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Abstract. A new method for the introduction of periodic boundary conditions to the self-
magnetostatic (demagnetization) term in micromagnetic simulations is described, using an Ewald-
like summation method in real space. The long-range character of the dipolar interactions is 
included without any distance cutoffs. The accumulated errors are carefully monitored to provide 
easy control of the quality of the results. This allows the calculations to be either accurate up to 
floating point limitations, or less precise when computational speed requirements dominate. This 
method is incorporated into a full micromagnetic program, and comparisons are made to analytic 
results. 
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1. Introduction 
Periodic boundary conditions, also called Born-von Karman conditions [1], are a useful concept in many 
areas of physics. In micromagnetic simulations they allow efficient modelling of structures with certain 
geometries. In some sense, open boundary conditions include (or introduce) the effects of the sample 
surface while periodic (in space) boundary conditions (PBC) neglect the influence of the sample surface in 
the analyzed problem. One example where PBC may be successfully employed is in simulating arrays of 
periodically repeated structures, such as dots. This makes PBC an important tool for modelling and 
designing magnetic data storage devices. In principle applying PBC can be done only for infinite samples 
possessing a known periodicity. Often however, considered (finite) samples exceed by orders of 
magnitude the size limits present in the modelling. In such a case, one frequent approach is to model only 
a small part of the sample, for instance small part of the computer hard disk structure containing a few 
ferromagnetic islands. Thus, the elongated nature of the sample is lost. Periodic boundary conditions are 
an important alternative for investigation of such structures. 
 
Among interactions that are usually considered in micromagnetism [2], exchange and demagnetization 
(dipole-dipole) are the ones that are non-local, and therefore require special implementation to handle 
PBC. The exchange interaction has however a short-range character making PBC implementation rather 
simple. To the contrary, demagnetization interactions (“which originate from the classical interactions 
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among the dipoles” [3]) have a long-range character, and implementation of PBC for this term is not 
trivial. A number of papers beginning in late 1980s have suggested various solutions to this problem. One 
can simply neglect the presence of these interactions for distances exceeding a given critical value [4], or 
employ the idea of the Lorentz cavity [5]. Berkov has calculated the lattice sum using a modified Ewald 
method in the Fourier space [6]. As pointed out by Cohen [7] and developed by Mansuripur [8], in Fourier 
space one can analytically compute the dipole field arising from a sinusoidal magnetization pattern. This 
allows a straightforward computation of the dipole field using Fourier transforms. Programs based on fast 
multipole methods may use the idea of Apalkov and Visscher [9]. It should be pointed out that unlike 
boundary conditions that are periodic in one or two of the spatial dimensions, and despite suggestions to 
the contrary in some of the literature, boundary conditions that are periodic in three dimensions are 
problematic. Some of the issues involved are discussed in Sec. “PBC in three dimensions”. 
 
Despite such a wide spectrum of PBC implementation algorithms, periodic boundary conditions are often 
simulated using the most simplified way: the magnetostatic interaction range is truncated to a given 
radius, like first proposed in Ref. [4]. Moreover, this cut-off is related not to an analyzed and expected 
error, but rather to a fixed number of images (periodically repeated “samples”). In this paper we re-
consider the Ewald-like summation method, done in the real space. For simplicity, we focus our 
explanation on one-dimensional (1D) periodic boundary conditions on cubic discretization meshes. We 
show that introduction of far-field interaction cut-off can be avoided and that the choice of critical 
parameters may be done in a systematic way. Exploring the possible errors we show further that 
appropriate selection of parameters allows one to reduce the error to an arbitrary specified level, up to the 
limits imposed by floating point roundoff. We have implemented our algorithm [10] in the publicly 
available micromagnetic simulations package OOMMF [11]. Our simulation results are compared with 
theory for the infinite rod [12] and infinite prism. 
 
2. Principles of PBC 
In the numerical approach to micromagnetism the sample space is discretized and the sample is divided 
into cells. For a regular mesh of right rectangular prisms the cells can be indexed by triples (i,j,k), where 
i = 1..nx, j = 1..ny, k = 1..nz; nxnynz is total number of cells. The inter-cell demagnetization interaction 
(intra-cell interaction is considered as well) can be evaluated using a generalized demagnetization tensor, 
N. In this paper we have used the tensor formulas given by Newell et al. in Ref. [13]; similar formulations 
can be found in [14]. This tensor in Newell's formulation is obtained by calculating magnetic interactions 
assuming that every cell is uniformly magnetized and taking into account both the inter-cell offset and cell 
shape. (Another approach is also present in the literature, where for each cell the magnetization is not 
uniform but, e.g., varies linearly in space [15].) In the non-PBC setting, the average effective 
demagnetization field at index (i,j,k), Hd(i,j,k), can be expressed as: 
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where N(i,j,k) is the generalized demagnetization tensor for the interaction between cells; it depends on 
relative position of the cells. The special case of self-demagnetization/intra-cell interaction, N(0,0,0), is 
the common definition of the demagnetization tensor that can be found in many textbooks (e.g. [16]).  
 
For 1D PBC, we assume that a finite simulation window is repeated infinitely many times in one 
direction; see figure 1. Each repetition will be called an image. In this article we assume that the 
periodicity direction is parallel to the z-axis. The whole infinite sample can be enumerated with an infinite 
set of integers: (i,j,k), where i = 1..nx, j = 1..ny, k = −∞..+∞. The field in cell (i,j,k) can be written as (see 
figure 1; image index h = −1, 0, 1 shown there): 
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where we introduce instead of k’ two separate indexes: h for enumeration of images and m’ for the cells 
inside one image. We then exploit the periodicity of the magnetization (with period nz), and at the end 
rearrange the summation and add parenthesis to stress that the infinite summation concerns only the 
tensor. The interchange of the summations over h and m’ can be justified using the following argument: 
Let d = |r (i,j,k) − r (i,j,k+nz)| be the period width (figure 1). Then, N(i,j,k+hnz) can be majorized by the 
dipole interaction of magnitude O(|dh|−3). Thus, the sums in (2) are absolutely convergent and Fubini’s 
theorem can be applied. (We note in passing that this argument extends to the 2D PBC case as well, but in 
the 3D PBC setting the sum over i,j,k is not absolutely convergent.) As a result, we arrive at a simple 
equation: 
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meaning that in the case of PBC the computation of the demagnetization interaction can be performed in 
the same way as without the PBC (see equation (1)), only the demagnetization tensor must be adapted to 
the PBC – according to the following equation: 
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Summarizing, introduction of PBC into a micromagnetic simulation package can be done by replacing the 
module where the demagnetization tensor is computed with one that evaluates (4). The tensor evaluation 
is typically done once at the start of the program, thus introduction of PBC need only affect the 
initialization stage. 
 
3. PBC in three dimensions  
As noted in the introduction, one typically uses periodic boundary conditions when one wants to ignore 
the effects of distant sample edges. This works if the periodic extension is one- or two-dimensional, 
because in that case the strength of the demagnetizing field arising from the sample edges decays to zero 
in the interior as the sample edges are made more distant. However, this is not the case in three 
dimensions. For example, consider a simulation window in the centre of a uniformly magnetized sphere. 
No matter how large the sphere is, the demagnetizing field throughout the sphere, and in particular inside 
the simulation window, is −M /3. So, clearly, the field from the boundary of a three dimensional sample 
cannot be ignored. Nor is it easy to account for. As a second example, consider again a uniformly 
magnetized part, but suppose the outlying part shape is a prolate ellipsoid instead of a sphere. In this case 
the demagnetizing field is again non-zero, but it is not −M /3 either. Indeed, the magnitude of the 
demagnetizing field will depend on the direction of the magnetization, being less than Ms/3 if the 
magnetization is aligned with the long axis of the ellipsoid, and greater than Ms/3 if the magnetization is in 
the plane orthogonal to the long axis.  
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The root of the problem is that the field from a single point dipole decays with distance as 1/|r |3, and the 
sum across three dimensions, Σi 1/|r i|

3, is divergent; in other words, the sum of the fields is not “absolutely 
convergent.” Although there is cancellation between field terms from cells on various sides of the centre, 
so that the sum of the fields can be made convergent, the results obtained depend strongly on the manner 
in which the summation limit is taken to infinity, as seen from the sphere and ellipsoid examples. This is 
very different from the one- or two-dimensional periodic boundary condition setting, which model 
physical systems of long needles or large flat plates, because magnetization aligned along the direction(s) 
of periodicity in those cases yields an effectively zero demagnetizing field. One may note that the dipole 
field terms arise from the average magnetization in the sample, and that the fields from higher order poles 
(quadrupoles, etc.) are absolutely convergent even in three dimensions. So, in principle, it appears that 
well-defined three-dimensional periodic boundary conditions could be obtained by handling the field from 
the average magnetization component separately from the fields from higher order poles. Unfortunately, it 
is not clear how to compute the average magnetization field component if one allows for closure domains 
outside the simulation window at the boundaries of the physical system. Regardless, details of this 
approach are beyond the scope of the present article.  
 
4. Properties of the tensor NPBC 

The following statements are valid for regular meshes of rectangular cells:  
(A) The demagnetization tensor for non-PBC conditions, N(i,j,k), depends only on the relative position of 
the evaluated cells. This is a very important property (translation invariance) that allows the use of the 
convolution theorem and fast Fourier transform (FFT) algorithm in finite difference programs [17]. The 
tensor NPBC possesses the same feature. 
(B) Another useful property of the demagnetization tensor concerns symmetries of its elements, Nxx, Nxy, 
..., Nzz, which are all either even or odd in the x-, y-, and z-coordinates [13]. We explain further this 
property in Appendix A, where we show that the same symmetries are valid for PBC tensor elements. 
(C) The tensor defined in (4) is periodic in its third argument, with period nz. The same applies, obviously, 
to the magnetization. This allows one to employ the convolution theorem in its native form, because both 
the “signal” and “response” functions have the same periodicity (see for example Ref. [18]). The PBC 
calculations can thus be accelerated by avoiding zero padding in the periodic direction, a process that is 
unavoidable in non-PBC simulations [19]. 
(D) Both N and NPBC are symmetric. 
 
To summarize, the PBC tensor, NPBC, possesses the same important properties as the non-PBC tensor. 
Moreover, due to its periodicity, there is an additional possibility to accelerate simulations. 
 
5. Calculating infinite sum of tensors 
Evaluation of the sum in (4) must be done with care. First, an infinite number of summation elements 
must be handled via a finite number of numerical computations. Second, accumulation of numerical error 
must be considered. The first problem can be solved by the fact that the demagnetization interaction for 
large inter-cell distances can be approximated by a continuous 1D magnetic charge/dipole distribution. 
For this approximation, discrete summation is replaced by integration, which is evaluated analytically. 
Thus, a procedure similar to the Ewald construction is used [20]: far cells are treated/computed differently 
than near ones; see figure 2. We estimate the error introduced by the continuous 1D approximation. See 
Appendix B for details. The critical distance, R2, beyond which the continuous 1D calculation method can 
be used will be discussed shortly. 
  
The second problem, i.e., error accumulated during summation of elements with inter-cell distance smaller 
then R2 (figure 2), requires a more complicated approach. First, we note that the formulas used to calculate 
the demagnetization tensor suffer from numerical errors, which increase for larger inter-cell distances – 
see figure 3 (red/grey points). In figure 3 the errors in the calculated non-PBC tensor element, δNxx, are 
shown as a function of the inter-cell distance. Let us mark Nαβ as the αβ-element of the demagnetization 
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tensor (αβ = xx, xy, …, zz). The error, δNαβ, is defined as the difference between the exact tensor value 

calculated using arbitrary precision methods, exNαβ , and the value returned by our (8 byte, double 

precision) floating point computations, simulNαβ : simul exN N Nαβ αβ αβδ = − . See Appendix B for details. 

Formulas used to compute the demagnetization tensor are quite simple and compact due to their recursive 
structure [13]. Yet, after resolving the recurrence complicated calculations exhibiting catastrophic 
cancellation appear [21]. This is the main source of the δN errors. This method of computation will be 
called cube-cube below, as we have performed the analysis of the introduced errors for the case of cubic 
cells, even though the results also hold in general for other geometries. To deal with the errors caused by 
the cube-cube method, we note that starting from a certain inter-cell distance, R1, the demagnetization 
interaction can be successfully described neglecting the cell’s geometry and approximating the cells by 
point dipoles [22] – see figure 3 (blue/dark-grey points). The dipoles are placed at the centres of the cells 
and the value of each dipole moment is taken as appropriate for the cell’s volume and magnetization. This 
tactic has one additional advantage: the dipolar formulas are much faster to compute than the full formulas 
of [13]. This computational method is henceforth called dipole-dipole. Again, this procedure is similar to 
the Ewald construction, delimiting now three spatial regions where we use different calculation 
approaches: the cube-cube method that takes into account the cell’s geometry, the dipole-dipole method 
that approximates using point dipoles, and the continuous 1D method that assumes continuous 
magnetization distribution – see figure 2. Deeper analysis of cube-cube errors together with a method to 
improve such calculations similar to our approach can be found in Ref. [21]. 
The errors in the PBC demagnetization tensor, computed using the approach described above, consist thus 
of three components: (i) numerical error caused by the cube-cube computation; (ii) method error resulting 
from the dipole-dipole approximation; and (iii) method error caused by the continuous 1D approximation. 
(There are additionally rounding errors arising from the summation of the cube-cube and dipole-dipole 
terms in (4), but these are comparatively minor.) The critical distance R1 should be chosen to balance the 
errors caused by the cube-cube and dipole-dipole methods, according to figure 3. The critical distance R2 

should be chosen to control the error introduced by the continuous 1D method, 
cont con extN N Nαβ αβ αβδ = −∑ . (See Appendix B for a computable estimate to contNαβδ .) For this work R2 was 

automatically selected so that contN N ε
αβ αβδ < , where ε is the specified fidelity level [23]. Thus, it is 

possible to perform quicker and less accurate computations, by setting a higher value of ε (which implies 
smaller R2). It is however also possible to push the computations close to the precision limited by the 
available hardware. For example, for 8 byte floating point computations there are roughly 16 significant 
(decimal) digits, meaning minimal reasonable fidelity parameter value ε ≈ 10−16. Working with smaller ε 
should result in no further quality improvement of the results. The algorithm we propose leads to a 
dynamic choice of parameter R2, depending on the actual tensor element values, while R1 is constant in 
our model. 
Details of our error analysis are given in the Appendix B. 
 
6. Comparison with analytical theory 
We have tested the method described above by running our code [10] and simulating the hysteresis of an 
infinite cylindrical rod (with no magnetocrystalline anisotropy). We have performed the simulations using 
the following material parameters: exchange constant A = 9.604 pJ/m and saturation magnetization Ms = 

490 kA/m. Thus, the exchange length was ( )2
ex 02 / 8nmSA Mλ µ= ≈ . To avoid artificial symmetries we 

applied an offset field with varying randomly cell-to-cell direction and a constant value � 0|Hoffset| = 0.1 mT 
– similar to the simulations presented in Ref. [24]. The mesh cells were cubic. For rod’s radius 0.5 
(normalized, see below) the cells size was 1.25 nm, for larger radii the cell size was 2.5 nm. The mesh 
discretization leads to surface roughness that is obvious if one imagines the circular cross section of the 
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rod as compared to its “step-like” representation by the cubic cell mesh. It appears that “staircase” edge-
errors are more important for rods with larger radius and we had to use special approach in that case – we  
employed the correction method described in Ref. [25]. Using this method, during the initialization stage 
correction factors were calculated by considering finer mesh (cell subdivision 64×64×1) interacting over 
the range of seven local cells. These correction parameters have similar values as in Ref. [25], where they 
are labelled q and p, respectively. For calculation of correction parameters we used fidelity parameter ε 
equal to 10−15. The PBC were applied along the z-axis, z-axis being the long axis of the rod. Most of our 
simulations were done for a simulation window with z-dimension (denoted here as z-length) equal to one 
cell. Except for reversal by buckling, as discussed below, tests with larger z-length showed no visible 
change of the modelled coercivity. The hysteresis loops were rectangular (in agreement with Ref. [12]), so 
the nucleation field |Hn| coincides with the coercive field. More details regarding PBC simulations for 
infinite 1D structures can be found in Ref. [24]. 
 
Analytical theory predicts three possible reversal modes for an infinite rod: coherent, buckling, and 
curling [12]. The magnetization profile in the coherent and curling modes is independent of the z-position, 
while the buckling mode predicts a specific periodicity in the z-direction – see inset of figure 4. 
Dependence of the analytically computed nucleation field, Hn, versus the rod’s radius, R, for each these 
modes is shown with lines in figure 4. Both values Hn and R are normalized similar to Ref. [12]. The field 
normalization factor is related to the demagnetization factor of the rod in the perpendicular direction ([3], 
chapter 9.2.1); it is equal to ½� 0Ms ≈ 308 mT. The radius normalization factor is related to the exchange 

length; it is equal to ex2 20 nmπ λ ≈ . Our simulation results (represented by points in figure 4) fit quite 

well the theoretical curves. Special attention is needed for the case R ≈ 1. At this radius, buckling is the 
preferred reversal mode, so the model has to include the periodicity present in this mode. We have 
performed series of tests for various sample z-lengths. Results are shown in figure 5. For relatively small 
z-lengths the modelled coercivity matches value predicted by the theory of coherent reversal, as in this 
range of z-lengths the expected buckling periodicity in the z-direction cannot be effectively rendered. For 
larger z-lengths modelled results move closer to the expected value for the buckling theory. Best matching 
can be obtained when the z-length is a multiple of the expected period. 
 
To check the errors introduced by our PBC approach we have also performed tests on infinite prisms with 
various rectangular cross sections. We assigned the prism walls to be perpendicular to the x- and y-axes. 
In this case there are no staircase edge-errors. On the other hand, the demagnetization tensor in this case is 
complicated as it is not uniform inside the sample. It is possible, however, to define and analytically 
compute a volume-averaged demagnetization tensor [13, 27], <Ntheory>. This volume-averaged tensor can 
be directly compared to an average of the tensor values across the cells of the sample as computed by our 
simulation, <Nsimul>. Regarding <Ntheory>, its off-diagonal elements are zero due to the fact that both the 
sample and the demagnetization tensor are symmetric. The diagonal element <Ntheory>zz is zero because of 
the infinite length of the rod along the z-direction. The two remaining elements, <Ntheory>xx and <Ntheory>yy, 
can be found by evaluating the formulas from Ref. [13] in the limit of infinite z-edge, given the aspect 
ratio of the x- and y- edges [28].  
 
We performed simulations for structures having different dimensions nx×ny×nz: 2×2×2048, 4×4×512, 
16×16×32, 64×64×2, 64×64×1, 2×512×8, 2×256×256, 1×128×64, 2×64×64, 2×16×256, 8×16×64. (The 
computational cells are cubes, and nx, ny, nz denote the cell counts along each dimension.) The PBC were 
applied (as throughout this paper) along the z-axis. The errors, defined as δ<N> = |<Ntheory> − <Nsimul>|, are 
generally qualitatively similar for all considered cases. Major differences between these structures concern 
the g values, see below. The largest errors, found in the structure 16×16×32, are shown in figure 6 (solid 
symbols). We present here δ<N>xx and δ<N>zz elements plotted versus the fidelity level, ε, defined in the 
previous section [29]. The upper horizontal axis shows the image index g beyond which the 
continuous 1D calculation is used, i.e., roughly half the number of discrete elements indicated in figure 2. 
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Certainly, a lower ε parameter requires a higher value of g. However, exact g values depend strongly on 
the simulation window geometry, mainly on its aspect ratio [30]. Therefore the fidelity level is a better 
parameter for setting the R2 radius (figure 2) than a fixed value of g. In figure 6, as expected, the errors get 
smaller for smaller values of ε. As we work with sixteen digits precision, one might expect that using ε 
smaller then 10−16 will have no further influence on the errors (see previous section). Actual error bottoms 
out at a somewhat larger value, primarily due to errors in the evaluation of the individual tensor elements, 
as illustrated in figure 3.  
 
We have also tested the importance of the continuous 1D calculations. Dipolar interactions have a long-
range character, so it is crucial to consider their presence up to infinity. Open points in figure 6 reflect the 
case when there are no continuous 1D components in the calculation of the NPBC tensor, i.e., a g-controlled 
cut-off is introduced in the interaction. One sees that already for small ε introduction of the cut-off 
increases the error by one order of magnitude. For more accurate computations (smaller ε) this effect is 
even stronger, leading to errors three orders of magnitude larger for ε = 10−10. 
 
7. Summary and conclusions 
This paper describes a method of modification of the demagnetization tensor N for incorporating 1D 
periodic boundary conditions into micromagnetic simulations. The magnetostatic effects from each cell 
and its infinitely repeated images are handled by dividing the images into three domains. In the near-field 
domain, the effects are computed using analytic formula for the interaction between two uniformly 
magnetized cells. Outside the near-field, the analytic formula are numerically inaccurate, so in the mid-
field domain the effects are computed using discrete dipole-dipole interactions, which are also computed 
more quickly than the analytic formula. In the extreme far-field, the discrete dipoles are replaced with a 
continuous dipole distribution, thereby alleviating the truncation error that would occur if the images were 
simply ignored beyond some point. The domain limits are determined in a systematic way to control error. 
Analyzing the errors we conclude that they can be easily controlled by the fidelity parameter, ε, allowing 
accurate modelling for small values of ε. This control may be weakened if desired for faster but less 
precise computations. Either way, the PBC calculations affect only the determination of N in the 
initialization stage of the simulation. As compared to a non-PBC simulation, the computational cost of the 
remainder of the simulation is the same, or even reduced in cases where zero-padding can be eliminated. 
We also show that the results of our algorithm are consistent with analytic predictions. Although only the 
1D PBC with cubic cells setting is considered here, the extensions to two dimensions and non-cubic 
(rectangular prism) cells are straightforward (though computationally more challenging). 
 
Important aspects of our approach include full control of accumulated errors and the importance of 
including dipole interactions up to infinity. It is hoped that these considerations will be useful in other 
PBC algorithms as well, involving, for example, the magnetic scalar potential. 
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Appendix A. Symmetry rules for NPBC tensor elements 
The demagnetization tensor elements possess certain symmetry properties regarding the reflection of 
coordinates. The diagonal elements are even: Nαα(i,j,k) = Nαα(−i,j,k) = Nαα(i,−j,k) = Nαα(i,j,−k), while the 
off-diagonal elements, Nαβ, (α ≠ β), are odd in α and β and even in the third direction, e.g.: Nxy(i,j,k) = 
−Nxy(−i,j,k) = −Nxy(i,−j,k) = Nxy(i,j,−k) [13]. To evaluate in this Appendix the properties of the NPBC tensor, 
we consider one tensor element, Nαβ (diagonal or off-diagonal), that is either even (γ = +1) or odd (γ = −1) 
in the z-coordinate. Naming the operation of reflection of the z-coordinate σz, we thus have the relation 
σz(Nαβ) = γNαβ. The symmetry of the tensor element can then be written as 
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Application of the σ z transformation to the 1D PBC tensor element is shown below (periodic boundary 
conditions are applied along the z-coordinate, nz is the number of cells in the periodicity direction). 
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The case of reflection of the x- or y-axis is even simpler; a few algebraic transformations show that the 
symmetry is retained also in this situation.  
 
Thus, we have shown that PBC and non-PBC tensors have the same symmetries regarding the reflection 
of coordinates. 
 
Appendix B. Errors occurring while evaluating the tensor NPBC 
In our following analysis we focus on cubic cells, though the ideas presented in this Appendix may be 
applied to right rectangular prisms as well. We mark Nαβ (i,j,k) as the αβ-element of the tensor (αβ = xx, 
xy, …, zz) for interaction between cells with relative position vector r  = (i,j,k). Distance-related values are 
given in units of cell edges, thus, e.g., N(1,0,0) denotes interaction between a pair of two adjacent cells 
having common YZ wall. Such an approach is possible due to the scaling properties of N (for NPBC they 
are valid as well): this tensor remains “unchanged if all quantities are scaled by the same amount” [13]. 
The data presented here (except Nex, see below) are results of computations done in “double” (8 byte) 
floating point arithmetic with roughly sixteen decimal digits precision [31]. First, we will describe in 
detail the errors in the cube-cube and dipole-dipole methods, then we will discuss the continuous 1D error. 
 
To evaluate the errors in the cube-cube and the dipole-dipole calculation methods, we have considered a 
limited 3D space region, where the relative i/j/k indices of the cells were in the range of 0..200. Due to 
certain symmetries valid for cubic cells, like Nxx(i,j,k) = Nyy(j,i,k), it is enough to evaluate diagonal tensor 
elements Nxx and off-diagonal Nxy. Computational error of the cube-cube method, δNcc, is defined as the 
absolute difference between a tensor element calculated using this method, Ncc, and a supposed exact 
value, Nex: δNcc = |Ncc − Nex|. Error of the dipole-dipole tensor value, Ndd, is defined in an analogous way: 
δNdd = |Ndd − Nex|. We have obtained the exact values, Nex, using Newell’s formulas [13] in high-precision 
calculations with the Mathematica package, where we used so-called “arbitrary-precision numbers” with 
sixteen accurate digits. The internal intermediate calculations were performed using on-demand up to 50 
digits precision (by setting Mathematica’s variable $MaxExtraPrecision) [32]. In the case of diagonal 
tensor elements, values of δNcc and δNdd plotted against the inter-cell distance, r = |r |, are shown in 
figure 3 (red/grey and blue/dark-grey points, respectively). A picture drawn for off-diagonal elements 
looks very similar. Clearly, the cube-cube method works better for smaller distances, while the dipole-
dipole method introduces smaller errors for larger distances. For r ≈ 200 the cube-cube errors are so 
significant that they may dominate the actual tensor value (green/light-grey points). Treating the errors in 

a stochastic way and fitting the data with a polynomial function, ( ) pN r Arδ = , we obtain the following fit 
parameters for diagonal elements: 

cc 17 cc dd dd
xx xx xx xx2.2 10 , 2.9, 0.023, 7.2A p A p−≈ × ≈ ≈ ≈ − , (B.1) 

for cube-cube and dipole-dipole methods, respectively. Based on the intersection of these two functions, 
the critical distance can be estimated as R1(Nxx) ≈ 31. For off-diagonal tensor elements the parameters are:  

cc 17 cc dd dd
xy xy xy xy1.2 10 , 3.1, 0.011, 6.9A p A p−≈ × ≈ ≈ ≈ − , (B.2) 

and again R1(Nxy) ≈ 31.  
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Concerning the error of the continuous 1D method, δNcont, we have approximated it in following way:  
cont cont ex cont dd dd exN N N N N N Nδ = − ≤ − + −∑ ∑ ∑ ∑ , (B.3) 

where Ncont is the value of the tensor calculated in the continuous 1D method (see B.5). We point out that 
δNcont and Ncont are defined via the sum over PBC images. The last term in the right-hand side of (B.3) can 

be estimated using (B.1) and (B.2): dd ex dd ex ddN N N N Nδ− ≤ − =∑ ∑ ∑ ∑ .  

 

To evaluate the remaining term cont ddN N−∑ , we will first derive the formulas for Ncont. We mark the 

magnetization of a cell as M , and the volume of the cell as V. In the point dipole approximation, the 

demagnetization field around the cell, at offset r = (i,j,k), is ( ) ( )2 5
d ( ) 3 ( ) 4V V π= ⋅ −H r r M r M r r . 

The continuous 1D method is used for distant cells, where |r |>R2 (figure 2). Thus, we are interested in the 

summation ( ) ( )d z d z, , , ,
h g h g

i j k hn i j k hn
∞ −∞

= =−
+ + +∑ ∑H H , where the cut-off index g(R2) depends on the 

radius R2 (see (4) and figure 2). We point out that as we use here units of cell edges, the length d is equal 
to nz, the volume V is equal to one, and the (i,j,k)=(0,0,0) cell is chosen in such a way that the i, j, k 
indexes are nonnegative. We introduce a function  

( ) ( )( ) 2
z z z

5
z

31
( )

4

z z z
z

d zπ

+ ⋅ + − +
=

+

r e M r e M r e
f

r e

$ $ $

$

. (B.4) 

Now, the continuous 1D approximation is equivalent to the following approximation: 

( ) ( )

( )

( )

d d

1 2 def
cont

1 2

, , , ,

( ) ( ) = .

h g h g

d g

d g

i j k hd i j k hd

z dz z dz N

∞ −∞

= =−

− −∞

− −∞

+ + +

≈ + −

∑ ∑

∫ ∫

H H

f f M

 (B.5) 

The integral ( )z dz∫ f  can be evaluated in a closed form. Thus, the elements of the tensor Ncont can be 

derived (the case (i,j)=(0,0) for cont
xxN  and cont

xyN  is handled separately; also as we are interested in 

comparatively large R2 values, we assume that / 1/ 2g k d> + , thus 2g ≥ ): 
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( )

( )( )
( )

( )( )
( )

( )

2 2
cont
xx 2 2 2

41 22 2 1
23/2 2 222 2 1

2

41 22 2 1
23/2 2 222 2 1

2

cont
xy 2 2

2 2

( )
, ,

4 ( )

( ) 2
2 ( )

( )

( ) 2
( ) ,

( )

, ,
4 ( )

(4

j i
N i j k

d i j

k d g i
j k d g

i ji j k d g

k d g i
j k d g

i ji j k d g

ij
N i j k

d i j

k d

i j

π

π

−
=

+


  + −
 + + + + −   − + + + −



 − −
− + + − −  − + + − − 


−
=

+

+
+

+ ( )( )
( )

( )( )
( )

( )

( )( ) ( )( )
( )

211
22

3/2 2 222 2 1
2

211
22

3/2 2 222 2 1
2

cont
xz

3/2 3/22 22 2 2 21 1
2 2

cont
zz

2 ( ))
3

( )

2 ( )( )
3 ,

( )

, ,
4

( ) ( ) ,

1
, ,

4

k d gg

i ji j k d g

k d gk d g

i ji j k d g

i
N i j k

d

i j k d g i j k d g

N i j k
d

π

π

− −


  + −−   +
  ++ + + −  




 − −− −  − +
 ++ + − −  



=

 
+ + + − − + + − − 

 

=

( )( ) ( )( )
1 1

2 2
3/2 3/22 22 2 2 21 1

2 2

( ) ( )
,

( ) ( )

k d g k d g

i j k d g i j k d g

 
 + − − −
 −
 + + + − + + − − 
 

 (B.6) 

( ) ( )
( ) ( )

cont cont
yy zz

cont cont
yz xz

, , , , ,

, , , , .

N i j k N j i k

N i j k N j i k

=

=
 

 
 

cont
xxN  and cont

xyN  have the following form for the special case of i = j =  0: 

( ) ( ) ( )( )
( )

2 2cont 1 1
xx 2 2

cont
xy

1
0,0, ( ) ( ) ,

8

0,0, 0.

N k k d g k d g
d

N k

π
− −= + − + − −

=
 (B.7) 
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Knowing Ncont, the term cont ddN N−∑  from equation (B.3) can be evaluated. We do it using two power 

series expansions. The first time to approximate Ndd to make possible calculating the sum ddN∑ . As this 

sum is known with a precision O(g−γ
), we use a power series expansion to write the whole expression in a 

compatible fashion. Taking the xy element as an example: 

( ) ( ) ( )

( ) ( )

( )

cont dd cont dd dd
xy xy xy xy xy

2 2 2
cont 5 7 9
xy 5 7

6 7
5

, , , , , ,

15( 6 )3
, ,

2 4

5
.

16

h g h g

h g

N N N i j k N i j k hd N i j k hd

ij i j k
N i j k h h O h

d d

ij
g O g

d

π

π

∞ −∞

= =−

∞
− − −

=

− −

 
− = − + + + 

 
 

 + −
= − + +  

 

−
= +

∑ ∑ ∑

∑  (B.8) 

( cont dd
xy xy 0N N− =∑  for i = j = 0). 

 
Following are the results for the remaining elements: 

( )
( )
( )
( )

( )

cont dd 4 5
xx xx 3

cont dd 6 7
xz xz 5

cont dd 4 5
zz zz 3

cont dd 4 5
yy yy 3

cont dd 6 7
yz yz 5

1
,

16
5

,
4

1
,

8
1

,
16
5

.
4

N N g O g
d

ik
N N g O g

d

N N g O g
d

N N g O g
d

jk
N N g O g

d

π

π

π

π

π

− −

− −

− −

− −

− −

− = +

− = +

−
− = +

− = +

− = +

∑

∑

∑

∑

∑

 (B.9) 

 
Our approach might be developed further, e.g., by estimating the total error of the computed tensor 
element and/or checking the trace of the demagnetization tensor, which should be equal to zero for non-
overlapping interacting cells [13]. Generally speaking, the whole tactic presented in figure 2 is based on 
power series expansion, both in construction of Ndd and Ncont. Thus, improvements may be had by 
including higher order elements, leading to a decrease in computational effort and final error. This might 
be especially useful in the case of 2D PBC or non-cubic cells.  
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Figures 

 

  

Figure 1. In the no-periodic boundary condition (no-PBC) case, (a), the interaction between cells with 
indexes (i,j,k) and (i’,j’,k’ ) is described by a demagnetization tensor, N(i−i’ ,j−j’,k−k’). With PBCs, (b), an 
infinite series of “images” has to be evaluated. N depends on the cells’ relative position. d is the period of 
the boundary conditions, êz is the unit vector parallel to the z-axis. (Schematic picture; 1D PBC are shown 
here.) 
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Figure 2. Schematic view: three methods used to compute the demagnetization tensor. Each method is 
applied in its own region. The square elements represent an individual cell and its images across multiple 
periods. Domain’s boundary defined by the critical distance R2 can be equivalently described by the g 
index. 
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  (colour version) 

 (greyscale version) 
 
Figure 3. Errors in computation of non-PBC diagonal tensor elements, δNxx, versus the relative cell 
position r = |r|. Horizontal axis is in units of cubic cell edges. Red/grey points: errors for formulas taking 
into account the cell’s geometry (cube-cube method) [13], blue/dark-grey points: errors in case of point 
dipole approximation. Black and white lines are fits to data. For distance r ≈ 200 the error of cube-cube 
method may already dominate the actual tensor value, Nxx (green/light-grey points). See Appendix B for 
details. 



 Page 17 

 

 
 
Figure 4. Comparison between theoretical predictions for the nucleation field of an infinite rod (lines) [12] 
and our simulations (open points). For radius R ≈ 1, one simulation was done choosing the simulation 
window length equal to the buckling period (sample A). The other simulation was done assuming a one-
cell length (sample B). The inset shows schematically the profiles of the three nucleation modes. 
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Figure 5. Nucleation field (vertical axis) modelled for different sample z-length (horizontal axis). The 
latter is normalized by the expected by theory [12] buckling period. Additional vertical lines show 
predicted coercivity for the buckling and coherent mode.
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Figure 6. Errors in the computed average demagnetization tensor elements δ<N>xx (squares) and δ<N>zz 
(triangles) for an infinite rectangular prism as a function of the fidelity level, ε (solid points). Simulation 
window size: nx×ny×nz = 16×16×32. The errors are reduced with smaller values of ε until bottoming out at 
ε ≈ 10−12 to 10−10. Open points represent the situation when no continuous 1D calculation is done, i.e., 
when a cut-off in the dipolar interaction is introduced. The upper horizontal axis gives the image index g 
beyond which the continuous 1D calculation is used. 


