
1. Introduction

Magnetic components in virtually all technological
applications are polycrystalline due to cost constraints.
Various magnetic components have been modeled with
micromagnetics, largely as a single crystal with little or
no magneto-crystalline anisotropy, The assumption is
that when averaged over the entirety of the simulated
dimensions, orientational dependence of anisotropy
from randomly oriented grains will cancel out. This
assumption has been valid for magnets of micron and
sub-micron dimension for a long time. However, for
smaller parts in the 100 nm range, it has been shown
experimentally that the exact nature of grain orientation
and distribution plays a crucial role in magnetization

reversal behavior Refs. [1, 2]. In response to the
growing need to model the effect of grains on switch-
ing dynamics, we have expanded OOMMF’s capability
to model 2D through grains derived from Voronoi
diagrams.

2. Usage

To use polycrystalline OOMMF, a Voronoi diagram
must first be generated. The Voronoi diagram output is
then read into an OOMMF micromagnetic input
format (MIF) file. The grain-specific magneto-
crystalline anisotropy axes data can be visualized
and/or saved through the OOMMF mmDisp viewer.

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

57

[J. Res. Natl. Inst. Stand. Technol. 114, 57-67 (2009)]

Implementation of Two-Dimensional
Polycrystalline Grains in Object Oriented

Micromagnetic Framework

Volume 114 Number 1 January-February 2009

J. W. Lau

Metallurgy Division,
National Institute of Standards
and Technology,
Gaithersburg, MD 20899

R. D. McMichael

Center for Nanoscale Science and
Technology,
National Institute of Standards
and Technology,
Gaithersburg, MD 20899

M. J. Donahue

Mathematical and Computational
Sciences Division,
National Institute of Standards
and Technology,
Gaithersburg, MD 20899

In response to the growing need for a
more accurate micromagnetic model to
understand switching phenomenon in
nanoscale magnets, we developed the
capability to simulate two-dimensional
polycrystalline grains using the Object
Oriented Micromagnetic Framework
(OOMMF). This addition allows users
full flexibility in determining the
magnetocrystalline anisotropy and axe
in each grain as well as the inter- and
intragranular exchange coupling strength.

june.lau@nist.gov
robert.mcmichael@nist.gov
michael.donahue@nist.gov

Key words: exchange coupling;
magnetocrystalline anisotropy;
micromagnetics; polycrystal.

Accepted: September 12, 2008

Available online: http://www.nist.gov/jres

The details of each step are summarized below. Other
OOMMF specific references, such as Oxs child class-
es, can be found in the OOMMF User’s Guide [3],
available online at http://math.nist.gov/oommf/.

A. Generating Grain Maps

The executable named voronoi is used to generate
a random 2D grain map in the PPM (portable pixmap)
bitmap image format. The command line switches –x,
–y, and –g specify the number of pixels along the x and
y directions and the number of grains, respectively. The
executable defaults to a grain map of 512 pixels ×
128 pixels and 2000 grains. When imported into a MIF
file, the grain map will be automatically resized to fit
the simulation dimensions; however it is recommended
that the number of pixels along the x and y directions in
the grain map closely match the number of simulation
cells specified in the MIF file so that resizing errors
may be minimized.

The grain maps produced by the executable voronoi
are colored in a red-blue-green combination scheme,
such that each grain has a unique 6 character designa-
tion in the form #rrggbb. Each of the 6 positions in
rrggbb can take a hex digit value (i.e, 0–9 or A–F).
The theoretical maximum number of grains that can be
colored this way is therefore 166 = 224 (24-bit color).
The optional command line switches -nored, -nogreen,
-noblue may be used to restrict the output color space;
this can be useful for rogue grain selection, as described
below.

In the OOMMF simulation, the grains as described
by the grain map are projected through the film. A full
three dimensional simulation is possible using a single
(two dimensional) grain map with the caveat that each
grain traverses the entire thickness, orthogonal to the
defined view-plane. On the other hand, it is possible to
define multilayers with a unique grain map associated
with each layer. In the case of a single layer material,
the 2D through-grains assumption may be a reasonable
approximation if the layer thickness is comparable to
the grain size.

B. MIF File Specifications

Appendices A and B present two examples of
MIF files for polycrystalline samples. Appendix A
is for a material with uniaxial magneto-crystalline
anisotropy; a somewhat more complicated
example involving cubic anisotropy is shown in
Appendix B.

In both cases, the MIF files begin with the line

MIF 2.2

which is the signature string for a MIF version 2.2 file.
Some of the functionality supporting polycrystalline
materials is new with version 2.2.

The grain map (rect . ppm), where each grain is
associated with a unique color, is parsed by the geo-
metric volume interpreter, Oxs_ImageAtlas:

Specify Oxs_ImageAtlas:world [subst {

xrange {0 $length}

yrange {0 $width}

zrange {0 $thick}

viewplane xy

image $grain_map

colorfunction auto

matcherror 0.0

}]

The xrange, yrange, zrange parameters spec-
ify the simulation dimensions in meters, while the
viewplane xy parameter tells the atlas to orient the
grain map (as specified by the image parameter) with
the xy-plane.

In pre-2.2 versions of MIF, the Oxs_ImageAtlas

object required an explicit list of colors and region
names. However, starting with MIF 2.2, the colorfunc-
tion auto option may be used instead to automatically
assign distinct logical regions to each color occuring in
the image. The assigned region names have the form
#rrggbb, where rrggbb represent the 24-bit color of
each grain as described earlier. In general, the user
does not need to know the specific region names; the
fact that each color (and hence grain) is assigned to a
distict region is sufficient to assign different easy axis
orientations, magneto-crystalline anisotropy and
exchange coupling to each grain. The one exception is
the case where one wants to assign particular properties
to a particular grain; this is the case with “rogue grain”
assignment, which is discussed below.

In Appendix A, a material with uniaxial anisotropy
is modeled that has uniform K1, but with each grain
having an easy axis randomly selected within the con-
fines of a texture cone, that is, the anisotropy directions
are distributed with equal probability within a cone
symmetric about the z-axis with semiangle defined
by the variable phideg. To do this, a list with an even
number of elements is constructed; the first element in
each pair is the name of an atlas region (i.e., grain),
and the second is a three-element sublist providing the
(x, y, z) coordinates (directional cosines) of the axis. A
list of all the grain regions is obtained via a call to the
GetAtlasRegions command,

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

58

set atlas_regions [GetAtlasRegions :world]

where :world refers to the Oxs_ImageAtlas :

world atlas discussed above. Each call to the
Texture proc (see Appendix A for the definition of
proc Texture) produces a random 3-vector in the
texture cone. The region names and axis directions are
collated via the Tcl code

set axes { }

if {![info exists Rogue]} {set Rogue { }}

for each grain $atlas_regions {

lappend axes $grain

if {[lsearch –exact $Rogue $grain]>=0} {

Rogue grain

lappend axes {1 0 0}

} else {

Random grain

lappend axes [Texture]

}

}

If one wants the axis to be randomly selected from the
whole unit sphere, as opposed to from inside the texture
cone, then one can copy the RandomUnitVec proc
from Appendix B into the MIF file, and replace the call
to Texture with a call to RandomUnitVec.

In addition to setting the random vectors, this code
also allows the specification of a list of “rogue” grains,
where the axes are not chosen uniformly, but are
peremptorily set to, say, (1, 0, 0) (i.e., the x-axis). The
rogue grain list is set earlier in this MIF file as

set Rogue [list \#be0000 \#be85ab]

The Rogue list is a list of region names, but since the
region names are determined by their color in the grain
map, this is equivalent to selecting the grains by color.
Many image viewers display the rgb-component values
of a pixel selected by the user, so the grain map can be
used to interactively select rogue grains. (As an alter-
native, rogue grains can be selected by position. This
approach is explained below in the discussion covering
Appendix B.)

Once the axes list is constructed, the anisotropy is
specified by

Specify Oxs_AtlasVectorField:axes [subst {

atlas :world

norm 1.0

values { $axes }

}]

Specify Oxs_UniaxialAnisotropy [subst {

K1 $Ku

axis :axes

}]

The second block here specifies a uniaxial anisotropy
with uniform K1 (as defined by the variable Ku, in
J/m3), but with spatially varying easy axis given by the
vector field :axes (i.e., Oxs_AtlasVectorField
:axes).

Next in the MIF file, the exchange coupling is set by

######################

EXCHANGE

######################

set A_list { }

foreach grain $atlas_regions {

Intra-grain coupling

lappend A_list \

$grain $grain $A_intragrain

}

default_A sets inter-grain coupling,

A_list sets intra-grain coupling

Specify Oxs_Exchange6Ngbr [subst {

default_A $A_intergrain

atlas :world

A { $A_list }

}]

In this code, the list A_list is constructed three ele-
ments at a time. The variable A_intragrain is the
exchange coupling inside each grain, in J/m. In this
example, this coupling is the same for all grains,
but this could be varied if desired. The intragrain
coupling list is used to set parameter A in the
Oxs_Exchange6Ngbr specify block. The otherwise
unspecified intergrain coupling is handled by the
default_A parameter.

Intergranular coupling can be turned on or off by
adjusting the value of A_intergrain. This may be
a useful option for continuous granular media applica-
tions where decoupled grains are desirable. For fully
exchanged grains as in patterned media applications,
Oxs_UniformExchange may be used in place of
Oxs_Exchange6Ngbr.

The remainder of the MIF file sets up an applied
field, and specifies the evolver and driver to use. These
are standard MIF blocks that do not involve any poly-
crystalline-specific features. See the OOMMF User’s
Guide for details.

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

59

Appendix B provides an example using a material,
such as Ni, that has cubic anisotropy. Setting up cubic
anisotropy is similar to that for uniaxial anisotropy,
except that instead of specifying a single easy axis, two
orthogonal axes are required. (The third anisotropy axis
is computed as the cross product of the other two.)
Whereas in the uniaxial case a single list named axes
was constructed interleaving region names and axes, in
this case two lists are constructed, A_axes and
B_axes. A_axes is constructed by calling the Texture
proc for each grain; this produces an axis inside the tex-
ture cone defined by phideg, exactly as in the uniax-
ial case. The second axis, which is stored in B_axes,
is constructed by picking a random vector on the unit
sphere, and then crossing that vector with the associat-
ed A_axes axis element:

set bx [expr {$ay*$tmpz-$az*$tmpy}]

set by [expr {$az*$tmpx-$ax*$tmpz}]

set bz [expr {$ax*$tmpy-$ay*$tmpx}]

lappend B_axes [list $bx $by $bz]

This second axis is fully random subject to the con-
straint that it be orthogonal to the first axis.

Once A_list and B_list are complete, a vector
field object is built with each list, and the cubic
anisotropy is specified via

Specify Oxs_CubicAnisotropy [subst {

K1 $Ku

axisl :A_axes

axis2 :B_axes

}]

As in the uniaxial case, rogue grain selection is built
into the axis lists using a user-specified list, Rogue, of
grain region names. In this example, however, the
rogue list is populated by the code segment

Map “rogue” grains to regions

for each {x y z} $RoguePos {

lappend Rogue [GetAtlasRegionByPosition \

:world $x $y $z]

}

Here the GetAtlasRegionByPosition command is
used to correlate a spatial location (in problem coordi-
nates, in meters) with the region (i.e., grain) containing
that location. The problem coordinates may be deter-
mined using the technique described in the following
section to view the anisotropy axes in mmDisp, and

then using :〈Shift〉+〈left mouse click〉 to reveal to
coordinates under the mouse cursor.

C. Visualize and Saving Anisotropy Axes

The grain anisotropy axes information may be dis-
played or saved through the OOMMF mmDisp viewer
utility. First load a pre-simulation where the initial
magnetization setting in the Driver Specify block uses
the same vector field that is used to set the anistropy
axis; in the uniaxial example of Appendix A that means
to replace

m0 { 0 0 –1 }

with

m0 :axes

where :axes refers to Oxs_AtlasVectorField :

axes.

(For the cubic anisotropy example, use :A_axes or
:B_axes in place of :axes.) Once the problem is
loaded into the OOMMF Oxsii application, send the
driver “Magnetization” output to mmDisp, from which
the axis directions can be directly viewed. One can also
write these data to disk from mmDisp, but note that it
will be necessary to divide each entry by the saturation
magnetization Ms in order to recover the unit axes
vectors.

3. Results With Polycrystalline OOMMF

The polycrystalline Co/Pd multilayer system is
regarded as a promising candidate for patterned media
applications [4-6]. Nanodots ≤ 200 nm are perpendicu-
larly magnetized and typically switch in the single
domain regime [5]. The easy axes for the material lies
along the < 111 > and is thought to be uniaxial.
Additionally, the < 111 > texture along the surface
normal is thought to be a cause of the perpendicular
magnetization [7-9]. Experimental evidence has sug-
gested that switching in this system was triggered by
local pockets of volume with dimensions on the same
order as the grain size [6].

We used polycrystalline OOMMF to model a 100 nm
disc, 6 nm thick, to mimic the experiment from Lau et
all [1] in order to further understand the role of grain
orientation. The cell dimensions are 1 nm laterally, and
3 nm along the thickness direction, giving a total of
Nx = Ny = 100 and Nz = 2 cells along the x, y, and z
directions.

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

60

A grain map using 260 grains gives roughly the grain
size of 7 nm. The uniaxial anisotropy axes of all
260 grains are uniformly distributed with a texture of
20°, that is the semiangle with respect to the surface
normal (z-direction). The grains traverse the entire
thickness of 6 nm. The numerical values used in this
problem are listed in Table 1.

Fig. l a shows the normal component of the uniaxial
anisotropy axes in the grain mosaic. Grains in white
have uniaxial anisotropy axes closely aligned with the
z-direction. Grains in purple have axes with the greatest
deviation from the normal direction, with a maximum
deviation of 20°. Fig. l b shows the magnetization along
the z-direction at the point of switching. The 100 nm
dot was initially magnetized along the –z-direction
(blue). Applying a field along the +z-direction causes
the magnetization in the dot to rotate towards the +z
direction (red). The white contrast within the dot means
that the local magnetization is within the xy plane.

There is a one-to-one correspondence between the off-
axis grains (purple regions, Fig. l a) and the region of
least perpendicular magnetization (regions in white
Fig. l b). Furthermore, magnetization reversal from the

–z to +z direction occurs at the site of the heaviest
off-axis grain concentration.

4. Conclusion
We have fully integrated 2D polycrystalline capabil-

ity for simulating sub-100 nm magnets in OOMMF.
Magneto-crystalline anisotropy magnitude and direc-
tion, as well as exchange coupling strength may be
defined separately for each grain. In an example, we
showed that polycrystallinity plays a significant role in
the magnetization reversal mechanism in perpendicu-
larly magnetized nanodots. Our results corroborate pre-
vious experimental observations.

5. Appendix A. Sample MIF File,
Uniaxial Anisotropy

#MIF 2.2

#Save-path is set to current directory #

#"stop" is the mxHxm stopping criterion #

##

set stop 0.1

set tag UNIAXIAL

RandomSeed 1

Cone angle in proc Texture (q.v.);

specifies angle range for random

anisotropies.

##

Parameter phideg 10 ;# in degrees,

from 0 to 90, 0 is all z.

Input Files

#####################

set grain_map rect.ppm

Output Files

####################

set outname [format "${tag}_phi=%g" $phideg]

##

ROGUE GRAIN(s):

#Rogue is a list of colors (in hex-form #

##rrggbb) to be set as rogue grains (which #

#get anisotropy axis set parallel to x-axis.#

#Leave empty or undefined to have no rogue #

#grains. #

##

set Rogue [list \#be0000 \#be85ab]

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

61

Table 1. Geometrical and material parameters used for simulating
Co/Pd-like nanodots

Ms 2000 kA / m
Ku 3500 kJ / m3

A 10 pJ / m
length = width 100 nm
thickness 6 nm
Nx = Ny 100
Nz 2

Fig. 1. (a) Uniaxial anisotropy axis distribution across a 100 nm
diameter Co/Pd-like nanodot. Color scale gives the z component of
the uniaxial anisotropy vector. Grains in white have near perpendicu-
lar axis. Grains in purple can be up to 20° off the z-axis. (b) A snap
shot near the coercive field of a magnetization reversal simulation
using the system described in (a). The dot was initially perpendicu-
larly magnetized along the –z-direction (blue). The dot is expected
to be red (magnetized along the +z-direction) once the reversal is
complete. Magnetization is primarily in-plane (white shadows) at the
locations where perpendicular magnetization is weakest (corre-
sponds to purple grains from (a). Here a localized concentration of
off-axis grains is seen to trigger the onset of reversal (red spot).

######################

CONSTANTS

######################

set pi [expr 4*atan(1.0)]

set mu0 [expr 4*$pi*1e-7]

######################

MATERIALS

######################

for Co

Saturation magnetization, A/m

set Ms 1.40e6

Magneto-crystalline anisotropy, J/m
3

set Ku 530e3

Exchange coupling, J/m:

set A_intragrain 8.1e-12 ;# Intragrain

set A_intergrain 2.Oe-12 ;# Intergrain

#########################

SUPPORT PROCS

#########################

#This proc makes ellipses and circles #

##

proc Ellipse { Ms x y z } {

Imports x, y, and z are each relative

values, in range [0,1]

set xO [expr {2*$x-1}]

set yO [expr {2*$y-1}]

if {$xO*$xO+$yO*$yO <= 1} {

return $Ms

}

return 0.0

}

#This proc generates TEXTURED unit #

#vector, random in cone about z-axis #

#with aperture angle 2*$phideg. #

##

set cosphirange [expr {cos($phideg*$pi/180.)}]

proc Texture {} {

global pi cosphirange

set theta [expr {(2.*rand()-1.)*$pi}]

set costheta [expr {cos($theta)}]

set sintheta [expr {sin($theta)}]

if {rand()<0.5} {

set sgn -1.0

} else {

set sgn 1.0

}

set cosphi \

[expr {$sgn*(1-(1-$cosphirange)*rand())}]

set sinphisq [expr {1.0-$cosphi*$cosphi}]

if {$sinphisq>0.0} {

set sinphi [expr {sqrt($sinphisq)}]

} else {

set sinphi 0.0

}

set x [expr {$sinphi*$costheta}]

set y [expr {$sinphi*$sintheta}]

set z [expr {$cosphi}]

return [list $x $y $z]

}

########################

ATLAS & MESH

########################

Part dimensions, in meters

set length 512e-9 ;# x extent

set width 128e-9 ;# y extent

set thick 6e-9 ;# z extent

Cell dimensions, in meters

set xycellsize 1.Oe-9

set zcellsize 3.Oe-9

Atlas

#The "auto" color function sets up one #

#region for each distinct color in the #

#import image; the name of a region has the#

#form #rrggbb, where rr is two hex rdigits#

#specifying the red component (from 00 to #

#ff), gg specifies the green component, and#

#bb the blue component. #

##

Specify Oxs_ImageAtlas:world [subst {

xrange {0 $length}

yrange {0 $width}

zrange {0 $thick}

viewplane xy

image $grain_map

colorfunction auto

matcherror 0.0

}]

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

62

Get a comprehensive list of all regions

(i.e., grains)

set atlas_regions [GetAtlasRegions :world]

Mesh

############

Specify Oxs_RectangularMesh:mesh [subst {

cellsize {$xycellsize $xycellsize $zcellsize}

atlas :world

}]

#################################

UNIAXIAL ANISOTROPY

#################################

This sets a random unit vector for each

grain region.

##

if {![info exists Rogue]} { set Rogue { } }

foreach grain $atlas_regions {

lappend axes $grain

if {[lsearch -exact $Rogue $grain]>=0} {

Rogue grain

lappend axes {1 0 0}

} else {

Random grain

lappend axes [Texture]

}

}

Specify Oxs_AtlasVectorField:axes [subst {

atlas :world

norm 1.0

values { $axes }

}]

Specify Oxs_UniaxialAnisotropy [subst {

K1 $Ku

axis :axes

}]

######################

EXCHANGE

######################

set A_list { }

foreach grain $atlas_regions {

Intra-grain coupling

lappend A_list $grain $grain $A_intragrain

}

default_A sets intergrain coupling,

A_list sets intragrain coupling

Specify Oxs_Exchange6Ngbr [subst {

default_A $A_intergrain

atlas :world

A { $A_list }

}]

####################################

ZEEMAN (applied field)

####################################

set field 10000 ;# Maximum field (in Oe)

Specify Oxs_UZeeman [subst {

multiplier [expr (1./($mu0*1e4))*$field]

Hrange {

{ 0 0 0 0 0 1 10}

}

}]

H value times "multiplier" is field in A/m

#############################

DRIVER & EVOLVER

#############################

SetOptions [subst {

basename $outname

}]

Evolver

###############

Specify Oxs_CGEvolve:evolve { }

Driver

##############

Specify Oxs_MinDriver [subst {

evolver evolve

stopping_mxHxm $stop

mesh :mesh

Ms { Oxs_ScriptScalarField {

atlas :world

script_args {relpt}

script {Ellipse $Ms}

} }

mO{ 0 0 –1 }

comment {mO :axes}

}]

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

63

6. Appendix B: Sample MIF File,
Cubic Anisotropy

MIF 2.2

Save-path is set to current directory

"stop" is the mxHxm stopping criterion

##

set stop 0.1

set tag CUBIC

RandomSeed 1

Cone angle in proc Texture (q.v.);

specifies angle range for random

anisotropies.

##

Parameter phideg 10 ;# in degrees,

from 0 to 90, 0 is all z.

Input Files

###################

set grain_map rect.ppm

Output Files

####################

set outname [format "${tag}_phi=%g" $phideg]

##

ROGUE GRAIN(s):

Rogue is a list of locations depicting

grain positions. Each location consists of

three values, representing x, y, and z in

simulation coordinates (meters). Leave

this list empty or undefined to have no

Rogue grains.

##

set RoguePos {

391.5e–9 26.5e–9 4.5e–9

285.5e–9 59.5e–9 4.5e–9

}

#######################

CONSTANTS

#######################

set pi [expr {4*atan(1.0)}]

set mu0 [expr {4*$pi*1e–7}]

#######################

MATERIALS

#######################

for Ni

Saturation magnetization, A/m

set Ms 490e3

Magneto-crystalline anisotropy, J/m"3

set Ku -5.7e3

Exchange coupling, J/m:

set A_intragrain 6.9e-12 ;# Intragrain

set A_intergrain 2.Oe-12 ;# Intergrain

###########################

SUPPORT PROCS

###########################

This proc makes ellipses and circles

##

proc Ellipse { Ms x y z } {

Imports x, y, and z are each relative

values, in range [0,1]

set x0 [expr {2*$x-1}]

set y0 [expr {2*$y-1}]

if {$x0*$x0+$y0*$y0 <= 1} {

return $Ms

}

return 0.0

}

This proc generates TEXTURED unit

vector, random in cone about z-axis

with aperture angle 2*$phideg.

##

set cosphirange [expr {cos($phideg*$pi/180.)}]

proc Texture {} {

global pi cosphirange

set theta [expr {(2.*rand()-1.)*$pi}]

set costheta [expr {cos($theta)}]

set sintheta [expr {sin($theta)}]

if {rand()<0.5} {

set sgn -1.0

} else {

set sgn 1.0

}

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

64

set cosphi \

[expr {$sgn*(1-(1-$cosphirange)*rand O)}]

set sinphisq [expr {1.0-$cosphi*$cosphi}]

if {$sinphisq>0.0} {

set sinphi [expr {sqrt($sinphisq)}]

} else {

set sinphi 0.0

}

set x [expr {$sinphi*$costheta}]

set y [expr {$sinphi*$sintheta}]

set z [expr {$cosphi}]

return [list $x $y $z]

}

This proc generates a random unit vector,

uniformly selected on the unit sphere.

##

proc RandomUnitVec { } {

global pi

set theta [expr {(2.*rand()-1.)*$pi}]

set costheta [expr {cos($theta)}]

set sintheta [expr {sin($theta)}]

set cosphi [expr {1.0 - 2.*rand()}]

set sinphi [expr {1.0-$cosphi*$cosphi}]

if {$sinphi>0.0} {

set sinphi [expr {sgrt($sinphi)}]

}

set x [expr {$sinphi*$costheta}]

set y [expr {$sinphi*$sintheta}]

set z [expr {$cosphi}]

return [list $x $y $z]

}

##########################

ATLAS & MESH

##########################

Part dimensions, in meters

set length 512e-9 ; # x extent

set width 128e-9 ; # y extent

set thick 6e-9 ; # z extent

Cell dimensions, in meters

set xycellsize 1.Oe-9

set zcellsize 3.Oe-9

Atlas

Specify Oxs_ImageAtlas:world [subst {

xrange {0 $length}

yrange {0 $width}

zrange {0 $thick}

viewplane xy

image $grain_map

colorfunction auto

matcherror 0.0

}]

Get a comprehensive list of all regions

(i.e., grains)

set atlas_regions [GetAtlasRegions :world]

Map "rogue" grains to regions

foreach {x y z} $RoguePos {

lappend Rogue \

[GetAtlasRegionByPosition :world $x $y $z]

}

Mesh

############

Specify Oxs_RectangularMesh:mesh [subst {

cellsize {$xycellsize $xycellsize $zcellsize}

atlas :world

}]

##############################

CUBIC ANISOTROPY

##############################

Construct a pair of orthogonal anisotropy

axes for each grain region. The third

cubic anisotropy axis is automatically

generated by OOMMF as c = a x b.

##

set A_axes {}

set B_axes {}

if {![info exists Rogue]} { set Rogue {} }

foreach grain $atlas_regions {

lappend A_axes $grain

lappend B_axes $grain

if {[lsearch -exact $Rogue $grain]>=0} {

Rogue grain

lappend A_axes {1 0 0}

lappend B_axes {0 1 0}

} else {

Non-rogue; this grain has random

anisotropy axes

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

65

For first ("a") axis, select unit

vector within phideg cone about z-axis

set a_axis [Texture]

lappend A_axes $a_axis

Construct second ("b") axis,

perpendicular to "a" axis, by grabbing

a random vector on the sphere and

computing an orthogonal vector via the

cross product, b = a x tmp

set ax [lindex $a_axis 0] ;# x,y,z axis

set ay [lindex $a_axis 1] ;# components

set az [lindex $a_axis 2]

set tmp [RandomUnitVec]

set tmpx [lindex $tmp 0]

set tmpy [lindex $tmp 1]

set tmpz [lindex $tmp 2]

while {[expr {abs($ax*$tmpx + $ay*$tmpy \

+ $az*$tmpz)>0.9}]} {

If tmp is too close to a, then a x

tmp may be numerically unstable.

set tmp [RandomUnitVec]

set tmpx [lindex $tmp 0]

set tmpy [lindex $tmp 1]

set tmpz [lindex $tmp 2]

}

Set b = a x tmp. This is not a unit

vector, but the preceding check on

a*tmp guarantees that |b| != 0, which

is good enough. (b will be normalized

inside Oxs_AtlasVectorField:B_axes

below.

set bx [expr {$ay*$tmpz-$az*$tmpy}]

set by [expr {$az*$tmpx-$ax*$tmpz}]

set bz [expr {$ax*$tmpy-$ay*$tmpx}]

lappend B_axes [list $bx $by $bz]

}

}

Specify Oxs_AtlasVectorField:A_axes [subst {

atlas :world

norm 1.0

values { $A_axes }

}]

Specify Oxs_AtlasVectorField:B_axes [subst {

atlas :world

norm 1.0

values { $B_axes }

}]

Specify Oxs_CubicAnisotropy [subst {

K1 $Ku

axisl :A_axes

axis2 :B_axes

}]

######################

EXCHANGE

######################

set A_list { }

foreach grain $atlas_regions {

Intra-grain coupling

lappend A_list $grain $grain $A_intragrain

}

default_A sets intergrain coupling,

A_list sets intragrain coupling

Specify Oxs_Exchange6Ngbr [subst {

default_A $A_intergrain

atlas :world

A { $A_list }

}]

####################################

ZEEMAN (applied field)

####################################

set field 10000 ;# Maximum field (in Oe)

Specify Oxs_UZeeman [subst {

multiplier [expr (1./($mu0*1e4))*$field]

Hrange {

{ 0 0 0 0 0 1 10}

}

}]

H value times "multiplier" is field in A/m

#############################

DRIVER & EVOLVER

#############################

SetOptions [subst {

basename $outname

}]

Evolver

###############

Specify Oxs_CGEvolve:evolve { }

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

66

Driver

##############

Specify Oxs_MinDriver [subst {

evolver evolve

stopping_mxHxm $stop

mesh :mesh

Ms { Oxs_ScriptScalarField {

atlas :world

script_args {relpt}

script {Ellipse $Ms}

} }

mO {1 0 0}

comment {mO :A_axes}

comment {mO :B_axes}

}]

7. References

[1] J. W. Lau, R. D. McMichael, S. H. Chung, J. O. Rantschler,
V. Parekh, and D. Litvinov, Appl. Phys. Lett. 92, 012506
(2008).

[2] A. W. Spargo, P. H. W. Ridley, G. W. Roberts, and R. W.
Chantrell, J. Appl. Phys. 91, 6923 (2002).

[3] M. J. Donahue and D. G. Porter, Interagency Report NISTIR
6376 (National Institute of Standards and Technology,
Gaithersburg, MD). (1999).

[4] G. Hu, T. Thomson, M. Albrecht, M. E. Best, B. D. Terris, C. T.
Rettner, S. Raoux, G. M. McClelland, and M. W. Hart, J. Appl.
Phys. 95, 7013 (2004).

[5] B. D. Terris, M. Albrecht, G. Hu, T. Thomson, and C. T. Rettner,
IEEE Trans. Magn. 41, 2822 (2005).

[6] T. Thomson, G. Hu, and B. D. Terris, Phys. Rev. Lett. 96,
257204 (2006).

[7] P. F. Carcia, J. Vac. Sci. Technol. A 5, 1975 (1987).
[8] Z. G. Li and P. F. Garcia, J. Appl. Phys. 71, 842 (1992).
[9] B. N. Engel, C. D. England, R. A. Vanleeuwen, M. H.

Wiedmann, and C. M. Falco, J. Appl. Phys. 70, 5873 (1991).

About the authors: June Lau is a physicist in the
Metallurgy Division of the NIST Materials Science and
Engineering Laboratory. Robert McMichael is a physi-
cist in the Electron Physics Group of the NIST Center
for Nanoscale Science and Technology. Michael
Donahue is a mathematician in the Mathematical and
Computational Sciences Division of the NIST
Information Technology Laboratory. The National
Institute of Standards and Technology is an agency of
the U.S. Department of Commerce.

Volume 114, Number 1, January-February 2009
Journal of Research of the National Institute of Standards and Technology

67

