/width scores at each point of the

overlapped topology grids. Clearly, the smaller the differences the better, but with

what weight? To answer this question we compared the distributions of these

differences for true matches against those for false (non-) matches. The distri-

butions are shown in Fig. 10.9 through 10.11. We discovered that the curvature

differences depended heavily on the absolute value of the latent curvature, so the

curvature distribution is plotted against two variables—the curvature difference

and the latent curvature value.

Consider the range on the direction distribution graph where the true match

distribution is above the false match distribution (approximately ∆θ between 0

and 0.25). A difference in this range is more likely to result from a true match

than from a false match, so each point of the topology grid that yields a difference

in this range should contribute positively to the topology match score. Conversely,

a difference outside of this range is more likely to result from a false match than

a true match, so such a difference should contribute negatively to the topology

match score. Graphs of the match scoring functions for each component are shown

in Fig. 10.12 through 10.14.

10.2.2.3 Combining the scores

In addition to the minutia score and the topology score two overlap scores are

calculated. These overlap scores are a measure of what percentage of the latent

207

Figure 10.9: Distribution density functions of curvature angle difference for true
match (solid) and for false match (dashed).

208

Figure 10.10: Distribution density functions of ridge width difference for true
match (solid) and for false match (dashed).

209

Figure 10.11: Distribution density functions of curvature difference for true
match (solid) and for false match (dashed) for latent curvature cl in the range
[0.008, 0.012).

210

Figure 10.12: Curvature angle difference scoring function.

211

Figure 10.13: Width difference scoring function.

212

Figure 10.14: Curvature scoring function as a function of curvature difference (∆c)
and latent curvature value (cl).

213

overlaps the file print. We discovered in the course of our investigation that due

to penalties in the minutia and topology scores that a relatively good score could

often be obtained by positioning the latent on the file print such that most of the

latent was off the edge of the file print. To counter this effect we calculate this

percentage and multiply against the topology score. This score is referred to as the

TCWR (Theta-Curvature-Width-Ratio) score. This is then multiplied against the

total minutia score (the positive minutia score minus the minutia penalty score).

This is the match orientation score.

The match second stage is carried out for each candidate orientation that passes

the first stage screening. Each candidate orientation generates a match score. The

largest match score is considered to be THE match score for the file print. If the

latent print and the file print belong to the same individual and finger, then the

match score will be high, and if the two prints are from different individuals (or

fingers) then the score should be low.

The above algorithm is tolerant to the introduction or deletion of minutiae, as

long as the base match point is not affected, i.e., the match point on the latent

must be true minutia, and it must also be present in the file print minutia set. To

remove this dependency several points from the latent should be chosen as match

points, and the above algorithm run for each. Moreover, as will be seen in the

results section, true matches usually have high scores for many base match points

– a property not shared by false matches. Thus scores from different base match

214

points can be accumulated and used for true match/false match discrimination.

10.2.3 Deformations in fingerprints

One chief difficulty in automated fingerprint matching is deformation of the print

due to the elastic property of skin. This causes the distances between the print

minutia to be stretched and/or reduced.

The tolerance parameters used in the minutia score are global in nature—the

expected relative distortion between points close together (on one print) is no

different than the expected distortion between points far apart. This is too gross

a simplification. The topological features are more resistant to deformation, so we

are not totally dependent on the minutia score. We can also make the minutia score

more robust by breaking the latent into local regions (plates) and performing local

matches where we can better control the tolerance parameters. This is a solution

that we have partially implemented but have not yet fully studied.

Another way to increase the robustness of the match program is to remove the

restriction that the rotated/translated match point “line up” exactly with a point

of the file print. Recall that this is how candidate orientations are generated. By

allowing in addition small translations and rotations away from exact “line ups,”

match scores can be made less sensitive to deformations. Currently we optimize

the total score against small (less than 15 degrees) rotations. Optimizing against

small translations may also be helpful, but is more difficult and we have not yet

215

attempted this.

10.2.4 Speed of fingerprint matching

Of course the above refinements will increase the time required to compare print

minutia sets. Generally it is desired to compare a large collection of file prints to

the given latent print, so small match times are required. Current match times are

given later in this report along with sample match scores.

One method of decreasing match times is to increase the number of processors

working on the task. Currently we have four transputers running concurrently, and

increasing this number by a factor of ten or hundred is imaginable. This would

decrease match times by close to a corresponding factor. This is a partial solution,

which will probably be implemented to some extent. The chief difficulty with this

approach is one of communication. Each transputer can directly access only four

others, so some ‘bucket brigade’ method of data communication would have to be

implemented.

Another way to increase the speed of the algorithm is to make the minutiae

scoring more efficient. The main obstacle in the minutiae scoring is finding those

points in the file print that are close to a given location (the location of a point

from the rotated/translated latent). Points in a fingerprint have coordinates in

2-space, and storing this information in a manner conducive to an efficient search

is difficult. In the original implementation of this algorithm, all minutiae points

216

in the file print were compared to each point in the latent to determine if any

were close. However, in the current implementation, the 512x512 pixel array is

broken down into a 52x52 ‘superpixel’ array. The search is then done in two steps:

first find the relevant superpixels, and then search only this smaller area. This

improvement decreased comparison times by a factor of ten. Note that the local

topology information (curvature, flow direction, and ridge width) are on a well

defined mesh so that the location of each point is known a priori, so no such

problem exists.

It is clear that the second stage of the matching algorithm is more costly time-

wise than the screening (first) stage. This is, of course, the purpose of the screening

stage. By reducing the number of candidate orientations the speed was increased

by a factor of 4 over similar matches without the screening stage. Currently the

screening stage uses only minutia position information. If topology information is

included in this screening, then it may be possible to increase the speed even more.

10.2.5 Matching results

Results of latent against a 70 card (700 print) library match are collected in Ta-

bles 10.1 through 10.5. Consider for example Table 10.1. The original latent image

(LCP10) is shown in Fig. 10.15. Five base points were chosen from this latent, and

the results for each base point against three different file prints is shown. Fig. 10.16

is the (true) matching file print (MAQ1). Its scores are shown in the first column

217

of the table. The scores in the first column from left to right are (1) Total (com-

bined) match score, (2) Minutia score, and (3) the topology/overlap ratio score

TCWR. The total score is computed via Total = (Min)(TCWR) with negative

scores truncated to zero. The average for all 6 chosen match base points is shown

in the final row. The other two columns are score results for two false matches.

These false match files represent the best scores among the non-matches.

Refer next to Table 10.2. If you refer to the row corresponding to latent base

point [237, 293] you will see that for this particular point the false match against

file print MAK3 has the best total score. However, if one considers the average

across all six base points then MAP6 is the clear (and true) favorite. A similar

comments hold for Tables 10.3 and 10.4.

Finally refer to Table 10.5. This is an example of a latent that we were unable

to match. Notice however that all the scores against this latent are low. Thus one

is not likely to mistake one of the false matches for being a true match. There will

always be some latents of such poor quality that they cannot be matched (even

by a human fingerprint expert). The results listed here are only for latent prints

that we received from the Columbus Police Department, which are of much poorer

quality (and representative of actual latents) than ones that we had produced

ourselves. Against the high quality (clean and relatively deformation free) latent

that we had produced the algorithm selects the true matches easily.

218

Figure 10.15: Sample latent print LCP10.

Table 10.1: Matching results: file print MAQ1, latent LCP10.

File print MAQ1 DBB1 KAL7
Status True match False match False match

Score Total Min TCWR Total Min TCWR Total Min TCWR
Basepoint
[225, 244] 400 20 20 0 0
[245, 265] 410 20 20 5.3 1 5.3 0
[317, 328] 29 2 14 0 0
[316, 359] 96 5 19 0 0
[282, 394] 0 0 0
[303, 285] 180 10 18 0 19 6 3.1
Average 190 0.88 3.2

219

Figure 10.16: Sample file print MAQ1.

Table 10.2: Matching results: file print MAP6, latent LCP13.

File print MAP6CLN MAK3 KAC7
Status True match False match False match

Score Total Min TCWR Total Min TCWR Total Min TCWR
Basepoint
[206, 346] 110 21 5.3 37 4 9.4 0
[285, 364] 160 23 6.8 0 0
[308, 295] 99 17 5.8 21 14 1.5 71 8 8.9
[237, 293] 42 8 5.3 55 6 9.1 0
[237, 266] 130 23 5.8 87 10 8.7 2 1 2.0
[288, 273] 130 23 5.8 89 10 8.9 100 12 8.7
Average 110 48 30

220

Table 10.3: Matching results: file print MAQ1, latent LCP14.

File print MAQ1 DAZ1
Status True match False match

Score Total Min TCWR Total Min TCWR
Basepoint
[240, 335] 68 7 9.7 0
[202, 368] 110 11 9.9 36 6 6.1
[239, 421] 120 12 9.8 0
[241, 365] 0 0
[266, 323] 0 0
[255, 383] 110 10 11 36 6 6.0
Average 67 12

Table 10.4: Matching results: file print MAQ6, latent LCP9.

File print MAQ6 DBE9
Status True match False match

Score Total Min TCWR Total Min TCWR
Basepoint
[224, 223] 3 3 0.97 27 13 2.1
[297, 355] 120 7 17 5.8 2 2.9
[177, 329] 120 7 17 0
[309, 279] 150 9 16 0
[162, 281] 190 11 17 0
[256, 302] 0 0
Average 96 9.5

Table 10.5: Matching results: file print DAB1, latent LCP8.

File print dab1 dax3 daa1
Status True match False match False match

Score Total Min TCWR Total Min TCWR Total Min TCWR
Basepoint
[216, 307] 0 0 0
[245, 355] 0 0 23 9 2.7
[202, 381] 0 0 0
[257, 395] 0 16 4 4.1 0
[297, 355] 0 0 0
[288, 311] 8.0 6 1.3 50 13 3.9 10 3 3.2
Average 1.3 11.0 9.7

CHAPTER XI

Summary to Part II

Part II of this dissertation deals with feature extraction and identification on a

variety of images, including examples on radiographs and membrane images from

a scanning electron microscope. In particular, however, this part studies in detail

defect detection on printed circuit boards and latent fingerprint identification.

A first step in this work is a study of preprocessing methods for image en-

hancement and topological detail extraction from digital images. The culmination

of our work in this area was an original method for the extraction of flow and

curvature information by applying the methods of least squares minimization to

level curves of the image. The usefulness of this technique was shown via its use

for orientation specific filtering and edge detection. In fact, this work has been

accepted for publication [70].

With regards to feature extraction and identification, we first considered de-

fect detection on printed circuit boards. The presentation in this dissertation was

culled from some work this author did with Alan Sprague [1]. This work devel-

221

222

oped a reference comparison approach to defect detection that differs from existing

algorithms in that it does not rely on computational expensive morphological trans-

formations (e.g., edge erosion and/or dilation). This algorithm was implemented

on an IBM PC based platform by Prof. Sprague and this author, and results of

that implementation are included here.

This dissertation also presents new ideas in latent fingerprint identification.

Existing commercial systems are expensive, proprietary, and in general do not

perform satisfactorily on latent fingerprints. Our approach uses the flow and cur-

vature information available from our previous work to generate a sophisticated

feature segment structure from which fingerprint minutiae are extracted. Of spe-

cial interest here is an original classification system of structure defects in finger-

print ridges. The minutiae extraction results compare favorably with those from

commercial products. Next a complex feature matching algorithm is developed

that matches not only fingerprint minutiae, which are sensitive to morphological

changes in the finger caused by skin elasticity, but also performs a complex evalua-

tion/comparison of the flow, curvature, and ridge width surfaces of the latent and

comparison fingerprint. This provides an accurate identification method which is

illustrated by results on a library of 700 prints.

CHAPTER XII

Summary and future work

This dissertation studies and presents new results in computer aided tomography

and feature detection and recognition. These are areas of increasing importance

in nondestructive evaluation. Part I deals with radiographic and tomographic im-

ages. Included here are an original radiograph simulation technique and several

new developments in limited angle tomography. In particular a method of analytic

continuation, suggested in a short mathematical paper by Palamdov and Denisjuk

[4], is implemented. To the best of our knowledge this is the first actual realiza-

tion of this approach, which required some novel solutions to overcome numerical

instabilities.

Also studied is the use of a priori information in limited angle reconstructions.

Due to inherent inflexibilities in Fourier transform methods (including the analytic

continuation method just mentioned), a priori information is handled with an iter-

ative (also known as algebraic) reconstruction method. To allow rapid convergence

and still guarantee convergence with experimental data we introduce to the itera-

223

224

tion a relaxation parameter which decays geometrically to zero. We also provide

quantitative results on experimental data showing the importance of proper order-

ing of the projection data and selection of the initial iterate. Also a new result is

given showing how proper use of density restrictions (i.e., disallowing densities less

than 0 or bigger than some predetermined maximum) can prevent divergence on

long iterate reconstructions.

A natural extension of the tomography work would be methods for automatic

detection of flaws (or other features) in radiographs and tomographic reconstruc-

tions. Our research funding, however, was toward different but parallel problems:

automated feature recognition and identification in planar images, chiefly printed

circuit boards and fingerprints. This is the material comprising Part II. As first

step in this area we study preprocessing methods for image enhancement and topo-

logical detail extraction from digital images. The culmination of our work in this

area was an original method for the extraction of flow and curvature information

by applying the methods of least squares minimization to level curves of the im-

age. The usefulness of this technique was shown via its use for orientation specific

filtering and edge detection, including an examples on a radiographic images. This

work has been accepted for publication [70].

Identification via feature based methods has applications in many areas. We

consider feature extraction and identification on images of printed circuit boards

(for defect detection) [1] and images of fingerprints (for latent fingerprint iden-

225

tification). The work on printed circuit board images features the development

of an original reference comparison technique for defect detection that does not

require computationally expensive morphological transformations (e.g., edge ero-

sion and/or dilation). Fingerprint images, though superficially similar to images

of printed circuit boards, present many new problems. Feature extraction is com-

plicated by the presence of structural noise in fingerprint ridges, while latent iden-

tification is hampered by morphological changes resulting from skin elasticity. To

overcome these problems an original ridge structural defect classification method

and a complex comparison scheme are developed, the latter making extensive use

of flow and curvature information extracted using the techniques developed in the

first chapter of Part II.

There are several areas of future work which can be explored. The numerical

stability of the analytic continuation method of Section 4.1 could possibly be im-

proved by a reformulation of the Cauchy integral from which it stems or perhaps

some other theoretical considerations. The quantitative iterative reconstruction

results should be checked against more experimental data, and the use of den-

sity restrictions to control divergence should have some theoretical underpinnings.

The fingerprint extraction algorithm could use the defect classification method to

not only identify defects but to also correct them. In this matter the procedure

could be made iterative, with each iteration correcting more defects until only true

features remain. For this purpose and also for latent feature comparisons a de-

226

tailed study of the effects of pressure and skin elasticity on fingerprint registration

would be invaluable. Moreover, the feature extraction and identification methods

presented here may be adapted for the purpose of automated defect detection on

radiographs and tomographs.

Appendix A

Radiograph simulation program details

A.1 Base element attenuation subroutines

A wide variety of objects can be constructed from the 6 base types and cut-planes,

especially when one realizes that in addition to specifying the orientation and loca-

tion of each element, one also specifies the density of the object. One may specify

a negative density, which effectively performs object subtraction. For example, a

hollow pipe can be formed from two concentric cylinders, the inner cylinder having

density equal to the negative of the first.

Even though it is possible to simulate pipes with the current base elements,

if one were doing many simulations with pipes, then it would be useful to have

a base element of type PIPE. This would simplify object positioning and decrease

simulation calculation times. The simulation package is structured to allow for

easy addition of new element types. As an introduction to this topic, and as

an aid to understanding the base element types themselves, let us examine the

implementation of an existing element type, the ellipsoid.

227

228

As detailed in the section on 2D simulations, we do not code the attenuation for

base elements in arbitrary orientations. We code, rather, for elements in a canonical

position and account for arbitrary orientations by adjusting the coordinates of the

intersecting ray. The canonical position for the ellipsoid is chosen to be centered

at the origin, with ellipsoid axes coinciding with the coordinate axes, as illustrated

in Fig. A.1. This ellipsoid has half-axis lengths of e1, e2, and e3, so the defining

equation for the ellipsoid is

(x1/e1)
2 + (x2/e2)

2 + (x3/e3)
2 ≤ 1. (A.1)

The equation for a line L~v, ~w in 3-space is the same as that given in Eq. 2.6,

except now ~v and ~w are 3-dimensional vectors. Inserting this parameterization

into Eq. A.1 and solving yields the line-ellipsoid intersection points

smin =
−b−∆

a
smax =

−b+∆

a
, (A.2)

where

a =
3
∑

i=1

v2i /e
2
i

b =
3
∑

i=1

viwi/e
2
i

c =

(

3
∑

i=1

w2i /e
2
i

)

− 1

∆ =
√
b2 − ac.

The code implementing this calculation is shown in Fig. A.2. The imports are

two structure pointers. The first (pointer ell), points to a structure containing the

229

......

......

......

......
.......
.......
.......
.......
.......
.......
........
........
........
.........

.........
..........

..........
...........

............
.............

..............
...............

.................
....................

.........................
....................................

...
..............................

.......................
...................

................
...............

.............
............
...........
...........
..........
.........
.........
.........
........
........
........
.......
.......
.......
.......
.......
.......
......
......
......
...

......................................
............................

.......................
...................

................
..............

............
...........

..........
.........

........
.......
.......
....

..

..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

................

...
.......
..
.............
...
e1

e2

e3

......

....
........
..

..........
..........

..........
..........

..
..........

..........

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........

..........
..........

..........
.....................

Figure A.1: Illustration of the ellipsoid (x1/e1)
2 + (x2/e2)

2 + (x3/e3)
2 ≤ 1.

defining information for this instance of the ellipsoid element (size, orientation, po-

sition, density), and the second (pointer ray) defines the (potentially intersecting)

line.

The first block of code is a crude check to see if the line *ray is even close to the

ellipsoid. If the ellipsoid is small, then many of the import lines will completely

miss the ellipsoid. This check provides a quick exit from this routine for those

lines.

The next two blocks compute the values of smin and smax (t1 and t2 respec-

tively), which are sent to the routine plane limits() for modifications due to any

cut-plane restrictions. (The routine plane limits is a general purpose routine

used by all the element attenuation routines that incorporate cut-planes.) Finally,

the total length is multiplied by the element density and the result (the linear

attenuation) is returned.

230

/************************** ELLIPSOID ***************************/

float ellipsoid(ELEMENT *ell,LINE *ray)

/* This routine returns the length of the intersection */

/* between the ellipsoid ell and the line *ray. The object */

/* ell definition includes the size, density and orientation */

/* of the ellipsoid. */

{

int i;

float eff_length,a,b,c,det,t1,t2;

LINE newray;

/* Crude out-of-bounds check */

for(i=0;i<3;i++)

if(fabs(ray->offset[i])<=ell->param[i]) break;

if(i>2) return 0.0;

/* Convert to elliptical coordinates */

for(i=0;i<3;i++)

{

newray.dir[i]=ray->dir[i]/ell->param[i];

newray.offset[i]=ray->offset[i]/ell->param[i];

}

a=dot(newray.dir,newray.dir);

b=dot(newray.dir,newray.offset);

c=dot(newray.offset,newray.offset)-1.0;

/* Compute crossing times */

det=b*b-a*c;

if(det<TOO_SMALL*TOO_SMALL) return 0.0; /* No intersection! */

det=sqrt(det);

t1=(-b-det)/a; t2=(-b+det)/a;

/* Incorporate "cut plane" restrictions */

plane_limits(&t1,&t2,ell,ray);

/* Compute total length, including density */

if(t2<t1) eff_length=0;

else eff_length=(t2-t1)*ell->density;

return eff_length;

}

Figure A.2: Subroutine for calculation of ellipsoid linear attenuation.

231

A.2 Program organization

We now explain the program organization. Follow this discussion along with

Fig. A.3, the program flowchart.

At the start of program execution, the user is prompted for X-ray source type,

location, orientation, and the name of the data file containing the element descrip-

tions. Next the program reads the data file and stores the elements in an array of

structures of type ELEMENT.

After obtaining the input parameters, the program loops through the list of

elements. For each element, the program shifts the source position relative to

the object’s orientation and position. (This is faster than generating each ray

and shifting each ray independently.) The ray generation routine then calculates

the parameterization vectors ~v and ~w (refer to Eq.2.6) for each ray incident on

the display region, and sends this parameterization information to the proper el-

ement attenuation routine. The return value from the attenuation routine (the

linear attenuation) is summed into the corresponding position in the display array

proj[][]. After this has been done for every ray in the display region, the

program loops back to repeat the process for the next element.

Once the linear attenuations for each element have been calculated and summed

into the display array proj[][], the exponential of the attenuations is calcu-

lated. (Recall that the physical attenuation of an X ray is proportional to the

232

exponential of the linear attenuation.) The display routine is then called to out-

put the simulation on the view screen.

A.3 Data structures

The data structures used by this program are defined in the header file DXT.H. In

this section we give a description of the most important ones.

VECTOR This structure is an array of 3 elements of type float. It represents a

position independent vector in 3-space.

POINT This structure is also an array of 3 elements of type float. This one

represents a point in 3-space. A POINT is translation dependent, whereas a

VECTOR is translation independent.

LINE This structure consists of two VECTOR’s which correspond to the vector pa-

rameterization of a line. The first is a unit vector parallel to the direction of

the line, and the second is the offset of the line from the origin. These two

vectors should be orthogonal. (Refer to Eq. 2.6).

TRANSFORM This structure is a 3×3 array of type float, corresponding to a linear

transformation on three space (i.e., an element of the general linear group

GL3).

ORIENTATION This structure represents rigid body motions in 3-space. It consists

of a TRANSFORM and a VECTOR. The TRANSFORM should be an element of SL3

233

...

...

..
.........
.......
.......
......
......
.......
........
...........

............

Start

?..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

Read Input
Parameters

?...
...............

...............
...............

...............
...............

...............
...............

................
...............

...............
...............

...............
...............

...............
...............

...............
............

Elements
to Process?

?

Orient Source
Relative to
Element

?
Generate 1 Ray

?

Evaluate Ray
Attenuation

?

Sum Attenuations

?...
................

................
................

................
.................
................

................
................

................
................

................
..............

More
Rays?

?

?

Take Exponential
of Attenuations

?...
.......
.......
.......
.......
.......
.......
.......
.......
.

Display

?...

...

..
.........
.......
.......
......
......
.......
........
...........

............

Stop

No more elements

yes

no

6

¾

-

?

-

¾

6

¾

-

Figure A.3: Flowchart for radiograph simulation package

234

(an orthogonal matrix with determinant +1) while the VECTOR can be any

3 dimensional vector. This structure is used to define the orientation and

position of the base elements relative to their canonical position. (Refer to

the section on base element types.) The rigid body motion is performed by

starting with the element in its canonical orientation, rotate it according to

the TRANSFORM and THEN translate by the offset in VECTOR. Note that these

operations are not commutative, so the order of operations is important.

CUT PLANE This structure contains the information necessary to determine cut-

plane restrictions on an element. It consists of a VECTOR ~n that is normal to

the cut-plane, the offset of the plane from the origin (of type float), and an

integer value, σ = ±1, which specifies the half space to exclude. The half

space containing the point (offset + σ)× ~n is excluded.

ELEMENT This structure contains all the information necessary to specify a base

element. It consists of an ORIENTATION specifying the orientation and posi-

tion of the element from its canonical position, the density of the element,

an array of up to (currently) 5 element specific parameters of type float,

an integer count of the number of cut-planes, an array of up to (currently)

10 CUT PLANES, and a pointer to the linear attenuation evaluation function

for the element (which is determined by the input routine from the element

type descriptor in the object description data file).

235

For specifics refer to the file DXT.H and the documentation and program listings

for specific base elements.

A.4 Attenuation subroutine format

Element linear attenuation evaluation functions are stored in the file ELEMENTS.MSC.

Each function has two imports. The first import is a pointer to an ELEMENT vari-

able describing the base element for which the attenuation is to be calculated, and

the second is a pointer to a LINE variable defining the path of the X ray for which

the linear attenuation is required. The LINE is assumed to be already transformed

to the local coordinates for the element (i.e., the element can be assumed to be in

its canonical position), so only the density and element specific parameters need to

be accessed. The return value of the attenuation subroutine is the linear attenua-

tion of the X ray. It is the responsibility of the attenuation subroutine to include

cut-plane restrictions if the element type supports them. Cut-plane restriction

can be calculated by sending the X ray element entry and exit times (relative to

the import line parameterization) to the subroutine PLANE LIMITS. If the element

type does not support cut-planes then the attenuation function does not need to

explicitly calculate the X ray entry and exit times.

236

A.5 Ray generation subroutine format

The ray generation subroutines are contained in the file RAYGEN.MSC. These rou-

tines generate the parameters of the lines corresponding to X-ray paths in the

display region and send this information to the base element linear attenuation

functions.

The imports to subroutines of this class are the source orientation/position, a

base element descriptor (ELEMENT data type), and the display array proj[][]

that stores the sum of the linear attenuations for each displayed pixel. (It is the

responsibility of the calling routine to initialize this array to zero before the first

call to these functions.) Each call to these subroutines causes the linear attenuation

due to one element to be summed into the display array.

The X rays are generated according to the following scheme. Take the line

through the origin coincident with the x-axis, and transform it according to the

source orientation. The plane perpendicular to this line that passes through the

origin (in the original coordinate system) is the display plane. The display region

is a rectangle on this plane, which is centered about the intersection of this plane

with the transformed line. Now generate one X ray for each pixel in the display

region according to the source beam geometry. For example, the parallel beam

generation routine generates an X ray through each display pixel that is parallel

to the center line defined above. On the other hand, the cone beam generation

237

routine generates for each display pixel an X ray that passes through both the

display pixel and the source location.

Each generated X ray must be sent to the element linear attenuation function.

Recall that these functions require that the input X ray be transformed to the

element local coordinate system. One could generate the X rays as outlined in

the preceding paragraph, and then transform each according to the element ori-

entation, but this is time consuming. A faster way (and the way the supplied ray

generation subroutines work) is to transform the source and display region to the

element local coordinate system, and then generate the X rays directly in the local

coordinate system.

After each (transformed) X ray is generated it is sent to the proper element

linear attenuation function, and the attenuation is summed into the display at-

tenuation array proj[][]. When this is completed for the entire display region

for this one element, the ray generation routine passes control back to the calling

routine.

Bibliography

[1] A. P. Sprague, M. J. Donahue, and S. I. Rokhlin, “A method for automatic
inspection of printed circuit boards,” Computer Vision, Graphics and Image
Processing: Image Understanding, 54, 401–415 (1991).

[2] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.

[3] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” Jour-
nal of the Optical Society of America, 1, 612–619 (1984).

[4] V. Palamodov and A. Denisjuk, “Inversion de la transformation de Radon
d’après des données incomplètes,” C. R. Acad. Sci. Paris, 307, 181–183
(1988).

[5] J. Radon, “Über die Bestingmmung von Funktionen durch ihre Integralwerte
längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipsiz,
Math-Nat. kl., 69, 262–277 (1917).

[6] R. N. Bracewell and A. C. Riddle, “Strip integration in radio astronomy,”
Aus. J. Phys., 9, 198–217 (1956).

[7] R. N. Bracewell and A. C. Riddle, “Inversion of fan-beam scans in radio
astronomy,” The Astrophysical Journal, 150, 427–434 (1967).

[8] A. Cormack, “Representation of a function by its line integrals, with some
radiological applications,” J. Appl. Phys., 34, 2722–2727 (1963).

[9] A. Cormack, “Representation of a function by its line integrals, with some
radiographical applications II,” J. Appl. Phys., 35, 195–207 (1964).

[10] G. N. Hounsfield, “Computerized transverse axial scanning tomography: Part
I, description of the system,” Br. J. Radiol., 46, 1016–1022 (1973).

[11] G. N. Ramachandran and A. V. Lakshminarayanan, “Three-dimensional re-
construction from radiographs and electron micrographs: application of con-
volutions instead of Fourier transforms,” Proc. Nat. Acad. Sci. US, 68,
2236–2240 (1971).

238

239

[12] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,”
IEEE Trans. Nucl. Sci., NS-21, 21–43 (1974).

[13] S. R. Deans, The Radon Transform and Some of Its Applications. Wiley,
1983.

[14] F. Natterer, The Mathematics of Computerized Tomography. John Wiley &
Sons Ltd, 1986.

[15] R. M. Lewitt, R. H. T. Bates, and T. M. Peters, “Image reconstruction from
projections: III: projection completion methods (theory),” Optik, 50, 180–205
(1978).

[16] A. K. Louis, “Ghosts in tomography—the null space of the Radon transform,”
Math. Meth. in the Appl. Sci., 3, 1–10 (1981).

[17] A. K. Louis, “Nonuniqueness in inverse Radon problems: the frequency dis-
tribution of the ghosts,” Math. Z., 185, 429–440 (1984).

[18] H. K. Tuy, “Reconstruction of a three-dimensional object from a limited range
of views,” J. Math. Anal. Appl., 80, 598–616 (1981).

[19] K. T. Smith, “Inversion of the x-ray transform,” SIAM-AMS Proceedings, 14,
41–52 (1984).

[20] M. E. Davison and F. A. Grünbaum, “Tomographic reconstructions with ar-
bitrary directions,” Comm. Pure Appl. Math., 34, 77–120 (1981).

[21] M. E. Davison, “The ill-conditioned nature of the limited angle tomography
problem,” SIAM J. Appl. Math., 43, 428–448 (1983).

[22] L. E. Bryant and P. McIntire, eds., Radiography and Radiation Testing. Vol. 3,
American Society for Nondestructive Testing, 1985.

[23] S. Kaczmarz, “Angenaherte Auflosung von Systemen Linearer Gleichungen,”
Bull. Acad. Pol. Sci. Lett. A, 6-8A, 355–357 (1937).

[24] A. S. Glassner, ed., An Introduction to Ray Tracing. Academic Press, 1989.

[25] L. Feldkamp and G. Jension, “3-d x-ray computed tomography,” Review of
Progress in Quantitative Nondestructive Evaluation (QNDE), 5A, 555–566
(1986).

[26] L. Wang, Three Dimensional Computer Aided Tomography of Welds. Master’s
thesis, The Ohio State University, 1988.

[27] R. Gordon and G. T. Herman, “Three-dimensional reconstruction from projec-
tions: a review of algorithms,” International Review of Cytology, 38, 111–151
(1974).

240

[28] M. Chiu, H. H. Barrett, and R. G. Simpson, “Three-dimensional reconstruc-
tion from planar projections,” J. Opt. Soc. Am., 70, 755–762 (1980).

[29] B. D. Smith, “Image reconstruction from cone-beam projections: necessary
and sufficient conditions and reconstruction methods,” IEEE Trans. Med.
Imaging, MI-4, 14–25 (1985).

[30] H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J.
Appl. Math., 43, 546–552 (1983).

[31] D. V. Finch, “Cone beam reconstruction with sources on a curve,” SIAM J.
Appl. Math., 45, 665–673 (1985).

[32] G. DiChiro, R. A. Brooks, L. Dubal, and E. Chew, “The apical artifact:
elevated attenuation values toward the apex of the skull,” J. Comput. Assist.
Tomog., 2, 65–79 (1978).

[33] W. D. McDavid, R. G. Waggener, W. H. Payne, and M. J. Dennis, “Correc-
tion for spectral artifacts in cross-sectional reconstruction from x-rays,” Med.
Phys., 4, 54–57 (1977).

[34] A. J. Duerinckx and A. Macovski, “Polychromatic streak artifacts in computed
tomographic images,” J. Comput. Assist. Tomog., 2, 481–487 (1978).

[35] W. Rudin, Real and Complex Analysis. McGraw-Hill, 2nd ed., 1974.

[36] M. J. Donahue, The Angle Between the Null Spaces of the Radon and Related
Transforms. PhD thesis, The Ohio State University, 1991.

[37] A. Browne and L. Norton-Wayne, Vision and Information Processing for Au-
tomation. Plenum, 1986.

[38] R. T. Chin, “Survey: automated visual inspection: 1981–1987,” Computer
Vision, Graphics, and Image Processing, 41, 346–381 (1988).

[39] T. Pavlidis, “A review of algorithms for shape analysis,” Computer Graphics
and Image Processing, 7, 243–258 (1978).

[40] A. Rosenfeld and A. C. Kak, Digital Picture Processing. Academic Press,
1982.

[41] J. Sanz and A. Jain, “Machine vision techniques for inspection of printed
wiring boards and thick-film circuits,” J. Opt. Soc. Am. A, 3, 1465–1482
(1986).

[42] G. A. W. West, “A system for the automatic visual inspection of bare-printed
circuit boards,” IEEE Trans. Systems, Man, and Cybernetics, SMC-14, 767–
773 (1984).

[43] J. R. Mandeville, “Novel method for analysis of printed circuit images,” IBM
J. Research and Development, 29, 73–86 (1985).

241

[44] Q. Z. Ye and P. E. Danielsson, “Inspection of printed circuit boards by con-
nectivity preserving shrinking,” IEEE Trans. Pattern Analysis and Machine
Intelligence, PAMI-10, 737–742 (1988).

[45] A. M. Darwish and A. K. Jain, “Rule based approach for visual pattern inspec-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-10,
56–68 (1988).

[46] Y. Hara, N. Akiyama, and K. Karasaki, “Automatic inspection system for
printed circuit boards,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, PAMI-5, 623–630 (1983).

[47] H. Yoda, Y. Ohuchi, Y. Taniguchi, and M. Ejiri, “An automatic wafer in-
spection system using pipelined image processing techniques,” IEEE Trans.
Pattern Analysis and Machine Intelligence, PAMI-10, 4–16 (1988).

[48] L. F. Pau, “Integrated testing and algorithms for visual inspection of inte-
grated circuits,” IEEE Trans. Pattern Analysis and Machine Intelligence,
PAMI-5, 602–608 (1983).

[49] U.S. Dept. of Justice, Federal Bureau of Investigation, The Science of Finger-
prints: Classification and Uses, ch. 2, 5–79. U.S. Government Printing Office,
1984.

[50] S. P. Morse, “A mathematical model for the analysis of contour-line data,”
Journal of the Association for Computing Machinery, 15, 205–220 (1968).

[51] T. K. Peucker and D. H. Douglas, “Detection of surface-specific points by local
parallel processing of discrete terrain elevation data,” Computer Graphics and
Image Processing, 4, 375–387 (1975).

[52] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,” Pattern Recog-
nition, 17, 295–303 (1984).

[53] A. S. Rabinowitz, “Fingerprint card search results with ridge-contour based
classification,” in 5th International Conference on Pattern Recognition, 475–
477, IEEE, 1980.

[54] E. Peli, “Adaptive enhancement based on a visual model,” Optical Engineer-
ing, 26, 655–660 (1987).

[55] M. Hueckel, “An operator which locates edges in digital pictures,” Journal of
the Association for Computing Machinery, 18, 113–125 (1971).

[56] F. O’Gorman, “Edge detection using walsh functions,” Artificial Intelligence,
10, 215–223 (1978).

[57] A. Rosenfeld and E. Johnston, “Angle detection on digital curves,” IEEE
Transactions on Computers, 22, 875–878 (1973).

242

[58] P. Parent and S. W. Zucker, “Trace inference, curvature consistency, and curve
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
11, 823–839 (1989).

[59] S. W. Zucker, “Early orientation selection: tangent fields and the dimension-
ality of their support,” Computer Vision, Graphics, and Image Processing,
32, 74–103 (1985).

[60] D. G. Luenberger, Optimization by Vector Space Methods. Wiley, 1969.

[61] R. M. Haralick and L. Watson, “A facet model for image data,” Computer
Graphics and Image Processing, 15, 113–129 (1981).

[62] L. J. Kitchen and J. A. Malin, “The effect of spatial discretization on the
magnitude and directional response of simple differential edge operators on a
step edge,” Computer Vision, Graphics and Image Processing, 47, 243–258
(1989).

[63] K. V. Mardia, Statistics of Directional Data. Academic Press, 1972.

[64] R. Jain, “Direct computation of the focus of expansion,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 5, 58–64 (1983).

[65] K. Prazdny, “On the information in optical flows,” Computer Vision, Graph-
ics, and Image Processing, 22, 239–259 (1983).

[66] S. Negahdaripour and B. K. P. Horn, “A direct method for locating the focus
of expansion,” Computer Vision, Graphics, and Image Processing, 46, 303–
326 (1989).

[67] W. Burger and B. Bhanu, “Estimating 3-d egomotion from perspective image
sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
12, 1040–1058 (1990).

[68] P. Y. Simard and G. E. Mailloux, “Vector field restoration by the method of
convex projections,” Computer Graphics and Image Processing, 52, 360–385
(1990).

[69] F. Harary, Graph Theory. Addison-Wesley, 1969.

[70] M. J. Donahue and S. I. Rokhlin, “On the use of level curves in image analy-
sis,” 1992. To appear in CVGIP.

