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1. Introduction

The notion of the n-dimensional volume enclosed by n + 1 vectors in a
Banach space, E, was introduced by Silverman [12], and some of the
connections between higher dimensional volumes and geometric properties
of E were studied in [13] and [6]. In particular, it was shown that a k-
uniformly rotund Banach space is super-reflexive and has normal structure.
(Definitions are given below.) The present paper is a more detailed study
of the relationships between enclosed volumes, super-reflexivity and normal
structure of Banach spaces.

James proved in [9] that if E is not super-reflexive, then for every § >
0 there are {x,, x,} € B, the unit ball of E, such that

X+ x
2

while A(x;, x,) = |x; — x| = 2 — 8. A consequence of Theorem 3.1 of
[6] is that if E is not super-reflexive, then for every integer k > 0 there are

=1-96

vectors {x, x,, ..., X} C B such that
Xp+ Xy + 0+ X
1 2 k‘ >1-5
k |
with A(x,, x,, ..., x;) > 0. In section 3 we generalize these results and
show that if E is not super-reflexive, then, for every integer n > 0, there
are vectors {x;, x,, ..., X,+1} C B such that
Xp o X =1-5
n+1
while A(x,, x,, ..., x,+1) = 2" — §. This should be contrasted with the
situation for I,, where A(x,, x,, ..., X,4+,) = € implies that

Xp + ot X
n+1

2/n 1/2
S PO Y ,/,,> .
n+ \(n+1)

' Some of the results of this paper are contained in the Ph. D. dissertation of the first
author.
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(The preceding inequality is proved using the method of [6], Theorem 1.3.)
Notice that this says that /, has a very strong ‘‘ergodic’’ property with
respect to volumes: If (x;) is any norm-1 sequence then, by passing to a
subsequence, we may assume that either lim, A(x;,x;, ..., X,+1) = 0 or
that

X1 + X2 + 0+ xn+1|

lim n+1

n

= 0.

A non super-reflexive space is at the other extreme; there are norm-1 vectors
enclosing large volumes and having average norms close to 1. Also, Dixmier’s
Theorem which guarantees the existence of a line segment on the surface
of the unit ball of a non-reflexive 4-th dual space generalizes. If E is not
reflexive, then there is a non-trivial n-dimensional simplex on the surface
of the ball of the 2n + 2)-th dual E [6], [7].

The result of James says that every non super-reflexive Banach space
contains subspaces arbitrarily close to /?. James also proved [10] that an
irreflexive space need not contain subspaces close to I. Davis, Johnson
and Lindenstrauss [3] and Davis and Lindenstrauss [4] have investigated
the question of the ‘‘degree’” of non-reflexivity of a space, E, and containment
of subspaces close to [{”. Using their methods, we give a sufficient condition
for a Banach space to contain n-tuples of norm-1 vectors which behave
somewhat like the unit vector basis of I{”, i.e. have average close to 1 in
norm and enclose a volume close to n™?. Combining this with a result of
Bellenot [1] we get a sufficient condition, in terms of the four dimensional
subspaces of E, for E to contain uniformly complemented [{”’s.

The occurrence of the value n"? is related to Hadamard’s inequality.
This is discussed in Section 2, where we give upper and lower bounds on
the enclosed volume in terms of the distances between the vectors. These
inequalities are used throughout the rest of the paper.

In Section 4 we take up the subject of normal structure. Loosely described,
this is a geometrical property which guarantees that every weakly compact
convex set K C E has a ‘‘center of mass’ and, consequently, every non-
expansive map from K to K has a fixed point [11]. We give a general
sufficient condition in terms of average norms and enclosed volumes for E
to be super reflexive and have normal structure. We also comment on the
relation between our condition and properties implying normal structure
which have been investigated by van Dulst [15] and Huff [8].

We assume that the reader is familiar with the usual notions of Banach
space theory. Notice that for x, y € E we have that

== S“p{ AR EB*}'

Here, and throughout the sequel, the symbol || denotes the determinant.
Generalizing this, we define the 2-dimensional ‘‘area’’ enclosed by vectors
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{x, y, z} as

1 1 1
Alx,y,20=supq [{fix) (fiy) (/L] :f,g EB*.
(g, x) g,y (g2

This idea is taken from the work of E. Silverman [12]. The n-dimensional
volume enclosed by vectors {x,, x,, ..., x,.} is defined in the obvious way,
and is denoted by A(x;, x5, ..., Xu41)-

The authors should like to thank Professor Dick van Dulst for pointing
out a defect in our initial attempt to prove Theorem 4.1, and for telling us
how to use Ramsey’s Theorem to repair it. The second author would also
like to thank the Mathematical Institute of the Catholic University of Nijmegen,
The Netherlands for the truly gracious hospitality they have shown him
during the writing of this paper.

2. Bounds on the Volume

Recall that if r, r,, ..., r, are the rows or columns of a k X k matrix,
then from the Hadamard inequality we have
det(ry, ra, ...y 1) < |Irill2 Irallz =+ lirellz.
Here ||, denotes the Euclidean norm in R*. A consequence is that for x,,
X5, ..., X norm-1 vectors in a Banach space E,
A(X|, X2y eaey xk) = kk/z.

For certain values of k there are matrices (having pairwise orthogonal
rows) which actually give equality in the Hadamard inequality. An easily
understood class of examples can be generated in the following way: Let

11
m-[ ]

and note that det(H,) = 2. Then, for each k > 0, let H, = Hy, ® H,_,,
where ““®’’ denotes the tensor product of matrices. Using the fact that for
A an n X n matrix and B an m X m matrix, det(A ® B) = det(4)" -
det(B)", it is not hard to see that, for n = 2¢*', H, is an n X n matrix with

det(H,) = n"/*. This shows that if {e,, e,, ..., e,} are the usual basis vectors
in I, then A(e,, e,, ..., e,) = n"/?, the maximum possible value.
If {y, x,, x5, ..., x,} are vectors in an arbitrary E, then let

dist(y, [x;, X2, +.., X,))

denote the distance from y to [x,, x;, ..., x,], the affine span of {x,, x,,
ees Xp}

THEOREM 1. Suppose that {x\, X, ..., X,4+} are norm-1 vectors in a
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Banach space, E. Let
d] = diSt(xh [xz, ey xn+1])’ d2 = diSt(xZa [X3, LEXE] xn+1])’

vy Ay = |IXy = Xl
Then

2
d - dy o d, < Alxy, Xay ooy X)) < 02dy - dy 0 d,.

Proof. The lower bound was proved in [6]. For the other inequality,
let

Yi € [xi+]9 Xit2s ooy xn+l]

be a vector such that ||X]| = |lx; — yil = d;. Since the determinant is a
multi-linear form, we have

0 0 0 1
(fl fl) <fl’72) o <fl’xn) (fhxn+l>

A(xl9x2s X3, ---’xn’xn+l) = sup <f29.f1) <f2’.f2> ot <f2’ Yn) ) <f2, xn+|)
TR SRUAE SEERTAE ST

For each choice of norm-1 functionals {f;, f>, ..., f,} we can define [3"
vectors

ri = (fi, Ty (o, Xids oo oy T))
and expanding in minors and using the Hadamard inequality we get
Ay, X5 ooy Xy X)) < sUP{Irllz Ir2lly == lirdlla < f1, fos oo fu € B¥}
< (AP + AP+ - + IflD) " did, -+ d,
<n"’dd, - d,. Q.E.D.

A similar technique can be used to show that, for {x,, x,, ..., x,.;} norm-
1 vectors in a Hilbert space, it is always the case that

d]d2 i d,, = A(x], Xy eees x,,+,).

3. Non-reflexive Spaces
The following result of James [9] is the fundamental tool for this section:

THEOREM 1. Suppose that E is not reflexive and that 0 < 0 < 1. Then
there are sequences (z;,) C B* such that
0 forj<k
(f}9 Zk) = .
0 forj>k.
Using this, James proves that if E is not reflexive and 8 > 0 is arbitrary,
then there are vectors x;, x, € B such that ||x; + x| =2 — 8 and ||x; — x,|
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= 2 — §. In other words, a non-reflexive E always contains subspaces
arbitrarily close to I?. It is clear that the same is true for any space which
is not super-reflexive. The converse is also true [5]; namely, if E is super-
reflexive, then E has an equivalent norm which is uniformly non-square,
i.e., a norm such that for some fixed 8 > 0 and all x,, x, € B,

min{|lx, + x|, lx; — X[} <2 - 8.

Using the methods of James we can give a more general result in terms
of volumes.

THEOREM 2. If E is not super-reflexive then, for all 8 > 0 and all n,
there are
{xl’ X2y eees xn+l} CB

such that

lx, + x, + ... + x,0ll=(m + 1) =8 and Alxy, Xy ooy Xpi)) =2" — 8.

Proof. We shall show that for every n > 0 and every integer, m, there
are

{xl, X2y eeey xm} CB
such that

diSt(xl’ [xl+|’ seey xm]) >2 - n

forall 1 <! <m,and ||x;, + x, + - + x,] > m — m. This, combined
with Theorem 2.1, gives the result.

Following James, we use the sequences (f;) and (z;) given above to
define, for every choice of integers p;, < p, < - < p,,, a set

S = S(p1, ... D) = x:{fj, x) = (—1)0 for py_1 <j < py}
and a number
k, = lim inf (lim inf ... ( inf (inf ||x]: x € §)) ...)).
pZn""oc

pi=®  pye

It can be shown that, for all n, k,,, = k, and k, < 2n, while for n > 0
there exist n large enough and & > 0 small enough so that

kn—l_s kn"8
ph i SRR [,
k, + & I=m and k, + €

>1-m.

For this n, there obviously is a p > O such that if p < p, < p, < -+ <
Pan and z € S(pla cees p2n)9 then nZ" > kn - &
We now choose sets of integers

! ! !y
{p Sp(l) <p(2) <<y
and vectors

u' € S(pP, pY, ..., PSY)
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forl <l < m, SO that %( ;:l:l )\kuk - u,) (S SH.], if 2;'_1_-1 A = land 1 = |
< m — 1. The sets S;.,; are defined below. The required vectors are then
given by

foralll <l=<m.

x = —2
"k, + e
The sets S,., are as follows:

— ) 1) ) (1) (m) (1)
Sl - S(p(lm s p(2 s p(3m s Pa’s ooy pZ':—Ia p2n)

— (N 2) Q)] (¢3) n 2
Sy = S(p3’, P35 P5's P> «oes Poan—1> Pin-2)

— ) 3) ?2) 3) ?2) 3)
S3 - S(P3 s P27°s Ps s Pa's «oos P2n—1> P2n-2

— (3) “) 3) @ 3) 4)
Ss = S(p3’, Py, PS’, P4’y s Pin—15> Pan—2

Spy = S(PY2, pi"=Y, p& P, p¢Y, L PSP, P
S, = SV, pi7, pEY, p7, oL, PSP PR,
where
p=<I[p’ <pP <pP <pP < ... <p"=V < pm]
<[P <p’ <pP <pP < - <p§rV < p§ I < p§P < p§™]
<[P <p’ <pd@ <pP < - < prV < pH < pi < p¢M]
<[pP < pP < p@ < pP < ... < pin < pin=b < plm < pom]

<[py’ <pd’ <pd <pP < -

C< P <pSn s
) ) 2 2 _ _
<[P3-2 <P 1 <P, <P < <piIiP< Pz < pS, <p%,
1 2 3 _
<[p5 <p5 <pf)< e <phTV <Pl Q.E.D.

James’s technique has been generalized in another way by Davis, Johnson
and Lindenstrauss [3]. A space, E, is said to have a local k-structure if
there is a constant, M, so that for each integer, n, there are n* elements,

Paror ik Wi 1<y o ik Sn, 1<j,jo, v, ju<n
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such that
”xh,iz,...,ikll = M? ”f;'l,jz ..... Ji ku = M
and

1 ifallj,<i,forp=1,..,k
0 otherwise.

(f}x,jz ..... Jko xil,iz ..... ik> = {

Define R(E) = E**/E and RYE) = R(R*"'(E)). In [3] Davis, Johnson
and Lindenstrauss prove:

TueorReM 3. If R(E) admits a local k-structure then E admits a local
(k + 1)-structure.

Because of James’s Theorem, a non-super reflexive space is one which
admits a local 1-structure. Thus, if for some k, RX(E) is not super-reflexive,
then E admits a local (k + 1)-structure.

Another result of [3] is that if E admits a local k-structure then E contains
subspaces arbitrary close to I{*". Hence, in particular, if R(E) is not super-
reflexive, E contains subspaces arbitrarily close to [. James gave an example
of a space, F, which is not reflexive but has no subspace close to [{’. The
preceding says that F**/F is super-reflexive.

There is some evidence that a space with R*"'(E) not super-reflexive in
fact contains subspaces arbitrarily close to [{” for n = 2. In [6] it was
proved that if R(E) contains norm-1 vectors with

X+ o+ X,
n
close to one while A(%,, ..., X,) > a > 0, then E contains norm-1 vectors
with
X+ o+ Xy,
2n
close to 1 while A(x,, ..., x,,) > a*. In [4] Davis and Lindenstrauss show

that a space which admits a local 2-structure contains subspaces arbitrarily
close to [{". This fact follows from the following result of theirs:

THEOREM 4. Suppose that E admits a local k-structure, m is a positive
integer and € > 0 is arbitrary. Then there are m* norm-1 vectors {x; ...}
where 1 < iy, iy, ..., iy < m such that for every choice of indices 1 < ry,
oy oouy Vi =< M,

=mk - &

S X D 0 - 0N,
h=1ir=1 k=1
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Here, for all j, 0°G;) = 1ifi;<rjand 0"G) = —1ifi;> ;.

LEMMA 5. Suppose that E admits a k-structure and that n = 2*. Then,
for every € > 0, there are norm-1 vectors {x, x,, ..., x,} such that

e, + %, + = +xJ)l=n—¢ and A, x;,...,x,)=n"*— ¢

Proof. We take m = 2 as in Theorem 4, so that we get n = 2¢ = mF
vectors {x;,....}-
It is clear that taking all r; = 2 gives all plus signs in the sums, so that

ey + x, + - + x)l=n — &

To complete the proof, we verify that there are choices for the values of
the k tuples (v, r,, ..., r;) so that all of the sign combinations appearing
in the rows of the matrix H,_,, discussed in Section 2, can be obtained.
For each of the 2* sign combinations there must be a norm-1 linear functional
which, when evaluated on the corresponding sum, give a value close to n.
These can be used to give a value close to n"/? for A(x,, X, ..., X,).

Because of the inductive definition of the H,’s, it is not hard to see how
to specify the r’s. We simply note that

H - 0’(2) 6*(1)
0 6'2) 6'(1)
and then, that for k = 1,

Q.E.D.

2 2
H,=H,®H;_, = [0 H-, 6 (I)Hk—l].

0'QH,-; 6'(DH,_,
In [1] Bellenot proved that if (E) is reflexive and RE is not, then E

contains uniformly complemented [¢”’s. We say that E has no large tetrahedra
if there is an ¢ > 0 such that

1
4 —e= mln{ZA(xu X2y X3, X4), [IXy + X2 + X3 + x4||}.

CoRrOLLARY 6. If E is non-reflexive and has no large tetrahedra, then E
contains uniformly complemented l:,")’s.

4. Normal Structure

Let C C E be a closed bounded convex set. We say C has normal structure
if, for every non-empty closed convex H C C, either H is a singleton or
else there is an x € H such that

sup{|lx — yl:y € H} < diam(H) = sup{lly, — yill:y:, y» € H}.
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We say that the space, E, has normal structure in case every closed bounded
convex subset of E has normal structure. It is known [11] that if C is a
weakly compact convex set with normal structure and T : C — C is a map
such that for all x, y € C, |Tx — Ty| < |x — |, then T has a fixed point
in C.

If E is a Banach space lacking normal structure, then there must be a
closed bounded convex K C E which is ‘‘abnormal’’, i.e., for every x €
K ’

sup{lx — yll:y € K} = diam(X).
In [13] it was proved that an abnormal set cannot exist in a k-UR space.

A more careful examination of the structure of an abnormal set yields the
following:

THEOREM 1. Suppose that for some & > 0 and some 0 < ¢ < 1 there
is an integer m such that, for all x,, x,, ..., x,, € B if

|x|+x2+---+xm|>l_8
m |

then

A(xl, Xy coey xm') < e.
Then E is super-reflexive and has normal structure.

The proof requires some preliminary observations and results. Notice,
first, that the super-reflexivity is immediate from the results of Section 3.
We assume that E contains an abnormal closed bounded convex K. It is no

loss of generality to assume, further, that diam(K) = 1 and dist(0, K)
> 0.

LeMMA 1. Suppose that (B;) is a positive sequence decreasing to zero.
Then there is a sequence (x;) C K such that

@) llz = x4l =1 = By >1— By, foral L, all i and all
2 € CO(Xpi1y XLw2s voes XLsiot)

G) llz — xodl =1 — NG — DBry, for all L, all i and all 7z =
Si2) Nxpyj where 2521 N, = 1 and \; < N for all positive ;.

Proof. The first statement is a well known property of abnormal sets
(see [2] for a proof). For the second statement, write z = 2 nx; — 2 v;x;
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where all coefficients are positive and £ m; — 2 y; = 1. Then
le = xpodl = ”E 0% = (2 m)xL+.- - (2 Vi% = (2 v;)xw)
> (2 m-)(l — Bred) = 2%
=1- (2 nj>BL+i

=1~ NG~ DBy QED.

The aim, now, is to show that there is a subsequence of the sequence
(x;) contradicting the hypothesis for every m. As we shall see, the main
idea is to show that a property similar to (i) in the lemma holds even if

COXL 41y voes Xpam—1)

is replaced by

[xL+l’ seey xL+m—l]'

By passing to a subsequence, we may assume that for some x € K, x; —
x weakly. Furthermore, using Ramsey’s Theorem as in [16] we may also
assume that lim;_.. |=_, a;x, .|| exists, for all integers k and all real {a,,
a,, ..., a;}. The limit is a continuous function on R*.

Proof of the theorem. Let m be given and for each L define
}’lf = Xp+1 — xL+m+1,y15 = XL+2 T XLam+1s oees }’f‘n = Xp+m — XL+m+1-
Notice that, for any & > 0 and for L large enough,

yit+ o+ oyn
m

>1-8.

We get a contradiction by using Theorem 1.1 and showing that, for each
l<si<m,

hm lnf diSt(yL+i+l, [yL+i’ [ERX} yL+1])

L—x
* = li[Ln inf distQep 4415 (Xpais ooos XL 41])
= 1.
Let

U= {(a,, Ary veey a,-} c Ri: ||(a1, ceey a,')”x = | and 2 ajBO}.
j=1

We claim that, for all (a,, a,, ..., a;) € U, lim|[=i_, ax, .} > 0. If not,
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then there is an i-tuple (a,, a,, ..., a;) € U with lim/|[=_, ax,,J| = 0. If
Si_y a; > 0 then, since xg,; = x € K and dist(0, K) > 0, we get a
contradiction. Hence, we may suppose that 2;_, a; = 0 and, without loss
of generality, that a; # 0.

Notice - that

i—1
j=1
Now, since the limit of the norms is zero, for 8 > 0 arbitrary and L
sufficiently large,

aj -1
a;

a; a;_
—Xp4r bt T X T X4
—a; —a;

<

|ai|
so that, by Lemma 1 part (i) and the fact that ||(a,, ..., a)|. = 1,
min(l — B, 1 — NG — DBLs) < |‘f—| for any fixed N = Igli.

Since B,.; — 0, we have that |a| < 8 which contradicts the fact that g8 >
0 was arbitrary. Thus the claim is established.

An immediate consequence of the fact that the limit is continuous on R’
is that there is an € > 0 such that for L large enough and A = (A, ..., \;),

> t|\. forall Y, A = 1.

Jj=1

Let M = sup{|x|:x € K}. Clearly, for all L large enough,

2 Apxp .

j=1

S | > M+ 1 i > 2L
=1
This shows that if z = 2j_; Ax, 4, is such that
lz = xpiinill = dist(z, [xpsis oovs XL41]),

then sup|\| < N, because, otherwise,
1=z - x4l >M+1 - M=1.

Hence, using Lemma 1 again,

lz = xp4iill = min(l — Briir, 1T = No@Brsis1),

and the result follows from the fact that 8, ,;,, — 0. Q.E.D.
The sequence (x;) constructed above has some additional interesting
properties. It is not hard to extend the method above to show that, for
every i > 0, there is an n(i) > 0 such that for all (¢, ,, ..., a;) € R/,
n(i)(zla,.|> < lim < M(Ela,.|>.
L

i

2 OXL +j

j=1
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But, since E is super-reflexive, lim sup n(/) = 0. If we consider an ultrapower
of E over a free ultrafilter and define a norm-1 sequence 3; by

Vi= O = Xy Xin = Xg, Xivg = Xay ooy Xigp = Xk, o0,
then the following hold:

() if=_,0 = 1and o = 0, then =), aP| = 1;

(ii) if § is a weak-cluster point of (9;), then |[j| = 1;
(iii) if § is a weak-cluster point of (¥;), then lim; |[y; — 3| = 1;
(iv) for all L and all i, A(Pr.1 +ver Yr4i) = 1.

Generalizing the work of Huff [8], van Dulst [15] defines property (P)
for a Banach space as follows: There exist 0 < & < 1 and 0 < & < 1 such
that if (x,) C B, x, — x weakly, and sep(x,) = ¢ then ||x| < 8. Here

sep(x,) = inf{|lx, — x,/l:m # n}.

van Dulst proves that a reflexive space satisfying (P) has normal structure.
It is immediate that for each 0 < & < 1 there is a subsequence, (5,), of the
sequence, (¥;), such that sup(y;) > € and, still, every weak cluster point
has norm 1. Thus, the ultrapower of E is a super-reflexive space failing
property (P).

Finally, it is worth noticing that if Theorem 3.2 is combined with the
methods used above one can prove:

THEOREM 2. If E is not super-reflexive, then there is a Banach space
F, finitely representable in E, and a closed convex set K C F such that

(i) K C S, the unit sphere of f,
(i) diam(K) = 2,
(iii) K is abnormal.

In [14] van Dulst shows that every separable space has an equivalent
norm where a set like K exists. Theorem 2 guarantees that, for a non super-
reflexive E, such a K can always be finitely represented in E in the given
norm.
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