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Abstract. A new method for the introduction of pelic boundary conditions to the self-
magnetostatic (demagnetization) term in micromagrsinulations is described, using an Ewald-
like summation method in real space. The long-raogaracter of the dipolar interactions is
included without any distance cutoffs. The accutadaerrors are carefully monitored to provide
easy control of the quality of the results. Thilwak the calculations to be either accurate up to
floating point limitations, or less precise whemymutational speed requirements dominate. This
method is incorporated into a full micromagnetiognam, and comparisons are made to analytic
results.

PACS: 75.40.Mg Numerical simulation studies. 0BT ®inite-difference methods. 02.60.Cb
Numerical simulation; solution of equations. 41@0 Magnetostatics; magnetic shielding,
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1. Introduction

Periodic boundary conditions, also called Born-von Karman conditionarglja useful concept in many
areas of physics. In micromagnetic simulations they allffisient modelling of structures with certain
geometries. In some sensmen boundary conditions include (or introduce) the effects of the sample
surface whileperiodic (in space) boundary conditions (PBC) neglect the influence of the sarnfipleesn

the analyzed problem. One example where PBC may be successfpllgyed is in simulating arrays of
periodically repeated structures, such as dots. This makesaRBi@portant tool for modelling and
designing magnetic data storage devices. In principle applB@dan be done only for infinite samples
possessing a known periodicity. Often however, considered (finitepleanexceed by orders of
magnitude the size limits present in the modelling. In suclse, cme frequent approach is to model only
a small part of the sample, for instance small part ofctmputer hard disk structure containing a few
ferromagnetic islands. Thus, the elongated nature of the sasnloigt.i Periodic boundary conditions are
an important alternative for investigation of such structures.

Among interactions that are usually considered in micromagn®knexchange and demagnetization
(dipole-dipole) are the ones that are non-local, and thereégpgire special implementation to handle
PBC. The exchange interaction has however a short-range tearaking PBC implementation rather
simple. To the contrary, demagnetization interactions (“whichirate from the classical interactions
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among the dipoles” [3]) have a long-range character, and ingpiation of PBC for this term is not
trivial. A number of papers beginning in late 1980s have suggestedisaolutions to this problem. One
can simply neglect the presence of these interactions fondéstaexceeding a given critical value [4], or
employ the idea of the Lorentz cavity [5]. Berkov has caledldhe lattice sum using a modified Ewald
method in the Fourier space [6]. As pointed out by Cohen [7] and gexely Mansuripur [8], in Fourier
space one can analytically compute the dipole field arising &@imusoidal magnetization pattern. This
allows a straightforward computation of the dipole field usiogrfer transforms. Programs based on fast
multipole methods may use the idea of Apalkov and Visscher [8hdtld be pointed out that unlike
boundary conditions that are periodic in one or two of the spatisrsions, and despite suggestions to
the contrary in some of the literature, boundary conditions thapewedic in three dimensions are
problematic. Some of the issues involved are discussed in Sec. “PBCeiwlitensions”.

Despite such a wide spectrum of PBC implementation algorithengdic boundary conditions are often
simulated using the most simplified way: the magnetostataraation range is truncated to a given
radius, like first proposed in Ref. [4]. Moreover, this offtis related not to an analyzed and expected
error, but rather to a fixed number of images (periodically repkeésamples”). In this paper we re-
consider the Ewald-like summation method, done in the real spacesimplicity, we focus our
explanation on one-dimensional (1D) periodic boundary conditions on cubietdiatibpn meshes. We
show that introduction of far-field interaction cut-off can be awbided that the choice of critical
parameters may be done in a systematic way. Exploring the possibls we show further that
appropriate selection of parameters allows one to reducarrieto an arbitrary specified level, up to the
limits imposed by floating point roundoff. We have implemented dgorighm [10] in the publicly
available micromagnetic simulations package OOMMF [11]. €nulation results are compared with
theory for the infinite rod [12] and infinite prism.

2. Principles of PBC
In the numerical approach to micromagnetism the sample spalisciretized and the sample is divided
into cells. For a regular mesh of right rectangular prism<éfie can be indexed by tripleg,k), where
i=1.n, j=1.n, k=1.n,; nayn, is total number of cells. The inter-cell demagnetizatioerattion
(intra-cell interaction is considered as well) can bewatad using a generalized demagnetization tensor,
N. In this paper we have used the tensor formulas given by Newnadlin Ref. [13]; similar formulations
can be found in [14]. This tensor in Newell's formulation is obtabhedalculating magnetic interactions
assuming that every cell is uniformly magnetized and taking otoumt both the inter-cell offset and cell
shape. (Another approach is also present in the literaturetewfor each cell the magnetization is not
uniform but, e.g., varies linearly in space [15].) In the non-PBQingetthe average effective
demagnetization field at indekj(k), Hq(i,j,K), can be expressed as:

NNy 1,
Hali, i k)== > N(i-i"j-j"k -k')M("j'k"), (1)

i) k'=1
whereN(i,j,k) is the generalized demagnetization tensor for the interabetween cells; it depends on
relative position of the cells. The special case of self-gaetization/intra-cell interactiori\(0,0,0), is
the common definition of the demagnetization tensor that can be found in many textbpols{e

For 1D PBC, we assume that a finite simulation window is repedafedtely many times in one
direction; see figure 1. Each repetition will be called anginaln this article we assume that the
periodicity direction is parallel to the z-axis. The whole infinaenple can be enumerated with an infinite
set of integers:if,k), wherei = 1.n,, j = 1.n,, k=—o0..400. The field in cell {j,k) can be written as (see
figure 1; image indek =-1, 0, 1 shown there):
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PBC =
HGPC0,jk)==-> > NG-ij-j'k k' )M{',j'k")
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nxvrS/ too N,
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nxvrS/ to N, (2)
== > > N(i=i"j=j'k =(hn, +m))M (i, j',m)

i",j'=lh=—om'=1
nxvrS/ n, +00
=3 3| F NGt -kt 1
i",j'=1m'=1\ h=—c0
where we introduce instead kf two separate indexeh:for enumeration of images amal for the cells
inside one image. We then exploit the periodicity of the magnietizéwith periodn,), and at the end
rearrange the summation and add parenthesis to stress thaffiite summation concerns only the
tensor. The interchange of the summations dvandm’ can be justified using the following argument:
Let d = f(i,j,k) = r(i,j,k+n,)| be the period width (figure 1). TheN(i,j,k+hn,) can be majorized by the
dipole interaction of magnitud®(|dh[~). Thus, the sums in (2) are absolutely convergent and Fubini's
theorem can be applied. (We note in passing that this argumentlexb the 2D PBC case as well, but in
the 3D PBC setting the sum ovigrk is not absolutely convergent.) As a result, we arrive dmale
equation:
NNy,
HEPCh, i k)=- > NPEC(i-i"j-j'k -k IM(i"j'k'), (3)
i) k'=1
meaning that in the case of PBC the computation of the demamimatiinteraction can be performed in
the same way as without the PBC (see equation (1)), onlyetimagnetization tensor must be adapted to
the PBC — according to the following equation:

+00
NPESG, k)= N(i,jk+hn,). (4)

h=-c0
Summarizing, introduction of PBC into a micromagnetic simulatackpge can be done by replacing the
module where the demagnetization tensor is computed with one tlatts (4). The tensor evaluation
is typically done once at the start of the program, thus intramtucti PBC need only affect the
initialization stage.

3. PBC in three dimensions

As noted in the introduction, one typically uses periodic boundary conditibea one wants to ignore
the effects of distant sample edges. This works if the periediension is one- or two-dimensional,
because in that case the strength of the demagnetizing figltpadrom the sample edges decays to zero
in the interior as the sample edges are made more distamievdr, this is not the case in three
dimensions. For example, consider a simulation window in the cen&reuoiformly magnetized sphere.
No matter how large the sphere is, the demagnetizing fieddighout the sphere, and in particular inside
the simulation window, isM/3. So, clearly, the field from the boundary of a three dimenskerabple
cannot be ignored. Nor is it easy to account for. As a second exanwisider again a uniformly
magnetized part, but suppose the outlying part shape is a pitifsei@ instead of a sphere. In this case
the demagnetizing field is again non-zero, but it is nel/3- either. Indeed, the magnitude of the
demagnetizing field will depend on the direction of the magneéiizabeing less thaMy/3 if the
magnetization is aligned with the long axis of the ellipsoid, and greateMifaif the magnetization is in
the plane orthogonal to the long axis.
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The root of the problem is that the field from a single poipbldi decays with distance asr [f/|and the
sum across three dimensioﬁsllhf, is divergent; in other words, the sum of the fields is not “absglutel
convergent.” Although there is cancellation between field terom frells on various sides of the centre,
so that the sum of the fields can be made convergent, thesrebtdined depend strongly on the manner
in which the summation limit is taken to infinity, as seen ftbim sphere and ellipsoid examples. This is
very different from the one- or two-dimensional periodic boundamdition setting, which model
physical systems of long needles or large flat plates, beaaagnetization aligned along the direction(s)
of periodicity in those cases yields an effectively zero dgretizing field. One may note that the dipole
field terms arise from the average magnetization in the@karand that the fields from higher order poles
(quadrupoles, etc.) are absolutely convergent even in threegions. So, in principle, it appears that
well-defined three-dimensional periodic boundary conditions could baebthy handling the field from
the average magnetization component separately from theflietdshigher order poles. Unfortunately, it
is not clear how to compute the average magnetization fielg¢pa@oemt if one allows for closure domains
outside the simulation window at the boundaries of the physicalnsy®egardless, details of this
approach are beyond the scope of the present article.

4. Properties of the tensoiN"E®

The following statements are valid for regular meshes of rectancgllar

(A) The demagnetization tensor for non-PBC conditidi(sj,k), depends only on the relative position of
the evaluated cells. This is a very important property (tadiiosl invariance) that allows the use of the
convolution theorem and fast Fourier transform (FFT) algorithmnitef difference programs [17]. The
tensorN"®¢ possesses the same feature.

(B) Another useful property of the demagnetization tensor coacmmetries of its elements,,, Ny,

..., Nz, which are all either even or odd in the x-, y-, and z-coordinatés\1& explain further this
property in Appendix A, where we show that the same symmetries are vaiB@tensor elements.

(C) The tensor defined in (4) is periodic in its third argumeith periodn,. The same applies, obviously,
to the magnetization. This allows one to employ the convolution timeiorés native form, because both
the “signal” and “response” functions have the same perigdisée for example Ref. [18]). The PBC
calculations can thus be accelerated by avoiding zero paiidihg periodic direction, a process that is
unavoidable in non-PBC simulations [19].

(D) BothN andN"2¢ are symmetric.

To summarize, the PBC tensdi’®®, possesses the same important properties as the non-PBC tensor.
Moreover, due to its periodicity, there is an additional possibility tola@te simulations.

5. Calculating infinite sum of tensors

Evaluation of the sum in (4) must be done with care. First, famtérnumber of summation elements
must be handled via a finite number of numerical computationen8eaccumulation of numerical error
must be considered. The first problem can be solved by théhfetcthe demagnetization interaction for
large inter-cell distances can be approximated loprainuous 1Dmagnetic charge/dipole distribution.
For this approximation, discrete summation is replaced by mtiegr which is evaluated analytically.
Thus, a procedure similar to the Ewald construction is usedfi@03ells are treated/computed differently
than near ones; see figure 2. We estimate the error intrddwycéhecontinuous 1Dapproximation. See
Appendix B for details. The critical distand®, beyond which theontinuous 1Dcalculation method can
be used will be discussed shortly.

The second problem, i.e., error accumulated during summation of elements wittelhtiéstance smaller
thenR; (figure 2), requires a more complicated approach. First, we matéhte formulas used to calculate
the demagnetization tensor suffer from numerical errors, twimcrease for larger inter-cell distances —
see figure 3 (red/grey points). In figure 3 the errors in tleutated non-PBC tensor elemed,,, are

shown as a function of the inter-cell distance. Let us Magkas theaF-element of the demagnetization
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tensor @B = xx, Xy, ..., zz). The errordNgg, is defined as the difference between the exact tensor value
calculated using arbitrary precision metho ;2‘; and the value returned by our (8 byte, double

precision) floating point computatlonst'm“'. ONgp = Nf,'[}’“' - Ny5|. See Appendix B for details.

Formulas used to compute the demagnetization tensor are quite sind compact due to their recursive
structure [13]. Yet, after resolving the recurrence corapdid calculations exhibiting catastrophic
cancellation appear [21]. This is the main source ofdthesrrors. This method of computation will be
calledcube-cubebelow, as we have performed the analysis of the introducerb dar the case of cubic
cells, even though the results also hold in general for other geesn@to deal with the errors caused by
the cube-cubemethod, we note that starting from a certain inter-celladst,R;, the demagnetization
interaction can be successfully described neglecting the geldmetry and approximating the cells by
point dipoles [22] — see figure 3 (blue/dark-grey points). The dfpate placed at the centres of the cells
and the value of each dipole moment is taken as approfwoidtee cell's volume and magnetization. This
tactic has one additional advantage: the dipolar formulas are nateh i compute than the full formulas
of [13]. This computational method is henceforth catlgzble-dipole Again, this procedure is similar to
the Ewald construction, delimiting now three spatial regions wiveee use different calculation
approaches: theube-cubemethod that takes into account the cell’'s geometrydipele-dipolemethod
that approximates using point dipoles, and #entinuous 1D method that assumes continuous
magnetization distribution — see figure 2. Deeper analystsiloé-cubeerrors together with a method to
improve such calculations similar to our approach can be found in Ref. [21].

The errors in the PBC demagnetization tensor, computed usiagpiheach described above, consist thus
of three components: (i) numerical error caused bycthe-cubecomputation; (i) method error resulting
from thedipole-dipoleapproximation; and (iii) method error caused bydbetinuous 1Dapproximation.
(There are additionally rounding errors arising from the sunemaif the cube-cubeand dipole-dipole
terms in (4), but these are comparatively minor.) ThécafitistanceR; should be chosen to balance the
errors caused by thmube-cubeanddipole-dipolemethods, according to figure 3. The critical distaRge
should be chosen to control the error introduced by tlentinuous 1D method,

SN =NSY -3 N, 155" ) For this workR, was

automatically selected so thaﬂNwm/ N,z <&, whereg is the specified fidelity level [23]. Thus, it is

possible to perform quicker and less accurate computations, mgsaetiigher value of (which implies
smallerRy). It is however also possible to push the computations cloffeetprecision limited by the
available hardware. For example, for 8 byte floating point computathere are roughly 16 significant
(decimal) digits, meaning minimal reasonable fidelity patamealues~ 10°. Working with smallers
should result in no further quality improvement of the resulte &lgorithm we propose leads to a
dynamic choice of paramet&, depending on the actual tensor element values, \While constant in
our model.

Details of our error analysis are given in the Appendix B.

6. Comparison with analytical theory

We have tested the method described above by running our codfl8jmulating the hysteresis of an
infinite cylindrical rod (with no magnetocrystalline anisotropf)e have performed the simulations using
the following material parameters: exchange constant9.604 pJ/m and saturation magnetizatiby=

490 kA/m. Thus, the exchange length whg = IZA/(,uOMé) = 8nm. To avoid artificial symmetries we

applied an offset field with varying randomly cell-to-cell dilen and a constant valugH sfsed = 0.1 mT

— similar to the simulations presented in Ref. [24]. The medk a&re cubic. For rod’'s radius 0.5
(normalized, see below) the cells size was 1.25 nm, for laegiirthe cell size was 2.5 nm. The mesh
discretization leads to surface roughness that is obvious ifntagines the circular cross section of the
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rod as compared to its “step-like” representation by thécarsdl mesh. It appears that “staircase” edge-
errors are more important for rods with larger radius and wetdvase special approach in that case — we
employed the correction method described in Ref. [25]. Using thisatheduring the initialization stage
correction factors were calculated by considering finer mesih gabdivision 6464x1) interacting over
the range of seven local cells. These correction paranfeeessimilar values as in Ref. [25], where they
are labelledq andp, respectively. For calculation of correction parameters seal didelity parameteg
equal to 10®. The PBC were applied along the z-axis, z-axis being the long#ttie rod. Most of our
simulations were done for a simulation window with z-dimension (@ehloere as z-length) equal to one
cell. Except for reversal by buckling, as discussed belows tegh larger z-length showed no visible
change of the modelled coercivity. The hysteresis loops werengedsa (in agreement with Ref. [12]), so
the nucleation fieldH,| coincides with the coercive field. More details regardd®C simulations for
infinite 1D structures can be found in Ref. [24].

Analytical theory predicts three possible reversal modesafolinfinite rod: coherent, buckling, and
curling [12]. The magnetization profile in the coherent and curling sma&lmdependent of the z-position,
while the buckling mode predicts a specific periodicity in thdiraction — see inset of figure 4.
Dependence of the analytically computed nucleation flgldyversus the rod’s radiu®, for each these
modes is shown with lines in figure 4. Both valligsandR are normalized similar to Ref. [12]. The field
normalization factor is related to the demagnetization facttineofod in the perpendicular direction ([3],
chapter 9.2.1); it is equal toigs ~ 308 mT. The radius normalization factor is related to the exchange

length; it is equal toy2774,, = 20 nm. Our simulation results (represented by points in figure 4) fiequit

well the theoretical curves. Special attention is neddethe caseR= 1. At this radius, buckling is the
preferred reversal mode, so the model has to include the perogdieisent in this mode. We have
performed series of tests for various sample z-lengthsilReswe shown in figure 5. For relatively small
z-lengths the modelled coercivity matches value predicted byhtary of coherent reversal, as in this
range of z-lengths the expected buckling periodicity in the ztifire cannot be effectively rendered. For
larger z-lengths modelled results move closer to the expected faalthe buckling theory. Best matching
can be obtained when the z-length is a multiple of the expected period.

To check the errors introduced by our PBC approach we have afeonpedt tests on infinite prisms with
various rectangular cross sections. We assigned the priimtwae perpendicular to the x- and y-axes.
In this case there are no staircase edge-errors. On the otherteaddirtagnetization tensor in this case is
complicated as it is not uniform inside the sample. It is iplesshowever, to define and analytically
compute a volume-averaged demagnetization tensor [13, R?]*%. This volume-averaged tensor can
be directly compared to an average of the tensor values dbsosslls of the sample as computed by our
simulation, N*™>. Regarding K™%, its off-diagonal elements are zero due to the fact thifit the
sample and the demagnetization tensor are symmetric. The diatemant &%, is zero because of
the infinite length of the rod along the z-direction. The twoaiming elements, N"*°%,, and <Nthe°“5yy,

can be found by evaluating the formulas from Ref. [13] in the lhinfinite z-edge, given the aspect
ratio of the x- and y- edges [28].

We performed simulations for structures having different dsi@ns nxnyxn,: 2x2x2048, 4&4x512,
16x16x32, 64<64x2, 64x64x1, 2x512%x8, 2x256x256, X128x64, 2x64x64, 2x16%x256, &16x64. (The
computational cells are cubes, amdn,, n, denote the cell counts along each dimension.) The PBC were
applied (as throughout this paper) along the z-axis. The errors, defideNas [N — <N*™5| are
generally qualitatively similar for all considered casegajdvdifferences between these structures concern
the g values, see below. The largest errors, found in the strut@m6x32, are shown in figure 6 (solid
symbols). We present hedgN>,, and <N>,, elements plotted versus the fidelity leveldefined in the
previous section [29]. The upper horizontal axis shows the image igdéeyond which the
continuous 1Dcalculation is used, i.e., roughly half the number of discretaesits indicated in figure 2.
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Certainly, a lowers parameter requires a higher valuegoHowever, exact) values depend strongly on
the simulation window geometry, mainly on its aspect ratio [3Bgr&fore the fidelity level is a better
parameter for setting tHe, radius (figure 2) than a fixed value @fIn figure 6, as expected, the errors get
smaller for smaller values a&f As we work with sixteen digits precision, one might expkat usinge
smaller then 18° will have no further influence on the errors (see previous®®. Actual error bottoms
out at a somewhat larger value, primarily due to errors irtaduation of the individual tensor elements,
as illustrated in figure 3.

We have also tested the importance of¢betinuous 1Dcalculations. Dipolar interactions have a long-
range character, so it is crucial to consider their presepde infinity. Open points in figure 6 reflect the
case when there are nontinuous 10components in the calculation of tNB® tensor, i.e., @-controlled
cut-off is introduced in the interaction. One sees that alrédadygmall ¢ introduction of the cut-off
increases the error by one order of magnitude. For more accoraputations (smalleg) this effect is
even stronger, leading to errors three orders of magnitude larger=fb@™°.

7. Summary and conclusions

This paper describes a method of modification of the demagtetiz@nsorN for incorporating 1D
periodic boundary conditions into micromagnetic simulations. The magatitosffects from each cell
and its infinitely repeated images are handled by dividiegirnages into three domains. In the near-field
domain, the effects are computed using analytic formula forirttegzaction between two uniformly
magnetized cells. Outside the near-field, the analytic famaué numerically inaccurate, so in the mid-
field domain the effects are computed using discrete dipole-dip@actions, which are also computed
more quickly than the analytic formula. In the extreme faldfithe discrete dipoles are replaced with a
continuous dipole distribution, thereby alleviating the truncation énadrwould occur if the images were
simply ignored beyond some point. The domain limits are determireegystematic way to control error.
Analyzing the errors we conclude that they can be easily cadrbl} the fidelity parameteg, allowing
accurate modelling for small values af This control may be weakened if desired for faster but less
precise computations. Either way, the PBC calculations afiatyt the determination oN in the
initialization stage of the simulation. As compared to a nB@-Bimulation, the computational cost of the
remainder of the simulation is the same, or even reduced é&s gdsere zero-padding can be eliminated.
We also show that the results of our algorithm are consigtiémtanalytic predictions. Although only the
1D PBC with cubic cells setting is considered here, the drendo two dimensions and non-cubic
(rectangular prism) cells are straightforward (though computationadle challenging).

Important aspects of our approach include full control of accumulatents and the importance of
including dipole interactions up to infinity. It is hoped that thesesitlerations will be useful in other
PBC algorithms as well, involving, for example, the magnetic scalartaiten

Acknowledgments
We acknowledge support from Polish Ministry of Science and Higkducation (Grant No.
1346/B/H03/2007/33) and from European agency COST Action P19 (WG3).

Appendix A. Symmetry rules for N°€ tensor elements

The demagnetization tensor elements possess certain symmetrytipsopegarding the reflection of
coordinates. The diagonal elements are eMan(i,j,K) = Ngo(—1,j,K) = Ngoli,—j,K) = Nggli,j,—K), while the
off-diagonal elementd\,z (a # f), are odd ina and 3 and even in the third direction, e.fy(i,j,k) =
—Nyy (—i,],K) = =Ny (i,—},K) = Ny (i,j,—K) [13]. To evaluate in this Appendix the properties ofNRE® tensor,
we consider one tensor elemeg (diagonal or off-diagonal), that is either evgr(+1) or odd f= —1)
in the z-coordinate. Naming the operation of reflection of teeardinated;, we thus have the relation
0(Nap) = WNgp. The symmetry of the tensor element can then be written as
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7, (Nag (i, 1K) = Nag (i, 1,7K) = yNgg (i, k). (A1)
Application of theg, transformation to the 1D PBC tensor element is shown belowoferioundary
conditions are applied along the z-coordinatés the number of cells in the periodicity direction).

+00
7, (NGBS (1,1.6)) = NEPS(i, k) = 3. Nog (i, -k + hiry)
h=—co
(A.2)
e - oo - BC -
= 3 WNeg (i k-hn )=y 3 N (i jk+ Hn) =y Ng(i K

h=—c0 h":—oo
The case of reflection of the x- or y-axis is even simpldewaalgebraic transformations show that the
symmetry is retained also in this situation.

Thus, we have shown that PBC and non-PBC tensors have the sametrsgsnragarding the reflection
of coordinates.

Appendix B. Errors occurring while evaluating the tensorN"&¢

In our following analysis we focus on cubic cells, though the ideesepted in this Appendix may be
applied to right rectangular prisms as well. We miggk(i,j,k) as theaZ-element of the tensoof5 = xx,

Xy, ..., zz) for interaction between cells with relative positiestaerr = (i,j,k). Distance-related values are
given in units of cell edges, thus, e§(1,0,0) denotes interaction between a pair of two adjacest cell
having common YZ wall. Such an approach is possible due to thirgspabperties oN (for N°5¢ they

are valid as well): this tensor remains “unchanged ifjafintities are scaled by the same amount” [13].
The data presented here (exchft see below) are results of computations done in “double” (8 byte)
floating point arithmetic with roughly sixteen decimal digits B®n [31]. First, we will describe in
detail the errors in theube-cubenddipole-dipolemethods, then we will discuss tbentinuous 1Derror.

To evaluate the errors in tloebe-cubeand thedipole-dipolecalculation methods, we have considered a
limited 3D space region, where the relatijjék indices of the cells were in the range of 0..200. Due to
certain symmetries valid for cubic cells, likk(i,j,k) = Ny,(j,i,k), it is enough to evaluate diagonal tensor
elementsN,, and off-diagonaN,,. Computational error of theube-cubemethod,dN*, is defined as the
absolute difference between a tensor element calculated thssngrethod,N*, and a supposed exact
value,N* N = N°° - N*|. Error of thedipole-dipoletensor valueN™, is defined in an analogous way:
AN = N - N*|. We have obtained the exact valud®, using Newell’s formulas [13] in high-precision
calculations with thélathematicapackage, where we used so-called “arbitrary-precision numbetis”
sixteen accurate digits. The internal intermediate taioms were performed using on-demand up to 50
digits precision (by settinglathematica’svariable $MaxExtraPrecision) [32]. In the case of diagonal
tensor elements, values o and AN™ plotted against the inter-cell distanges f|, are shown in
figure 3 (red/grey and blue/dark-grey points, respectively). @&upté drawn for off-diagonal elements
looks very similar. Clearly, theube-cubemethod works better for smaller distances, while dipmle-
dipole method introduces smaller errors for larger distances.r RoR00 thecube-cubeerrors are so
significant that they may dominate the actual tensor @reen/light-grey points). Treating the errors in

a stochastic way and fitting the data with a polynomial funct@(r) = ArP, we obtain the following fit
parameters for diagonal elements:
€ =22x10Y p= 2.9A%~ 0.023pd%- 7, (B.1)
for cube-cubeanddipole-dipolemethods, respectively. Based on the intersection of theseutvetidns,
the critical distance can be estimatedRgd,) ~ 31. For off-diagonal tensor elements the parameters are:

Ar =1.2x10" pS= 3.1A%%= 0.011p3%- 6, (B.2)
and agairR;(N,y) =~ 31.
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Concerning the error of treontinuous 1Dmethod,AN®", we have approximated it in following way:
SNCont = Ncont_z Ne>1S| N cont_z N d11+|z N dd_z N eix’ (B.3)
whereN®" is the value of the tensor calculated in tbatinuous 1Dmethod (see B.5). We point out that
N°"andN*“™ are defined via the sum over PBC images. The last tetheiright-hand side of (B.3) can
be estimated using (B.1) and (B.izz N9 - N < Z| N - Ne>1 =S oN"

To evaluate the remaining ter"hl cont % Nddl , we will first derive the formulas faX®"™. We mark the
magnetization of a cell asl, and the volume of the cell & In the point dipole approximation, the
demagnetization field around the cell, at offset (i,j,k), is Hd(r):(3 M B)-W | |2)/(47r| |5)
Thecontinuous 1Dmethod is used for distant cells, wheteR, (figure 2). Thus, we are interested in the
summation i Hq(i,j k +hn,)+ i H4(i,j .k +hn,), where the cut-off indexi(R;) depends on the
radiusR, (S(:eg(4) and figure 2). Vr\';e gpoint out that as we use herediritdl edges, the lengthis equal

to n,, the volumeV is equal to one, and thej,k)=(0,0,0) cell is chosen in such a way that ithg k
indexes are nonnegative. We introduce a function

L3 +ézz)(|\/| r +ézz))—|v| f +eAz42 |

f(2)= (B.4)
A 5
4rd |r +e;z

Now, thecontinuous 1Dapproximation is equivalent to the following approximation:
> Hg(i ik +hd)+ > Hy(i,jk+hd)
h=g h=-g

00 —d(g—1/2) def (BS)

= [ f(@dz+ [ f(3dz=- "™,
d(9-¥2) o

The integraljf (z) dz can be evaluated in a closed form. Thus, the elements of the NfSaan be

derived (the casei,j)=(0,0) for NiX™ and N™ is handled separately; also as we are interested in
comparatively larg&, values, we assume thgt>k/ d+1/2, thusg=2):
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.2 .2
ncont i j.k)= (jc-19)
XX ( ) 4ﬂd(i2+j2)2

k+d(¥ - it
2+ et ) 23,2[1'2+i22_|_2+(k+d(%—g))2]
(i2+j2+(k +d(%-9)) )

k-d(% -9 . 24
L - 23/2[12+i2_l.2+(k_d(%_9))2J 1
(|2+12+(k—d(%—g))) J
Ncont i k)= _ij
' (1n1:) 4rd (i2 + j2)

4 N k+d(¥%-9) [3+ 2(k+d(%_g))2}

i2 52 32 i2,:2
A R A o

 k-d(4-9 [3+2(k—d(%—g))2]
(217 +(k-003-0)) i

N (i, j,k)=ﬁ

[(i2 +j2+(k +d(}/2—<91))2)_3/2 -

-3/2
i2+12+(k—d(}§—g))2) j

cont(; _L
NS (I,j,k)—4ﬂd
k+d(%,- 9 _ k=d}- 9
3/2 3/2
(i2+j2+(k +d(%—g))2) (i2+j2+(k—d(%—g))2)
Ny (i, j.k) = N (i k)
Ny (i, k) = N (i k) .

Nge™ and Ng>™ have the following form for the special case ofj = 0:

N (0,04 = —((k+ - 9) " + (k- - 9)7).

Ny™(0,0,k) = 0.
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Knowing N®", the term

NEkEDY Nddl from equation (B.3) can be evaluated. We do it using two power

series expansions. The first time to approxiniiteto make possible calculating the s@wdOI . As this

sum is known with a precisioD(g”), we use a power series expansion to write the whole expnessa
compatible fashion. Taking the xy element as an example:

Ngont _ 5 Nxdydz cont(, j, k)—(ég Nx‘y’(’( i, j,k+ hd) + 2 W‘f( i j, K+ ho)]

g

. i e 3 5 15(%+j%-&?), _ _
=N;;’m(.,1,k)-inhz(2d_5h5+ Ca )h7+O(h9)] &9)
=g

ol

(NS =3 NG =0 fori =j = 0).

Following are the results for the remaining elements:

cont dd _ 1 -4 =5
Nxx _ZNXX_].Gﬂng +O(g )’

cont _ dd _ Sik -6 -
NXz szz_4ﬂd59 +O(g )1

cont _ dd _ -1 4 )
Nz, zsz—8m3g +qg )’ (B.9)

ant—ZNy?/dZ 1 g_4+O(g_5),

5 _ _
NG - ¥ Nl =22 6704 o g77).

Our approach might be developed further, e.g., by estimating theetotet of the computed tensor
element and/or checking the trace of the demagnetization tensich should be equal to zero for non-
overlapping interacting cells [13]. Generally speaking, the gvadttic presented in figure 2 is based on
power series expansion, both in constructionNdt and N°™ Thus, improvements may be had by
including higher order elements, leading to a decrease in compatatifort and final error. This might
be especially useful in the case of 2D PBC or non-cubic cells.
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We have used th®lathematicapackage for this purpose. We have checked different foecis
settings to make sure that rounding errors are not affecting the resultad@ef the tensor has to
be equal to one, so actually it is enough to compute just one teesmmng] e.g., N"*°%,,. Note:
commercial equipment and software referred to in this paperdentified for informational
purposes only, and does not imply recommendation of or endorsement byitreNastitute of
Standards and Technology, nor does it imply that the products so igtb@tiE necessarily the
best available for the purpose.

The &N>y, error is comparable t@<N>,,. The off-diagonal §£8) &<N>,; errors are much
smaller.5<N>,, is constant as a function efand equal roughly to TH. &N>,, is about 10% for
£=1, for smallere it falls down, ate= 1072 it bottoms out with value ca. 8. These values,
being based on averages across the simulation window, are proloabpresentative of errors
in the individual terms, but rather reflect error cancellatioisrg from problem symmetry.
Particularly, in the case of z-length equal to one ge#l,exceptionally large.

Environment: gcc compiler v. 3.2, o/s Windows 2000, Intel 32-bit processor.

For diagonal tensor calculations we occasionally redeivee message stating that
$MaxExtraPrecision is too low to achieve desired 16-digitzigien. This affects the error
estimation parameters (B.1) and (B.2) invisibly.
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Figure 1. In the no-periodic boundary condition (no-PBC) case, (ajntd@ction between cells with
indexes ij,k) and {,j’,k’ ) is described by a demagnetization tenblfri’ ,j—j’,k—k’). With PBCs, (b), an

infinite series of “images” has to be evaluatddiepends on the cells’ relative positidris the period of

the boundary conditions, is the unit vector parallel to the z-axis. (Schematitupe; 1D PBC are shown
here.)
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Analytical formula
available

Discrete elements

[« >

Figure 2. Schematic view: three methods used to compute the demagnetezeg@mnEach method is
applied in its own region. The square elements represent an indivitliaidés images across multiple
periods. Domain’s boundary defined by the critical distd®oean be equivalently described by the
index.
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Figure 3. Errors in computation of non-PBC diagonal tensor eleméNig versus the relative cell
positionr = f|. Horizontal axis is in units of cubic cell edges. Red/grey poénters for formulas taking
into account the cell's geometry (cube-cube method) [13], bluefifay points: errors in case of point
dipole approximation. Black and white lines are fits to data. distancer =~ 200 the error otube-cube

method may already dominate the actual tensor valyggreen/light-grey points). See Appendix B for
details.
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Figure 4. Comparison between theoretical predictions for the nucleatidofian infinite rod (lines) [12]
and our simulations (open points). For radius 1, one simulation was done choosing the simulation
window length equal to the buckling period (sample A). The other simulatiodom@sassuming a one-
cell length (sample B). The inset shows schematically the profilge dhree nucleation modes.
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Figure 5. Nucleation field (vertical axis) modelled forfelient sample z-length (horizontal axis). The

latter is normalized by the expected by theory [12] buckling periattitional vertical lines show
predicted coercivity for the buckling and coherent mode.
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Figure 6. Errors in the computed average demagnetization tensor eleridnts(squares) and<N>,,
(triangles) for an infinite rectangular prism as a function of tielitly level, £ (solid points). Simulation
window sizen,xnyxn, = 16x16x32. The errors are reduced with smaller valueswiftil bottoming out at
£~ 10" to 10"° Open points represent the situation wheretinuous 1xalculation is done, i.e.,
when a cut-off in the dipolar interaction is introduced. The upper horizaximbives the image index
beyond which theontinuous 1D0calculation is used.
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