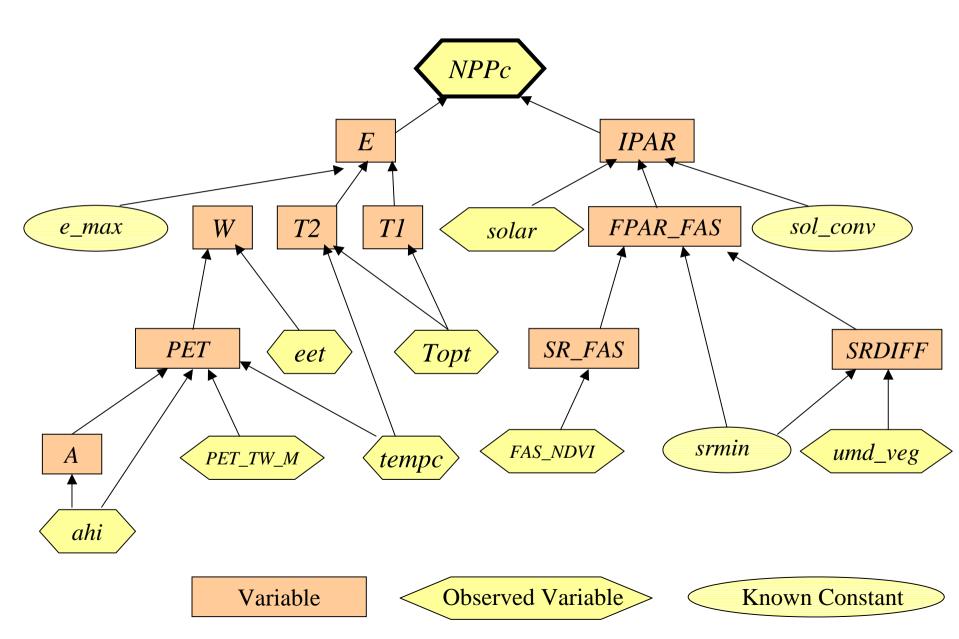
Improving an Ecosystem Model Using Earth Science Data

Kazumi Saito (NTT Communication Science Laboratories)
Pat Langley (CSLI Stanford University)
Trond E. Grenager (Stanford University)

Introduction

- Developing computational methods for discovering knowledge in communicable forms.
- Improving CASA using observed data.
- CASA: an existing computational model of aspect of the Earth ecosystem developed by Christopher Potter and his colleagues at NASA Ames.

Portion of CASA



Some Equations

NPPc: net primary production.

$$NPPc = \max(0, E \times IPAR)$$

E: value of maximum possible photosynthetic efficiency under temperature and moisture stress scalars.

$$E = e \max \times T1 \times T2 \times W$$

IPAR: converter for intercepted photosynthetically active radiation by the vegetation cover.

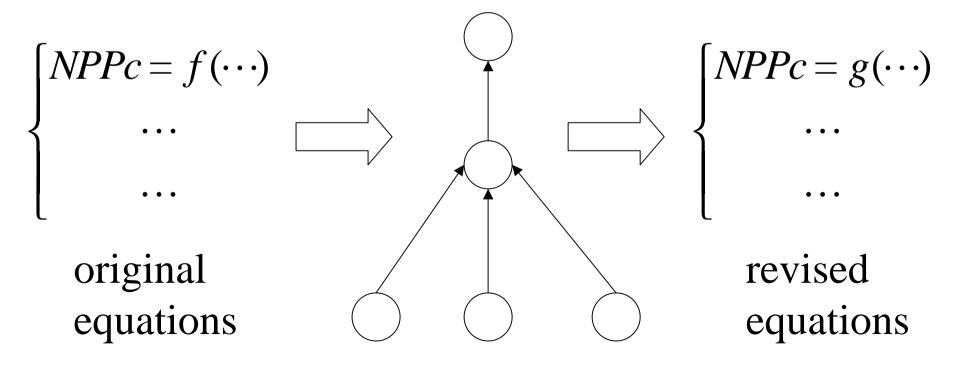
$$IPAR = FPAR_FAS \times Solar \times sol_conv \times 0.5$$

General Problem

- Revisions to the model must be consistent with existing knowledge of Earth science and, ideally, retain similarity to the current model.
- Our research involves attempting to improve the CASA model's predictive accuracy.

Outline of Approach

- Transforming the equations into a neural network
- Revising weights in that network
- Transforming the network back into equations



Some Types of Neural Networks

Standard (sigma-sigma) net:

$$\sum w_j f_j \left(\sum w_{jk} x_k \right)$$

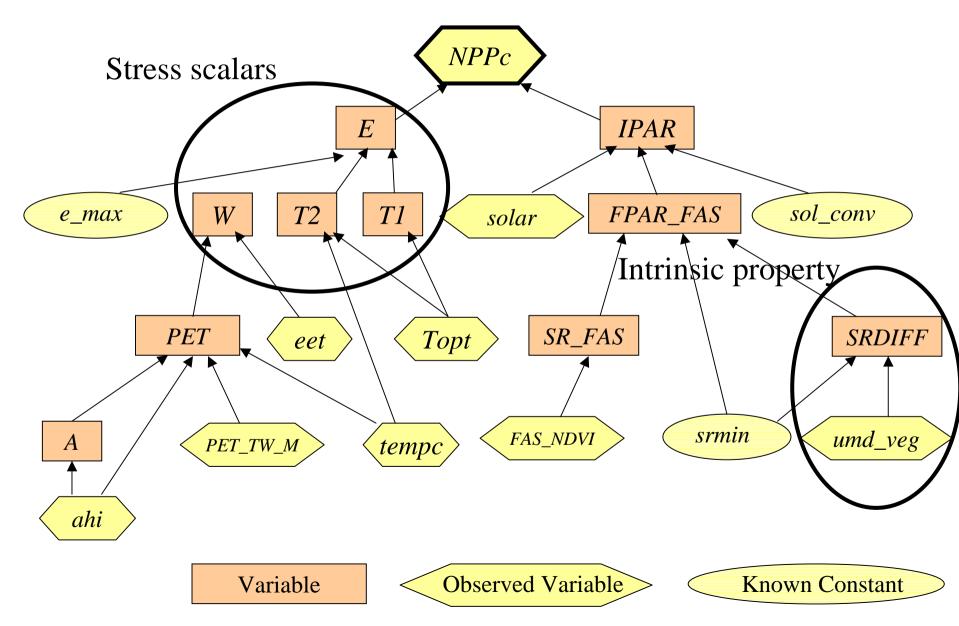
Sigma-pi net (generalized polynomial):

$$\sum w_j \prod x_k^{w_{jk}} = \sum w_j \exp(\sum w_{jk} \ln x_k)$$

Pi-sigma net (this talk):

$$\prod w_j f_j \left(\sum w_{jk} x_k \right)$$

Transforming Equations



Stress Scalars

Original equations:

$$E = e \max \times T1 \times T2 \times W$$

$$T1 = 0.8 + 0.02 \times Topt - 0.0005 \times Topt^{2}$$
$$= 1 - (-0.4472 + 0.0224 \times Topt)^{2}$$

$$T2 = 1.1814 \times \frac{1}{1 + \exp(0.2 \times (-10 + Topt - tempc))}$$

$$\times \frac{1}{1 + \exp(0.3 \times (-10 - Topt + tempc))}$$

$$W = 0.5 + 0.5 \times \left(\frac{eet}{PET}\right)$$

Transformation into Network

$$E = e \max \times T1 \times T2 \times W = w_0 \times \prod f_i$$

$$T1 = f_1(x) = 1 - x^2 = f_1(w_{11} + w_{12} \times Topt)$$

$$= 1 - (-0.4472 + 0.0224 \times Topt)^2$$

$$T2 = f_2(x) = f_{21}(x) \times f_{22}(x) = \frac{1}{1 + \exp(-x)} \times \frac{1}{1 + \exp(-x)}$$

$$f_{21}(x) = f_{21}(w_{21} + w_{22}(Topt - tempc))$$

$$= \frac{1}{1 + \exp(2 - 0.2 \times (Topt - tempc))}$$

 $W = f_3(x) = x = f_3\left(w_{31} + w_{32} \frac{eet}{PET}\right) = 0.5 + 0.5 \times \frac{eet}{PET}$

Intrinsic Values for Vegetation Type

FPAR_FAS: fraction of absorbed photosynthetically active radiation by the vegetation cover

$$FPAR_FAS = \min\left(\frac{SR_FAS - srmin}{SRDIFF}, 0.95\right)$$

$$\approx \frac{1}{SRDIFF} \times (SR_FAS - srmin)$$

SRDIFF: map from the ground cover to an srmax-srmin value

Transformation into Network

$$\frac{SR_FAS - srmin}{SRDIFF}$$

$$= \exp(\log(SR_FAS - srmin) - \log(SRDIFF))$$

$$-\log(SRDIFF) = \sum_{i=1}^{13} v_i \times umd veg_i$$

 v_i : weight in neural network

$$umd_veg_i = \begin{cases} 1 & \text{if } umd_veg = i \\ 0 & \text{othewise} \end{cases}$$

Revising weights in Networks

supervised learning		Step-length		
		fixed(constant)	variable	
search direction	1st-order	BP, etc.	Silva-Almeida algorithm, etc.	
	2nd-order	Newton method	SCG, OSS, BPQ, etc.	

2nd-order learning algorithm	applicability to large-scale problems	performance with inaccurate step-length
Gauss-Newton method	×	0
quasi-Newton method	Δ	Δ
conjugate gradient method	0	×

BPQ Algorithm

• The search direction is calculated on the basis of partial BFGS update.

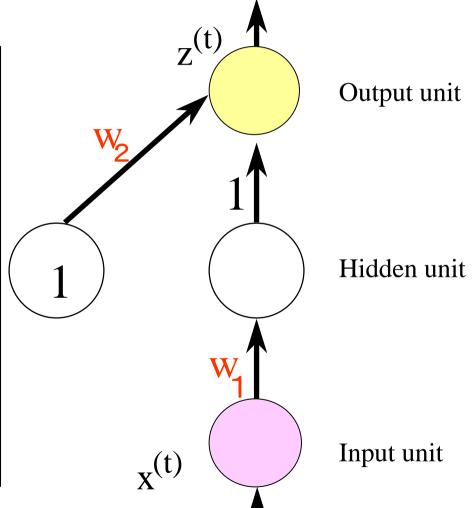
• The step-length is calculated by using a second-order approximation.

Demonstration Problem

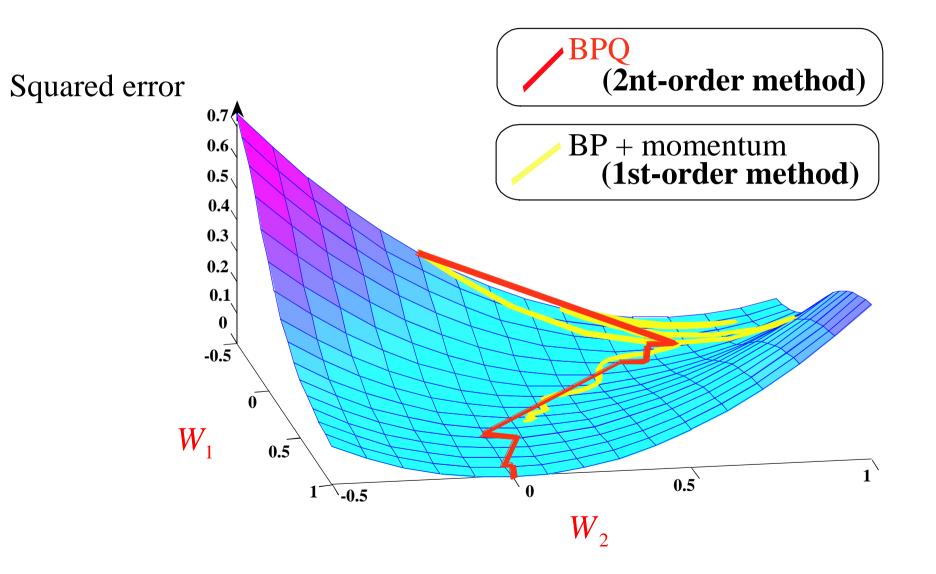
Sample set

Sample

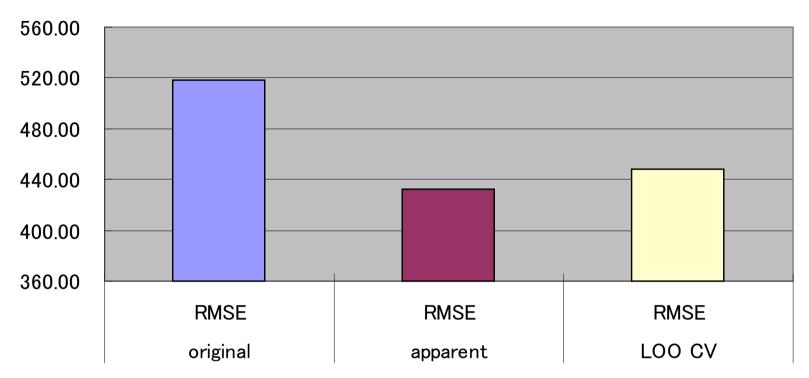
	У	X
1	0.73	1
2	0.88	2
3	0.95	3
4	0.98	4
5	0.99	5



Learning Neural Network: Result



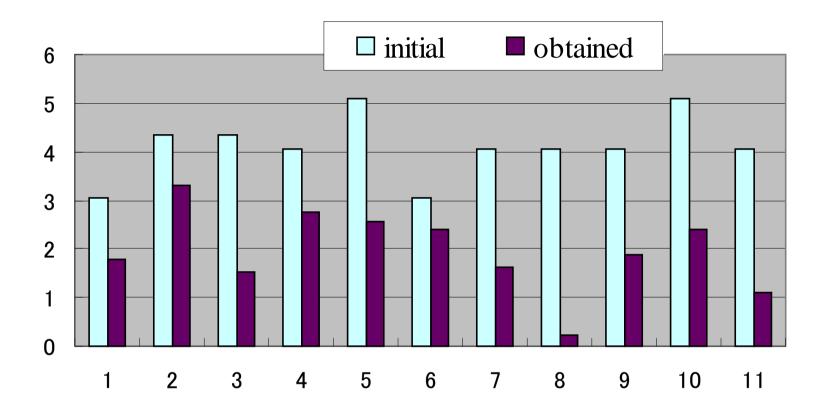
Experimental Result



The RMSE of the original model was reduced by 15 percent, as measured using cross validation.

$$RMSE = \sqrt{\frac{\sum_{\text{samples}} (NPP_{\text{observed}} - NPP_{\text{predicted}})^2}{\text{number of samples}}}$$

Intrinsic Values



The intrinsic values associated with vegetation types obtained in this way were consistently lower

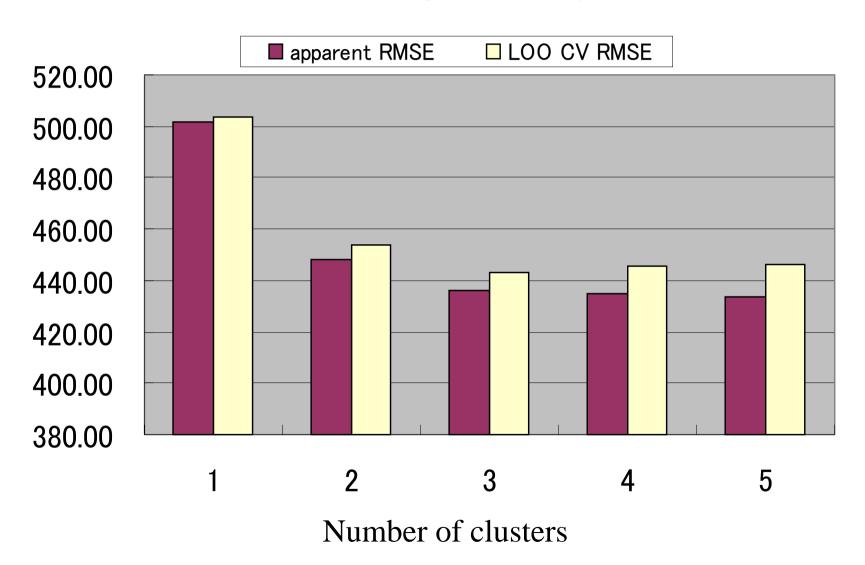
Transforming Network

Step1. Quantize
$$\left\{ \exp\left(\sum_{kl} v_{kl} q_{kl}^{(n)}\right) : n = 1, \dots N \right\}$$
 by using a clustering method.

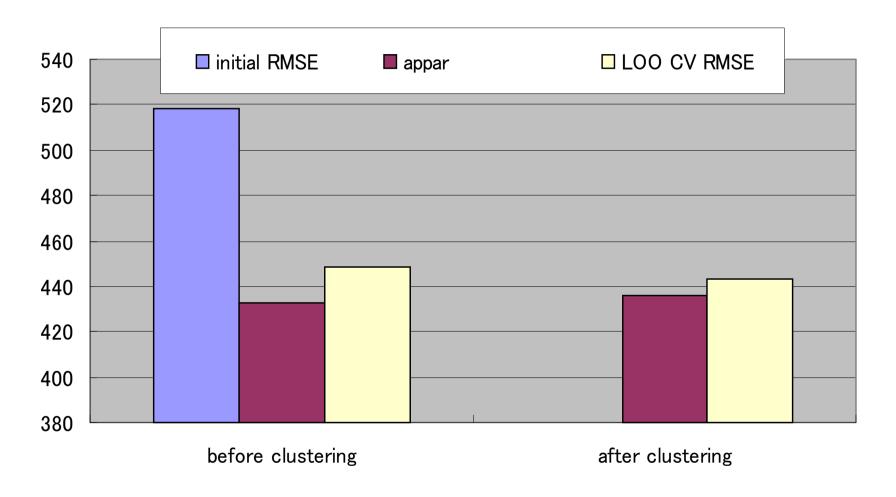
Step2. Determine an adequate number of rules by using cross-validation.

Step3. Generate nominal condition by solving a standard classification problem.

Clustering Analysis



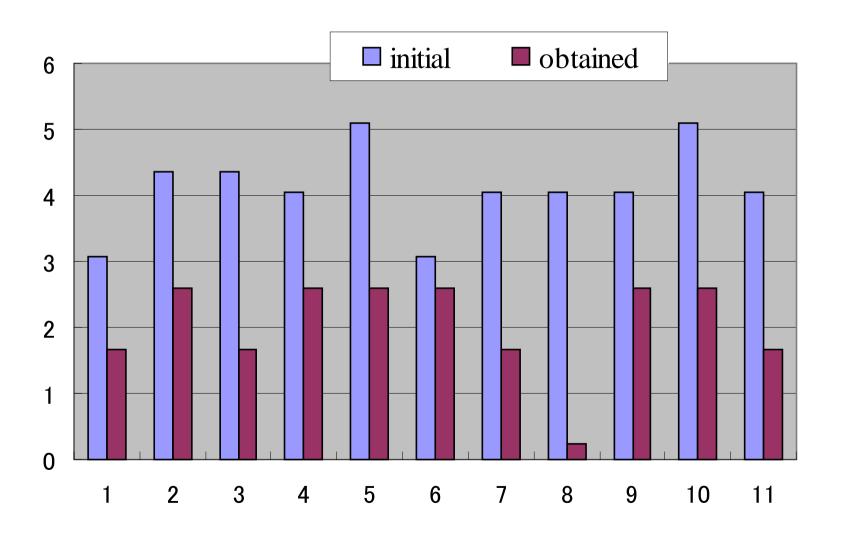
Evaluating Experimental Result



Obtained Decision Tree

```
t 8 = 1 : 0 (10.0)
t \, 8 = 0:
t9 = 1:1 (58.0)
t 9 = 0:
 t 7 = 1 : 1 (46.0)
 t 7 = 0:
    t11 = 1:1 (11.0)
   t111 = 0:
    | t1 = 0:2 (168.0/1.0)
  | \quad | \quad t1 = 1:1 (10.0)
```

Clustered Intrinsic Values



Conclusion

- This talk described an approach to improving the predictive accuracy of the existing ecosystem model.
- In the experiments, we can reduce the mean squared error of the original model by 15 percent, as measured using cross validation
- In the future, we'll carry out further experiments along this direction