Spatial Aggegation

Feng Zhao

Xerox Palo Alto Research Center zhao@parc.xerox.com http://www.parc.xerox.com/zhao

Physical Fields are Ubiquitous

- Temperature, sound, fluid, ...
- Practical applications:
 - Smart environments
 - E.g. Buildings, life support systems, transportation grids
 - Space science data gathering
 - E.g. Constellation of space probes
 - Weather prediction
 - Intelligent structures & materials
 - E.g. MEMS active surfaces

An Example of Physical Fields

A fluid field showing high density regions and large vortex structures

Reducing air drag requires interpreting non-local structures in fluids

- Control requires global models
- <u>Spatial Aggregation</u> computes highlevel structural models of vortices in fluids (Yip, MIT)

Distributed array of micro flaps interact with air flows to reduce air drag

- C.M. Ho, UCLA

Characteristics of Physical Fields

- Spatially distributed
- Continuous and data rich
- Multiple spatio-temporal scales
- Large D.O.F. and often nonlinear

Scientists often describe a physical phenomenon in terms of spatio-temporally coherent "**objects**"!

• E.g. stability region, vortex bundle, pressure trough

The idea dates back to the beginning of last century

• Poincare's geometric theory of dynamical systems

Tools for mining distributed data

SAL software tool

Applications to

• Weather analysis, pattern classification, control optimization.

Joint work with C. Bailey-Kellogg and K. Yip

Spatial Aggregation

- Recursively aggregate local data to high-level descriptions
- Distribute global objectives to local actions

Weather data: an example of spatio-temporal fields

Pressure, temperature, wind vectors, ...

Joint work with X. Huang

Interpret weather date sets

Xerox Palo Alto Research Center

- **Bottom-up**: aggregate structures from data hierarchically
- Feedback: correlate multiple data sets to improve detection accuracy (global \rightarrow local)

Result of automatic detection of pressure troughs

Overview of Spatial Aggregation (SA)

- **Input**: data-massive, numerical field
 - E.g. weather maps, seismic signatures, numerical simulation data
- **Output**: high-level description of structure, behavior, and control action
 - E.g. stability regions and bifurcation diagrams for dynamical systems, C-space free region diagrams for mechanical mechanisms, synthesized control reference trajectories
- Task domains
 - Sensor data interpretation; Control
- Central computational problem
 - Uncover structures of physical fields as communicable knowledge

Spatial Aggregation

Examples of Spatial Aggregation

- KAM: analyzing nonlinear dynamical systems (Yip)
- **MAPS**: synthesizing control laws (Zhao)
- **HIPAIR**: performing kinematic analysis of mechanisms (Joskowicz & Sacks)
- Mining data from fluid dynamics simulation (Silva & Zabusky; Yip)

Basic Elements of Spatial Aggregation

- Field ontology
 - How to describe the problem
- Neighborhood graphs and generic operators
 - How to decompose the problem and formulate problem-solving steps
- Multi-layers of spatial aggregates/ transformation
 - How to actually solve the problem

Field Ontology

- A field is a mapping from one continuous space to another: $R^m \rightarrow R^n$
 - A grey-level image: $R^2 \rightarrow R^1$
 - Temperature field of the room: $R^3 \rightarrow R^1$
 - Wind velocity field in the air: $R^3 \rightarrow R^3$
- Metric on a field \rightarrow Topology \rightarrow Continuity
- A field is analogue: pointwise, numerical, information-rich

Elements of Field Ontological Abstraction

- Spatial objects
 - Geometric description
 - Feature description
 - E.g. temprature, pressure, velocity
- Constitutive laws
 - E.g. Fourier's law, Ohm's law, Hooke's law
- Spatial neighborhood structures
 - E.g. MST, Delaunay graph

Multi-Layer Transformation of N-Graphs

- A small set of operators construct and transform spatial aggregates
- Identical set of operators at each layer, parameterized by task and domain specific metric and relations
 - <u>Aggregate</u> forms a neighborhood graph explicitly encoding adjacencies
 - <u>Classify</u> forms equivalence classes of similar neighboring objects
 - <u>Redescribe</u> maps equivalence classes to higher-level objects

Spatial Aggregation Language (SAL)

- Support rapid prototyping of problem solvers for imagistic reasoning tasks
- Provide data types and operators
- Modular construction of transformations, organized by parameterized N-graph constructures

SAL source code is freely available at http://www.parc.xerox.com/zhao/sal.html

Programming in SAL

- Identify adjacency and equivalence relations
 - Continuity, spatio-temporal scales
- •Determine abstraction levels
 - Substructure/structure relation
- Identify abstraction preand post-conditions

Trajector Bundling: an example

Automatic classification of timevarying diffusion-reaction patterns

- Useful models in biology, chemical reaction, and population dynamics.
- Automatic classification accounts for 83% of human expert interpretation (Pearson, *Science*, 1993)

Classification result:

- Cluster 1: History (h)
- Cluster 2: Histories (e) and (g)
- Cluster 3: History (b)
- Cluster 4: Histories (c), (d) and (f)
- Cluster 5: History (a)

Joint work with Ivan Ordonez

Controller Synthesis and Verification for Nonlinear Systems Using Phase-Space Geometric Models: *The Maglev Experience*

Geometric models of behaviors
Hierarchical refinement
Symbolic graph methods

Behavioral programming and verification

- •Select basis behaviors
- •Compose and modify behaviors

Distributed Manipulation

SAL tools predict behaviors and synthesize control policy

Active Surfaces (A. Berlin et al.)

Tasks Suitable for Spatial Aggregation

- Explanation generation
- Computer-aided tutoring
- Fault diagnosis and prediction
- Scientific data mining
- Design problems involving complex geometry

Conclusion

- Extract structures as communicable knowledge is the central problem in spatiotemporal data analysis
- Spatial Aggregation is an effective way for discovering structures

