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Exchange Energy Formulations for 3D
Micromagnetics

M. J. Donahue and D. G. Porter

Abstract—Exchange energy is especially sensitive to
the numerical representation selected. We compare
three discretized exchange energy formulations for
3D numerical micromagnetics on rectangular grids.
Explicit formulae are provided for both Neumann and
Dirichlet boundary conditions. Results illustrate the
convergence order of these methods as a function of
discretization cell size and the effect of cell size on
vortex pinning.
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I. Introduction

In the continuum theory that underlies micromag-
netics, the term representing the quantum mechan-
ical exchange interaction can be written as

Eex =
∫

V

A
(|∇mx|2 + |∇my|2 + |∇mz |2

)
dV, (1)

where A is the exchange coefficient and m =
(mx, my, mz) represents the reduced magnetization,
M/Ms. It follows from the constraint ‖m‖2 = 1 that
m · ∂m/∂x = 0, and similarly for ∂/∂y and ∂/∂z.
This combines with the general relation |∇f |2 =
∇· (f∇f)− f∇2f to show that (1) can be rewritten
as

Eex = −
∫

V

Am ·
(

∂2m
∂x2

+
∂2m
∂y2

+
∂2m
∂z2

)
dV. (2)

A numerical implementation of micromagnetics
must utilize a discretized form of (1) or (2). The
order of a numerical method is defined as the rate at
which the error decreases as the discretization cell
size h tends to 0. For example, if there is a con-
stant B such that the error is smaller than Bh2 as
h → 0, we say the error is O(h2), or that the method
is second order. There are many factors to consider
when selecting a numerical implementation, such as
method order, boundary conditions, and seriousness
of discretization induced artifacts like vortex pin-
ning [1]. In this work we analyze three discretization
methods on rectangular lattices, involving 6, 12, and
26 neighbors, with two types of boundary conditions.
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II. Theory

Evaluating either (1) or (2) numerically involves
evaluating both the integral and the enclosed deriva-
tive. Additionally, special handling of the deriva-
tive is required at the boundary of the simulation
region. In order to obtain a specified method or-
der, say O(h4), each step must retain at least that
accuracy.

A. Integration techniques

A one-dimensional integral can be approximated
by the discrete sum

∫ b

a

f(x) dx = h

n∑
k=1

wkfk + O(hα),

where fk = f(xk) at sample points xk = a + (k −
1/2)h, h = (b− a)/n is the distance between succes-
sive samples, (wk) is a collection of weights, and α is
the method order. In this discretization the sample
points are all interior to the interval [a, b]. It is easy
to show [2] that the simple sum with all wk = 1 is
O(h2) provided that f is twice continuously differ-
entiable, i.e., f ∈ C2[a, b].

In general, to obtain a higher order method one
must vary the weights wk. Simpson’s rule, with
weights 1, 4, 2, 4, . . . , 2, 4, 1, is a well known O(h4)
method for the case where the samples xk include the
endpoints a and b. There are also methods where the
wk’s are identically 1 in the interior, and vary only
at the ends [3]. Using the methods in [2], [3], one
can show that the weights

(wk) =
26
24

,
21
24

,
25
24

, 1, 1, . . . , 1,
25
24

,
21
24

,
26
24

(3)

yield an O(h4) integration method for f ∈ C4[a, b].
A three dimensional integral can be obtained by

iterating the above method,∫
V

f dV = Vh

∑
ijk

wx
i wy

j wz
kfijk + O(h4), (4)

where Vh = hxhyhz is an individual cell volume,
with hx, hy, hz the sample periods along the x, y
and z axes, respectively, wx

i , wy
j , wz

k are the weights
(3) extended to fit the sample sequences along the
corresponding axes, fijk is the value of f at point
(xi, yj , zk), and h = max(hx, hy, hz).
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B. 6- and 12-neighbor methods

If we consider one term in (2), say

Φ = −
∫

V

Am · ∂2m
∂x2

dV, (5)

then Φ can be represented numerically as

Φd = −Vh

∑
jk

wy
j wz

k

∑
ii′

Aijkwx
i dii′mijk ·mi′jk, (6)

where (dii′) is a discrete representation for the oper-
ator ∂2/∂x2.

The most common representation for the exchange
energy involves a three term approximation to the
second derivative in (5), namely

f ′′(xk) =
1
h2

(fk−1 − 2fk + fk+1) + O(h2), (7)

for f ∈ C4[xk − h, xk + h]. This expression involves
the center point xk and its two nearest neighbors.
Including the ∂2/∂y2 and ∂2/∂z2 terms expands the
sum to three dimensions, and triples the neighbor
count. Hence we call this the ‘six neighbor method.’

At any point x where f 6∈ C4[x− h, x + h], and in
particular at the boundaries of the simulation region
(outside of which we assume m = 0), the relation
(7) cannot be used. We consider explicitly the case
x = x1 near the boundary x = a, but the general
case is completely analogous.

Considering first the case with Neumann bound-
ary conditions, where f ′(a) is given, Taylor series
expansions about x1 for f and f ′ yield

f ′′(x1) =
f2 − f1 − hf ′(a)

h2
+ O(h). (8)

At equilibrium, in the absence of surface anisotropy
or other boundary fields, the normal derivative of the
magnetization at the boundary satisfies ∂m/∂n̂ = 0
[4], which here means f ′(a) = 0.

Compared to (7), the accuracy in (8) is O(h) in-
stead of O(h2). The symmetry of the samples about
xk in (7) results in cancellation of the (x−xk)3 terms
in the Taylor expansion, which does not happen
here. However, regardless of the number of samples
n, there is only one edge term near x = a where (8) is
applied, and this term will be multiplied by the sam-
ple length h during the integration process. Thus the
approximation in toto is O(h2). The approximation
error in the interior, using (7), is O(h3) locally when
considered part of the integration process, but the
number of such terms is n − 2 ≈ (b − a)/h, so the
total approximation error in the interior is O(h2).

For Dirichlet boundary conditions, f(a) is speci-
fied instead of f ′(a). Working as before, we obtain

f ′′(x1) =
4f2 − 12f1 + 8f(a)

3h2
+ O(h). (9)

The 8f(a)/(3h2) term can be treated as an applied
field concentrated in the x1 discretization cell.

We can proceed similarly for an O(h4) method. A
sixth order Taylor series expansion shows [5]

f ′′(xk) =
−fk−2 + 16fk−1 − 30fk + 16fk+1 − fk+2

12h2

+O(h4), (10)

for f ∈ C6[xk − 2h, xk + 2h]. Expanding to three
dimensions requires 12 neighboring samples of f , so
we call this the ‘12-neighbor method.’ Although less
common than the 6-neighbor approach, this method
has been considered before [6], [7], [8]. In this
work we supply additional details and some new ap-
proaches to handling the boundary conditions.

The sampling requirements imply that (10) can-
not be applied within two cells of a boundary. For
Neumann boundary conditions, we find

f ′′(x1) =
−59f1 + 64f2 − 5f3 − 32hf ′(a)

38h2

−11f ′(x1)
19h

+ O(h3). (11)

Analogous to the 6-neighbor setting, O(h3) accuracy
here suffices to yield a fourth order method overall.

The f ′(x1) quantity in (11) is an unknown value.
However, f represents one component of m in (5),
and m · ∂m/∂x = 0 at all points because of the
constraint ‖m‖ = 1. Thus, in (5) we can use

m · ∂2m/∂x2
∣∣
x1

= m1 · −59m1 + 64m2 − 5m3

38h2

− 16
19h2

∂m/∂n̂|a + O(h3),

where typically ∂m/∂n̂|a = 0. An alternative to us-
ing f ′(x1) in (11) is to include an additional sample
of f , say f(x4).

At cell x2 we find

f ′′(x2) =
335f1 − 669f2 + 357f3 − 23f4

264h2

+
1

11h
f ′(a) + O(h3), (12)

which makes explicit use of f ′(a). Solving for
f ′(x2)/h and adding the result to (12) yields

f ′′(x2) =
4f1 − 15f2 + 12f3 − f4

6h2

− 1
h

f ′(x2) + O(h3). (13)

As before, the f ′(x2) term can be dropped when
considering the total integrand. Either (12) or (13)
may be used to estimate f ′′(x2). In the simulation
results below we used (12).
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For Dirichlet boundary conditions,

f ′′(x1) =
−165f1 + 40f2 − 3f3 + 128f(a)

30h2

+
1
h

f ′(x1) + O(h3) (14)

and

f ′′(x2) =
175f1 − 280f2 + 147f3 − 10f4 − 32f(a)

105h2

+O(h3), (15)

The f ′(x1) term in the first equation can be ignored.
The f(a) terms can be treated as applied fields. In
place of (15), one can use the relation (13), which is
more convenient because then an applied field term
arising from f(a) is not required at x2.

In a practical energy minimization scheme, e.g.,
conjugate-gradient, the energy is differentiated with
respect to the discretized magnetization. From (6),

∂Φd

∂mijk
= −2Vh

∑
jk

wy
j wz

k

∑
ii′

cii′jkmi′jk, (16)

where

cii′jk =
1
2

(Aijkwx
i dii′ + Ai′jkwx

i′di′i) . (17)

Here cii′jk is a symmetric bilinear form in i and i′. It
is a general property of bilinear forms that mT Bm =
mT (B + BT )m/2, so (6) can be rewritten as

Φd = −Vh

∑
jk

wy
j wz

k

∑
ii′

cii′jkmijk · mi′jk. (18)

In the remainder of this section we consider the
case where A is constant. If we factor A out of the
integral (2), so cii′jk = cii′, we can rewrite the inner
sum in (18) as mT Cm, where C = (cii′). The norm
constraint, ‖m‖ = 1, implies that any modifications
along the diagonal of the matrix C only change the
computed energy by a constant offset. Since we are
interested in energy differences and minima, such
a change is not significant; moreover, adjusting the
diagonal values so the rows sum to zero yields better
numerics because there is less roundoff error when
the neighbor-to-neighbor magnetization variation is
small [9].

For the 6-neighbor method with Neumann bound-
ary, the C resulting from (11) automatically satisfies
these conditions. However, for Dirichlet boundary
conditions the matrix arising from (9) is asymmet-
ric; making the above adjustments yields

C =




−7/6 7/6
7/6 −13/6 1

1 −2 1
. . .


 , (19)

where the bottom right hand corner of the matrix is
symmetric about the cross diagonal with the upper
left hand corner, i.e., the matrix is centro-symmetric
[10]. There is in addition an effective boundary cell
applied field, from (9).

For the 12-neighbor methods, the boundary cor-
rections, including the wx

i terms for the O(h4) in-
tegration method (3), affect the first 5 rows of C.
Table I presents the coefficients of C. These are
pentadiagonal matrices; non-zero entries are found
by symmetry of the entries in this table about either
diagonal, or otherwise from the general interior for-
mulae ck,k = −5/2, ck,k±1 = 4/3, ck,k±2 = −1/12.

In addition to convergence as a function of h, one
can also look at the number of iterates of an en-
ergy minimization method, say conjugate-gradient,
needed to converge for a fixed h. We call this ‘it-
erative convergence.’ To a large extent, the iter-
ative convergence can be predicted from an eigen-
value analysis of C. We computed numerically the
eigenvalues of −C for modest sizes (up to n = 19),
and found them to lie in the range [0, 4) for the 6-
neighbor methods, and inside [0, 16/3) for the 12-
neighbor methods. The 0 eigenvalue corresponds to
the uniformly magnetized state, which is minimal
exchange energy. The upper limit corresponds to a
bulk +1, -1, +1, . . . alternating state, which is max-
imal exchange energy. In practice we found all of
the exchange energy formulations considered above
to have similar iterative convergence behavior.

C. 26-neighbor exchange energy

The third approach uses exchange energy rep-
resentation (1) instead of (2). The magnetization
between the discretization points is approximated
using a trilinear interpolation of nearby grid points,
with basis functions {1, x, y, z, xy, xz, yz, xyz}.
Given this piecewise polynomial representation for
m(x, y, z), and assuming constant A, formula (1)
can be computed analytically. Similar methods
are employed in finite-element micromagnetics [11],
[12].

The total exchange energy is found to be

AVh

36

∑
ijk

∑
i′j′k′

cijki′j′k′ (mijk − mi′j′k′) ·mijk (20)

where the coefficients cijki′j′k′ are specified in Ta-
ble II. There are 26 non-zero terms, so this is a
‘26-neighbor’ method. Cells mi′j′k′ outside the sim-
ulation volume are handled by reflecting m across
the boundary, which is equivalent to specifying
∂m/∂n̂ = 0 at the boundary. This is an O(h2)
method. We have not considered Dirichlet boundary
conditions for this method.
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For cubic cells, hx = hy = hz = h, and the above
expressions for the coefficients cijki′j′k′ simplify to
cijkījk = cijkij̄k = cijkijk̄ = 0, cijkīj̄k = cijkījk̄ =
cijkij̄ k̄ = 6/h2, and cijkīj̄k̄ = 3/h2. If additionally we
assume there is no variation in m along the z-axis,
then we obtain the two-dimensional ‘8-neighbor dot
product’ studied previously [1].

III. Simulation Results

The exchange energy formulations described
above were implemented within the OOMMF micro-
magnetic package [13], which was used to produce
the following results.

We first compared the exchange representations
for a head-to-head transverse wall in a thin film
strip. Only exchange and anisotropy energies were
included. The magnetization was held in the film
plane by a strong easy-plane anisotropy, and the wall
center was pinned by a uniaxial anisotropy directed
along the strip axis, with spatially varying Ku of the
form r2/(1+r2), where r is the distance from the cen-
ter of the strip. In order to get O(h4) convergence
in the anisotropy calculation, we used the integra-
tion weights from (3) to compute the anisotropy en-
ergy. Using Neumann ∂m/∂n̂ = 0 boundary condi-
tions, the 6- and 26-neighbor methods showed O(h2)
convergence, while the 12-neighbor method obtained
O(h4) convergence, as expected.

Fig. 1 compares convergence of the 6- and 12-
neighbor methods on two turns of a uniform 1D mag-
netization spiral. Here γ is the (uniform) angle be-
tween adjacent mk; γ = 720◦/n. When the proper
Dirichlet boundary conditions are applied, the con-
vergence rates are second and fourth order, respec-
tively. However, since the ends of the spiral are held
fixed, ∂m/∂n̂ 6= 0. The consequence of applying in-
correct boundary conditions is seen in the top two
curves—the convergence drops to first order. For
this 1D simulation, the 6- and 26-neighbor methods
are equivalent.

µMAG Standard Problem No. 3 [14] is studied
in Fig. 2. In this 3D problem, the equilibrium
configurations of a cube with easy-axis anisotropy
Ku directed along a cube principal axis are calcu-
lated. The case we considered was a vortex magne-
tization configuration with cube edge length L set
to 8.5 lex, where lex is the magnetostatic exchange
length

√
2A/(µ0M2

s ). We found the reduced to-
tal energy density in the equilibrium state to be
0.3015× µ0M

2
s /2, which is comparable to values re-

ported by other researchers [14]. Unlike the other
examples, this problem includes self-magnetostatic
energy. Since our implementation does not include
an O(h4) representation for self-magnetostatic en-
ergy, it is not surprising that the convergence rates

are second order. Even so, for a given cell size h,
the error from the 12-neighbor method is almost
half that from the 6-neighbor method. We also per-
formed tests where the magnetization was subsam-
pled from the equilibrium configuration of the finest
discretization. In that case, with the magnetization
held fixed, the 12-neighbor method attains O(h4)
convergence as the subsampling rate is varied.

It is also important to consider discretization in-
duced effects on magnetization structures [1], [15].
Fig. 3 examines the effects of cell size on vortex mo-
tion. In this study, a vortex configuration is centered
in a thin film 132 nm square element, with Py ma-
terial properties (A = 13 pJ/m, Ms = 800 kA/m).
Self-magnetostatic energy is simulated with a strong
easy-plane uniaxial anisotropy, Ku = µ0M

2
s . This is

an unstable configuration in the continuum setting;
the slightest in-plane applied field suffices to push
the vortex core away from the center position. In
practice, however, divots in the energy surface pro-
duced by the discretization pin the vortex in place.
One measure of this effect is the field, Hpin, required
to unpin the vortex. As seen in Fig. 3, the 26-
neighbor method has significantly smaller Hpin for
h > lex, but otherwise the 12-neighbor method dom-
inates.

We also tested Néel wall collapse [15], and found
that the 12-neighbor method to be somewhat more
resistant to this discretization artifact than the 6- or
26-neighbor methods.

IV. Conclusions

We have examined 3 formulations for exchange en-
ergy, with general Neumann and Dirichlet boundary
conditions. As a function of the discretization cell
size h, the error for the 6- and 26-neighbor meth-
ods is O(h2), while for the 12-neighbor it is O(h4).
When considering the convergence of equilibrium
states, the rate is limited by the slowest convergence
among all the energy terms. Even in this case the
12-neighbor method can yield significantly smaller
errors. The 12-neighbor method is also found to
be generally preferable in our tests of discretization
induced vortex pinning, although the 26-neighbor
method should be considered if one is forced to work
with coarse grids.
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h2
y
− 8

h2
z
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h2

x
+ 16
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y
− 8

h2
z
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h2
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y
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z
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x
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y
− 2
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x
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z
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x
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y
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