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Introduction
• Developing computational methods for 

discovering knowledge in communicable 
forms. 

• Improving CASA using observed data. 
• CASA: an existing computational model of 

aspect of the Earth ecosystem developed by 
Christopher Potter and his colleagues at 
NASA Ames. 
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Some Equations
NPPc: net primary production. 

( )max 0,NPPc = E  IPAR×

_ max 1 2E = e   T   T   W × × ×

0 5IPAR = FPAR_FAS  Solar  sol_conv  .  × × ×

E: value of maximum possible photosynthetic 
efficiency under temperature and moisture 
stress scalars.

IPAR: converter for intercepted photosynthetically
active radiation by the vegetation cover.



General Problem
• Revisions to the model must be consistent 

with existing knowledge of Earth science 
and, ideally, retain similarity to the current 
model. 

• Our research involves attempting to 
improve the CASA model’s predictive 
accuracy.



Outline of Approach
• Transforming the equations into a neural network
• Revising weights in that network
• Transforming the network back into equations 
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Some Types of Neural Networks
Standard (sigma-sigma) net:

( )j j jk kw f w x∑ ∑
Sigma-pi net (generalized polynomial): 

( )exp lnjkw
j k j jk kw x w w x=∑ ∑ ∑∏

Pi-sigma net (this talk): 

( )j j jk kw f w x∑∏



Transforming Equations
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Stress Scalars
Original equations:
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Transformation into Network
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Intrinsic Values for Vegetation Type
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FPAR_FAS: fraction of absorbed photosynthetically 
active radiation by the vegetation cover

SRDIFF: map from the ground cover to an 
srmax-srmin value



Transformation into Network
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Revising weights in Networks

supervised learning
Step-length

search 
direction

1st-order
2nd-order

BP, etc.
Newton method

variablefixed(constant)

Silva-Almeida algorithm,etc.
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2nd-order learning algorithm

Gauss-Newton method

applicability to 
large-scale problems
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performance with 
inaccurate step-length



BPQ Algorithm
• The search direction is calculated on the 

basis of partial BFGS update.

• The step-length is calculated by using a 
second-order approximation. 



Demonstration Problem
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Learning Neural Network: Result
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Experimental Result
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The RMSE of the original model was reduced by 15 
percent, as measured using cross validation. 
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Intrinsic Values
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The intrinsic values associated with vegetation 
types obtained in this way were consistently lower



Transforming Network

Step1. Quantize  
by using a clustering method.

Step2. Determine an adequate number of rules
by using cross-validation.

Step3. Generate nominal condition
by solving a standard classification problem.

( ){ }( )exp : 1,n
kl klkl

v q n N=∑ L



Clustering Analysis
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Evaluating Experimental Result
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Obtained Decision Tree
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Clustered Intrinsic Values
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Conclusion
• This talk described an approach to 

improving the predictive accuracy of the 
existing ecosystem model. 

• In the experiments, we can reduce the mean 
squared error of the original model by 15 
percent, as measured using cross validation

• In the future, we’ll carry out further 
experiments along this direction


