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Bergmann et al. [Phys. Rev. B 77, 054414 (2008)] present an analytical theory explaining the 

behavior of ferromagnetic cobalt nanowires with perpendicular anisotropy. This theory, which 

predicts a sinusoidal variation of the magnetization along the long axis of the wire, depends 

upon an assumption that "the magnetization is constant within a cross section of the wire." In 

this Comment we use micromagnetic modeling to show that this assumption does not hold in 

any relevant setting. For very thin wires, we show that a uniform magnetization configuration 

is the lowest energy state, which is consistent with some of the larger exchange stiffness 

results from Bergmann et al. For thicker wires, such as those in the referenced experimental 

systems, the micromagnetic simulations produce magnetization patterns containing vortices. 

Across all wire thickness, the sinusoidal configuration has higher energy density than the 

vortex configuration, and is therefore not attained. The micromagnetic simulations explain not 

only the periodic magnetization patterns observed in experiments, but also the occasional 

absence (or disappearance) of periodic structures as described in the literature. 



 

Introduction 

 

Bergmann et al.
1
 consider magnetization distribution in cobalt nanowires with perpendicular 

anisotropy. This interest is stimulated by experiments like those described by Henry et al.
2
 

and Liu et al.
3
, where quasiperiodic magnetization patterns are sometimes found. Let us 

assume that the nanowire is parallel to the z-axis and the magnetocrystalline easy axis is 

parallel to the x-axis. In addition to coherent magnetization oriented either in (100) or in 

(001), Bergmann et al. investigate also a sinusoidal state shown schematically in Fig. 1(a). 

They develop an analytical theory and show that for a few material constants (representative 

for cobalt) the sinusoidal state is energetically preferred over the coherent states. However, 

both the paper of Bergmann et al. and recent improvements by Erickson and Mills
4
 are based 

on the assumption “when the diameter of a ferromagnetic wire is smaller than the exchange 

length, the direction of the magnetization is constant within a cross section of the wire” – 

these authors call it the “thin-wire limit”
1
. This assumption simply does not hold in nanowires 

of interest, where the diameter is larger than 50 nm (Ref. 2) as compared to the exchange 

length 
2

0 s2 /( )A Mλ µ= , where A is exchange constant and Ms is the saturation 

magnetization. λ  does not exceed 7.4 nm for cobalt (for material constants see Table 1). In 

Ref. 1 quantitative calculations are performed for an 80 nm diameter wire only. 

 

Using micromagnetic simulation we investigate this problem without the “thin-wire limit” 

assumption. We show that there are states having much lower energy than the sinusoidal state 

– see Fig. 2. These states, shown in Fig. 1(b) and (c) are characterized by vortex-like 

distributions, where the vortex core is aligned parallel to the z- or y- axes, respectively. We 

will call these states correspondingly z-vortex and y-vortices.  



 

Simulation details 

 

In this work, micromagnetic simulations were performed using the public domain OOMMF 

platform
5
. To account for the elongated character of the nanowires (in experiment their length 

often exceeds the diameter by orders of magnitude) we have applied periodic boundary 

conditions in the z-dimension
6
. Thus, periodicity along the wire dimension was assumed – we 

discuss this effect in more detail at the end of this section. We have considered different 

material parameters (exchange constant A, uniaxial anisotropy constants K1 and K2; saturation 

magnetization Ms was always equal to 1.38 × 10
6
 A/m) with values similar to the previous 

paper
1
, together with two additional cases characterized by smaller A – see Table 1. The 

simulation cells were cubes with edge size smaller than the exchange length. For larger 

simulation windows this size was up to 4 nm, while for smaller windows it went down to 

1 nm. To reduce the surface discretization effect
7
, the wire was always divided in the x- and 

y-dimensions into at least 32 cells. The energy density computation accounts for cross 

sectional discretization effects, and was normalized as in the previous paper
1
, i.e., divided by 

0 s / 2Mµ .  

We tested the accuracy of our simulations with the theory of Ref. 1 by performing a separate 

“computer experiment” with material parameters matching the ones in the first row of 

Table 1. Micromagnetic simulations were run using various cell sizes to check discretization 

effects (for review of discretization related problems see for example Ref. 8). The results are 

shown as points in Fig. 3. For these simulations the amplitude and period of the sinusoidal 

pattern were taken from the theory presented in Ref. 1 (dashed line in this figure). Unlike the 

other simulations in this paper, the magnetization distribution was fixed, i.e. we considered no 

relaxation. Bergmann et al. solve complex equations using Taylor series expansions. We have 



repeated these calculations for our parameters (which differ slightly from Ref. 1) with 

additional terms; the improved result agrees quite well with our simulations using smaller cell 

sizes. Even with larger cells, our simulations differ from the theory by less than 0.1%. 

To avoid artificial symmetries, present in simulations with periodic boundary conditions
6
, we 

applied a random offset field with constant magnitude 0.1 mT, and the initial state for our 

simulations was always a random distribution. As a result, some variation in results was 

obtained for each set of modeling parameters. 

In micromagnetic simulations one has to consider limited space – we call it the simulation 

window. Simulation window size in the z-direction (being the direction of applied periodic 

boundary conditions) impresses a periodicity on the solution. To find the natural period length 

for the y-vortices states, we performed a series of computations with different simulation 

window z-dimensions – similar to Ref. 6 (Fig. 5). The window size producing the lowest 

energy density is assumed to correspond to the inherent period length.  

Fig. 4 shows the results of these computations for the set of material parameters found in the 

first row of Table 1. Note that one period contains one pair of stripes, or equivalently, two 

vortices. The error bars denote the difference between successive simulation window sizes. 

The points in Fig. 4, taken midway between the error bars, represent the period length as a 

function of the nanowire radius r. The period, p(r), is seen to depend monotonically on r, and 

can be surprisingly successfully described by a simple theory where the magnetization 

distribution in the nanowire is compared with a so-called partial Landau-Kittel stripe domain 

structure in thin films
9
. Parameter α  present in this theory describes the size of the magnetic 

x-surface charges. For details see the Appendix. 

 

Results  

 



Generally speaking our simulations, which seek local energy minimum, returned either a z-

vortex or y-vortices state. The former was more common for thinner wires (see Fig. 2) and for 

smaller simulation window sizes. For larger windows more complex (and occasionally 

irregular) structures were found. For larger radii the core is more extended in the x-direction 

and approaches a Bloch domain wall configuration. See Fig. 5, where a cross section for the 

y-vortices state in a nanowire with larger radius is shown. Table 1 summarizes our results as 

compared with the theory presented in Ref. 1. Small differences in energy densities for the 

sinusoidal state as compared to the values in Ref. 1 (called umin in Ref. 1, and as calculated by 

us, usin) are due partly to small differences in material constants, and also because we have 

considered more terms in our Taylor series expansions, as described above. The second to last 

row in Table 1 contains no data for the sinusoidal state – this is because for those material 

parameters the uniform (001) state has a lower energy. 

We have plotted energy density for both the z-vortex and y-vortices states as a function of 

nanowire radius (Fig. 2). As already seen in the r = 40 nm case (Table 1), both energies have 

similar values. For smaller radii the y-vortices state was not found – only the z-vortex state 

was present. Also for smaller radii the energy of the z-vortex state tends to the energy of a 

coherent (001) state. This is because for smaller radius only the inner part of the z-vortex state 

“fits” in the nanowire – actually only its core for smallest simulated case of r = 16 nm. For 

larger radii, above 128 nm, the z-vortex is not the preferred state – the energy of the y-vortices 

state is smaller. It should be noted, however, that another state (beside the z-vortex) appears 

here that also has no z-dimension dependence: a state consisting of two antiparallel z-vortices 

(with opposite chilarity) is slightly preferred to a single z-vortex – for sake of simplicity we 

do not discuss this case in more details here. From Fig. 2 we see that for smaller radii the 

sinusoidal state is dominated by the coherent (001) state. This is the reason why we were not 

able to evaluate the sinusoidal state for the second to last row in Table 1 – in that case the 



analysis yields sin 0s = , i.e. we get a degenerated sinusoidal state equivalent to coherent (001) 

state. 

 

Discussion 

 

For all the investigated values of nanowire radius (except 20nmr ≤ ) and material constants 

the energy density of the z-vortex or y-vortices states was significantly lower than the 

energies of the sinusoidal and coherent-(001) states. This is a sign that to explain 

appropriately the experimental results (like those in Refs. 2, 3) one needs to abandon the 

“thin-wire limit” approximation used by Bergmann et al.
1
 (repeated later in Ref. 4). Results of 

our simulations show that the magnetization indeed changes strongly across the nanowire 

cross section – except for thinner wires with radius below 20 nm. The fact that in our 

modeling two very different states could be produced can be explained by the quite similar 

energy characterizing both z-vortex and y-vortices states. This phenomenon can be also found 

in experiment. Ref. 2 points out that periodic structures were present only in the virgin 

magnetic state, and they “could not be re-observed after a magnetic field of significant 

amplitude was applied.” This is consistent with our modeling of a nanowire of comparable 

diameter (75 nm for Fig. 18 in Ref. 2) where both the z-vortex and y-vortices states have 

similar energy, but the (non-periodic) z-vortex configuration is slightly preferred. Also, for all 

considered material parameters the periodicity of the y-vortices in the simulations was close 

to the rough experimental value of 200 nm, as reported in Ref. 2. We point out that while the 

much larger periodicity and end behavior found by Liu et al.
3
 cannot be explained by the 

periodic y-vortices state described in this manuscript, the experimental results in Ref. 3 may 

be consistent with multiple z-vortex regions having aligned core directions but varying vortex 

chiralities. Our research is also consistent with the recent paper of Vila et al., where 



measurements of anisotropic magnetoresistance in cobalt nanowires suggests presence of a z-

vortex state
10

. 
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Appendix 

 

The magnetization distribution in the y-vortices state in a nanowire can be compared to the 

so-called partial Landau-Kittel stripe domain structure found sometimes in thin films (Ref. 9, 

page 229) – see Fig. 5. In the nanowires evaluated for this paper, magnetic y-surface charges 

as well as volume charges seem to be much smaller than magnetic x-surface charges. In our 

analysis we have defined the area of the magnetic x-surface charge to be that region where 

|Mx/Ms| > ½. Knowing the size of the x-surface charges in the z-dimension, tz (see Fig. 5), the 

normalized surface charge size α , defined in Ref. 9 as (p–tz)/2p, can be calculated. In the 

case of stripe domains, α  should not depend on the film thickness; for material parameters 

considered here (first row in Table 1), 0.4α ≈  – see Ref. 9, Fig. 9.2. Contrary to that, in our 

case a small but systematic dependence of α  versus the rod radius is present – see Table 2. 

To avoid the details as to why in the nanowire case α  depends on the wire radius (varying 

roughly between 0.34 and 0.4), we have simply considered two cases where α  is held fixed: 

1/ 3α =  and 0.4α = . In the stripe domain theory the period of the domains depends in the 

following way on the film thickness (we call this thickness 2r as we compare it with nanowire 

case): 

1

2 3 2

0 s 1

4 2
( ) 2

( )4 / 2

AK r
p r

f M Kα µ π α
=

+
 



The function ( )f α  is related to an infinite sum – see equation (9.16) in Ref. 9. For 1/ 3α =  

its value is (1/ 3) 0.292167f ≈ , whereas for 0.4α =  we obtain (0.4) 0.130887f ≈ . In Fig. 4, 

the above equation for p(r) is plotted for the two selected values of α . 
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Figure 1. Schematic of three different magnetization states in an infinite nanowire 

extending along the z-dimension. xy cross sections are shown to the left, xz cross sections 

are shown to the right. For each case, (a), (b), and (c), we present two different xy cross 

sections for two different constant z-values – marked with arrows on the right side. z-

vortex state (b) is z-independent, thus both presented xy cross sections are same. 

Bergmann et al.
1
 investigate a sinusoidal state (a). However, the z-vortex state (b) and y-

vortices state (c) have lower energy – see Fig. 2. Part a) is analytic theory; parts b) and c) 

are micromagnetic simulations. 



 

 

Figure 2. Energy density of the z-vortex and y-vortices structures for different nanowire 

radii. Results of simulations (points) are compared with theoretical values for a coherent 

(001) and sinusoidal state. Material constants are same as in the first row of Table 1. 



 

 

 

Figure 3. Normalized energy density for sinusoidal state. Dashed line – result from 

theory presented in Ref. 1 (material parameters: first row in Table 1). Points – 

micromagnetic simulations done for different cell edge sizes. 



 

 

 

Figure 4. Periodicity of the y-vortices structure for different nanowire radii. Results of 

simulations (points) are compared to a simple theory, evaluated with the parameter α  

at two different values – see Appendix for details. Material constants are the same as in 

the first row of Table 1. Error bars represent the effects of simulation window z-

dimension. 



 

 

 

Figure 5. (Color online) Top: cross section through a structure found in thin films with 

perpendicular anisotropy. Regular domains resembling stripes are formed (from Ref. 9, 

page 226, Fig. 9.1(b), reproduced with permission from Cambridge University Press). 

Bottom: xz cross section through a simulated nanowire with y-vortices.  



 

Material constants Sinusoidal state 

Uniform 

state Vortex-like states 

K1  

(10
6
J/m

3
) 

K2  

(10
6
J/m

3
) 

A 

(10
-12

J/m) 

ssin  

 

sinθ  

(rad) 

usin  

 

u001  

 

uz-vortex  

 

uy-vortices  

 

p  

(nm) 

0.41 0 26 2.26 0.6849 0.3346 0.3426 0.2268 0.247 168 

0.41 0 52 1.76 0.3212 0.3423 0.3426 0.2832 0.307 220 

0.41 0.1 26 2.12 0.9555 0.3792 0.4262 0.2463 0.263 168 

0.41 0.1 52 1.57 0.8499 0.3974 0.4262 0.3094 0.322 216 

0.41 0.15 26 2.07 1.0251 0.3976 0.4680 0.2551 0.2701 176 

0.41 0.15 52 1.52 0.9452 0.4181 0.4680 0.3213 0.323 216 

0.2 0.03 13 - - - 0.1922 0.1274 0.148 144 

0.5 0 13 2.76 1.0409 0.3692 0.4179 0.2062 0.221 150.4 

 

Table 1. First three columns give the material constants. ssin, sinθ , and usin are 

respectively: periodicity, amplitude, and energy density minimizing the energy of the 

sinusoidal state, as described in Ref. 1. u001 is energy density of the coherent (001) state. 

Last three columns give the energy density for z-vortex and y-vortices states, and the 

periodicity of the y-vortices state. In all cases i) the nanowire radius is equal to 40 nm; ii) 

uniform (100) state has energy density equal to 0.5, iii) ssin and all energy densities are 

normalized quantities, as in Ref. 1. 



 

r (nm) 30.4 40 51.2 64 80 100 128 200 

α  0.34 0.35 0.37 0.37 0.38 0.40 0.40 0.40 

 

Table 2. Dependence of normalized x-surface magnetic charges size (along z-dimension), 

α , versus the nanowire radius. The estimated error of α  varies from 0.01 to 0.03. 


