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a b s t r a c t

The bandwidth minimization problem on graphs (BMPG) consists of labeling the vertices of
a graph with the integers from 1 to n (n is the number of vertices) such that the maximum
absolute difference between labels of adjacent vertices is as small as possible. In this work
we develop a DRSA (Dual Representation Simulated Annealing) algorithm to solve BMPG.
The main novelty of DRSA is an internal dual representation of the problem used in con-
junction with a neighborhood function composed of three perturbation operators. The
evaluation function of DRSA is able to discriminate among solutions of equal bandwidth
by taking into account all absolute differences between labels of adjacent vertices. For bet-
ter performance, the parameters of DRSA and the probabilities for selecting the perturba-
tion operators were tuned by extensive experimentation carried out using a full factorial
design. The benchmark for the proposed algorithm consists of 113 instances of the Har-
well-Boeing sparse matrix collection; the results of DRSA included 31 new upper bounds
and the matching of 82 best-known solutions (22 solutions are optimal). We used Wilco-
xon signed-rank test to compare best solutions produced by DRSA against best solutions
produced by three state of the art methods: greedy randomized adaptive search procedure
with path relinking, simulated annealing, and variable neighborhood search; according to
the comparisons done, the quality of the solutions with DRSA is significantly better than
that obtained with the other three algorithms.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

The bandwidth minimization problem on graphs (BMPG) was originated at the Jet Propulsion Laboratory in 1962 when
Harper [16] studied the problem of labeling the vertices of a hypercube in n dimensions with the integers from 1 to 2n in such
a way that summation, over all neighboring pairs of vertices, of the absolute differences of integers assigned to vertices is
minimal. Harary [15] proposed the problem independently of Harper.

Let G ¼ ðV ; EÞ be a finite undirected graph with jV j ¼ n and jEj ¼ m. A labeling s of G is a bijective mapping from the ver-
tices of G to the set f1;2; . . . ;ng. The bandwidth of G for s, written BsðGÞ, is BsðGÞ ¼maxfjsðiÞ $ sðjÞj : ði; jÞ 2 Eg. BMPG is the
problem of finding a labeling s% such that the bandwidth of G for s% is as small as possible: Bs% ðGÞ ¼ minfBsðGÞg 8s.
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In the adjacency matrix A ¼ ðaijÞ of graph G ¼ ðV ; EÞ each non-zero element aij of A is in a diagonal located ji$ jj positions
away from main diagonal. The distance from the farthest non-zero element to main diagonal is the bandwidth of the matrix;
the term bandwidth is used because the non- zero elements are located in a band with respect to main diagonal. The band-
width of a matrix A can be reduced by simultaneous permutations of rows and columns of the adjacency matrix; in fact
simultaneous exchange of rows i and j, and columns i and j is equivalent to a label exchange of nodes i and j in the graph G.

Bandwidth minimization is desirable for a wide range of applications, for instance see [24,3,12,2]. The BMPG is NP-Com-
plete [25], and a number of exact, greedy, and meta-heuristic algorithms have been developed to solve it. The most impor-
tant exact algorithms are those developed by Del Corzo and Manzini [10]; Caprara and Salazar-González [5]; Martí et al. [20];
and Cygan and Pilipczuk [8,9]. In the group of greedy algorithms the best known are the Gibbs, Poole, and Stockmeyer (GPS)
algorithm [13]; and the Cuthill–McKee (CM) algorithm [6]. In the class of meta-heuristic algorithms we found genetic pro-
gramming [17], genetic algorithm [19], ant colony [18], tabu search [21], simulated annealing (SA) [11,27], greedy random-
ized adaptive search procedure with path relinking (GRASP-PR) [26], scatter search–tabu search [4], node-shift with hill
climbing [19], and variable neighborhood search (VNS) [23].

In this work we propose a meta-heuristic algorithm called DRSA (Dual Representation Simulated Annealing) to solve
BMPG. The novelty of this algorithm is the use of two internal representations of solutions for the problem; given a permu-
tation s ¼ ðs1; s2; . . . ; snÞ of the integers from 1 to n, where n is the number of vertices of the graph, the first representation
considers element si as the label assigned to vertex i, and the second representation interprets si as the vertex to which label
i is assigned. In conjunction with the two internal representations we use a neighborhood function composed of three per-
turbation operators; two of the three operators work over the first internal representation and the third operator works over
the second one; the combined effect of the three operators is more powerful than the effect of each operator alone. The eval-
uation function of DRSA is a modified version of the evaluation function introduced in [27].

To change a solution of the BMPG, one of the three perturbation operators of the neighborhood function is applied. The
operator to be used is selected according to certain precomputed probabilities determined using a full factorial tuning pro-
cess that will be explained in Section 4. In the same tuning process values for parameters of the simulated annealing algo-
rithm, specifically for initial temperature, cooling rate, and final length of the Markov chain are determined.

DRSA was tested with a well-known benchmark of 113 instances of Harwell-Boeing sparse matrix collection [22]; we
improved 31 best-known solutions and matched 82 upper bounds (22 of them are optimal). According to Wilcoxon signed-
rank test, DRSA outperforms the methods GRASP-PR [26], SA [27], and VNS [23], with respect to the quality of the solutions.

The remainder of this document is organized as follows: Section 2 presents a review of some of the most relevant meth-
ods for bandwidth minimization; Section 3 presents DRSA; Section 4 describes the process for tuning the parameters of DRSA
using a full factorial design; Section 5 shows the results of applying DRSA to the 113 instances of the benchmark; and Sec-
tion 6 is a summary of main contributions of this paper.

2. Relevant related work

In this section some relevant algorithms for solving BMPG are briefly described. The reviewed algorithms are grouped in
three categories: exact, greedy, and meta-heuristic. In Table 1 we summarize significant information about algorithms
including a short note about each one.

2.1. Exact algorithms

Del Corzo and Manzini [10] introduced two exact algorithms for solving BMPG. First one is the MB-ID algorithm (Mini-
mum Bandwidth by Iterative Deepening), and second one is the MB-PS algorithm (Minimum Bandwidth by Perimeter
Search).

MB-ID algorithm is based on the concept of upper partial ordering (UPO): for a graph G with vertex set V ¼ f1;2; . . . ;ng, a
UPO of length k < n is an injective function from f1;2; . . . ; kg to f1;2; . . . ;ng. A UPO assigns the integers 1;2; . . . ; k to k
vertices of G, say fv j1 ; v j2 ; . . . ;v jkg. MB-ID searches for a b-bandwidth solution, where b is initially a lower bound of the
bandwidth, i.e., b 6 Bs% ðGÞ. If this search fails, the algorithm searches for a ðbþ 1Þ-bandwidth solution and so on. In each
search the algorithm begins with a UPO of length zero, and by means of a depth first search, vertices are added to the current
UPO.

Caprara and Salazar-González [5] proposed an enumerating scheme for computing Bs% ðGÞ based on the construction of
partial layouts, where a partial layout of a subset of vertices S ' V is a function s : S! f1;2; . . . ;ng such that su – sv for
u;v 2 S and u – v . The basic idea is determining the minimum reachable bandwidth knowing the current partial layout.
Based on which labels are already assigned, the algorithm estimates the minimum bandwidth that can be reached.

Martí et al. [20] introduced another exact algorithm for solving BMPG. This algorithm uses a greedy randomized adaptive
search procedure (GRASP) [26] for determining initial upper bound of the bandwidth. Suppose GRASP finds a bandwidth of
size k; then the exact algorithm begins by searching a bandwidth of size k$ 1. If a solution is found the algorithm searches
for a bandwidth of size k$ 2, and so on. When the algorithm does not find a solution having a bandwidth of size k$ i it ter-
minates and reports the optimal bandwidth of size k$ iþ 1. The initial solution provided by the GRASP algorithm allows for
the reduction of the search space that is explored.
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Cygan and Pilipczuk [8] developed an exact algorithm with Oð5nÞ running time for solving BMPG. A b-ordering is an order-
ing of vertices of the graph such that bandwidth is of size at most b. Algorithm works by partitioning the positions
f1;2; . . . ; ng into d n

bþ1e segments of size bþ 1, except possibly for the last segment whose size is n modðbþ 1Þ. Next, algorithm
generates several assignments of vertices to segments, and checks each assignment for compatibility with the b-ordering. An
improvement of this algorithm with a running time of Oð4:83nÞ was reported in [9].

2.2. Greedy algorithms

Three of the best known greedy algorithms to solve BMPG are the Gibbs, Poole and Stockmeyer (GPS) algorithm [13]; Cut-
hill–McKee (CM) algorithm [6]; and improvement of the CM algorithm: reverse Cuthill–McKee (RCM) algorithm. The com-
mon core between GPS, CM, and RCM algorithms is a breadth-first search (BFS) procedure that partitions vertices in level
structures such that every edge has its endpoints either in the same level or in consecutive levels. This level organization
is then used to label the vertices according to their level number.

CM algorithm begins by choosing a starting vertex of minimum degree. After that, it constructs a level structure rooted at
the starting vertex and sorts vertices in increasing order of their degrees. From an implementation perspective, a queue is
used to insert/delete neighbors of the root in increasing order of their degrees and a vector p is used to store consecutively
the new labels. The level-by-level renumbering is a consequence of the order in which vertices are discovered by BFS pro-
cedure. The only difference between CM and RCM algorithms is that RCM algorithm reverses the vector p. GPS algorithm is
not very different: it finds pseudo-peripheral vertices separated by a distance equal to graph diameter; as in CM and RCM
algorithms, GPS algorithm renumbers vertices level by level.

2.3. Meta-heuristic algorithms

Meta-heuristic algorithms allow one to find BMPG solutions usually better than those produced by greedy algorithms but
certainly in more time. These algorithms represent a solution for the problem with a permutation of the labels of vertices,
and have different ways of measuring the goodness of solutions.

2.3.1. GRASP with path relinking
Piñana et al. [26] proposed a greedy randomized adaptive search procedure (GRASP) combined with a path relinking (PR)

strategy to solve BMPG. In the GRASP phase the method generates a set of elite solutions using one of five constructive

Table 1
Summary of significant information about approaches to solve BMPG.

Class Authors Main idea

Exact Del Corzo and Manzini [10] Creation of Upper Partial Orderings (UPO)
Exact Caprara and Salazar-González [5] Construction of partial layouts
Exact Martí et al. [20] Search starts with a solution obtained using a greedy randomized

adaptive search procedure approach
Exact Cygan and Pilipczuk [8] Partitioning of labels into segments, then computation of solution

for each segment and verification of full solution
Greedy Gibbs, Poole and Stockmeyer (GPS) algorithm [13] Construction of a level structure such that every edge has its

endpoints either in the same level or in consecutive levels, using
pseudo-peripheral vertices separated by a distance equal to the
graph diameter

Greedy Cuthill–McKee (CM) algorithm [6] Construction of a level structure such that every edge has its
endpoints either in the same level or in consecutive levels, and
then using the vertices in increasing order of their degrees

Greedy Cuthill–McKee algorithm in reverse order (RCM) [6] Construction of a level structure such that every edge has its
endpoints either in the same level or in consecutive levels, and
then using the vertices in decreasing order of their degrees

Meta-heuristic Piñana et al. [26] Greedy randomized adaptive search procedure using Tabu Search
and path relinking to expand the exploration

Meta-heuristic Dueck and Jeffs [11] Simulated annealing that uses as perturbation the exchange of
two labels

Meta-heuristic Rodriguez-Tello et al. [27] Simulated annealing that uses as perturbation the rotation of the
labeling and whose evaluation function uses all differences
between labels of adjacent vertices

Meta-heuristic Mladenović et al. [23] Variable neighborhood search that controls the exploration of
increasingly distant neighbors of a solution
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methods C1, . . . , C5. The phase begins with the creation of a list of unlabeled vertices U, which initially is equal to the vertex
set V; after that, first vertex is selected randomly from U and a random label is assigned to it. In the following steps the next
vertices to be removed from U are selected randomly from a list formed by all vertices of U that are adjacent to at least one
labeled vertex. The selected vertex is labeled with the closest number not yet assigned to a previously selected vertex. The
method is adaptive because after selecting and relabeling one vertex it updates some relevant information to be used in the
next construction step. A procedure based on the tabu search algorithm [21] completes the GRASP phase.

Finally, PR strategy tries to improve the solution. In this phase the algorithm generates new solutions by exploring tra-
jectories that connect the elite solutions from the GRASP phase. Starting from one of these solutions, called the initial solu-
tion, the algorithm generates a path in the neighborhood space that leads to better solutions.

2.3.2. Simulated annealing
A simulated annealing (SA) algorithm to solve BMPG was used first by Dueck and Jeffs [11]. In this algorithm the neigh-

borhood function interchanges a pair of distinct labels (a move). If a move generates a solution with a cost lower than the cost
of the current solution the move is accepted and the current solution is updated. Otherwise, the move is accepted with prob-
ability PðDEÞ ¼ e$DE=T where DE is the increment in cost that would result from the prospective move, and T is the current
temperature.

Rodriguez-Tello et al. [27] introduced a neighborhood function called rotation. For a labeling s the rotation between two
labels sðiÞ and sðjÞ, with i < j, can be expressed as a product (or sequence) of j$ i swaps: rotation(sðiÞ; sðjÞ) = swap(sðiÞ; sðjÞ) %
swap(sðiÞ; sðj$ 1Þ) % ( ( ( % swap(sðiÞ; sðiþ 1Þ). This compound move gives to the algorithm the capacity to explore extensively
the neighborhood of current solution. Another important characteristic of this algorithm is its evaluation function called d
based on the bandwidth of the permutation being evaluated and on the number of absolute differences with value
x 2 f1;2; . . . ;n$ 1g induced by the permutation.

2.3.3. Variable neighborhood search
Mladenović et al. [23] developed an algorithm based on variable neighborhood search (VNS) meta-heuristic in order to

solve BMPG. This meta-heuristic explores increasingly distant neighbors of a solution. A main loop performs the following
three steps: shaking, local search, and neighborhood change. First, the neighborhood index k is initialized with kmin (this is
the size of the neighborhood). Second, in the shaking phase the meta-heuristic generates a solution y within current neigh-
borhood. Using the solution y, a local search method produces a local optimum z. Third, if the solution z is better than the
solution x, then it replaces x, and k is set to kmin; otherwise neighborhood is expanded incrementing k while k < kmax. When
k P kmax; k is set to kmin again. VNS algorithm improved 42 previous best-known solutions of the benchmark of 113 instances
taken from the Harwell-Boeing sparse matrix collection [22].

3. The Dual Representation Simulated Annealing (DRSA) algorithm

This section presents our proposed method of solution: the Dual Representation Simulated Annealing (DRSA). DRSA uses
the simulated annealing (SA) meta-heuristic, but it is different from previously reported SA algorithms as previous imple-
mentations only use one internal representation of the problem whereas DRSA uses two. Moreover, DRSA has a neighbor-
hood function composed of three perturbation operators, which give DRSA a balance between exploration and
exploitation of the search space.

3.1. Structure of DRSA

Simulated annealing heuristic was inspired by the analogy of the process of heating and cooling a metal to obtain a highly
stable crystalline structure. This process consists of increasing temperature to a maximum value at which a metal melts, and
then decreasing it until the melted metal reaches its ground state; in that state the particles of the metal get arranged such
that the energy of the system is minimal [1].

There are three parameters for simulating temperature scheduling: initial temperature T0, final temperature Tf and cool-
ing rate a (0 < a < 1). At the beginning of the algorithm current temperature T is initialized at T0, but as execution proceeds
it is repeatedly reduced using T ¼ aT until it reaches its final value Tf . To simulate the change of states in the metal the algo-
rithm maintains a current state x that has energy Ex. The next state y with energy Ey is obtained by perturbing the current
state x. If Ey is less than Ex then y becomes the new current state; otherwise state y is accepted with probability e$ðEy$ExÞ=kB T (T
is the current temperature and kB is the Boltzmann constant). The SA requires a fourth parameter L (called the length of Mar-
kov chain) that defines the number of perturbations performed at the same temperature T.

The DRSA algorithm is summarized in Algorithm 1. Algorithm receives three input parameters: initial temperature T0,
cooling rate a, and final length of Markov chain Lf . At the beginning final temperature Tf is defined as 1) 10$7, current length
of Markov chain L is defined as 40, and current temperature T is initialized at T0.
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Algorithm 1. DRSA algorithm

In the fourth line of DRSA algorithm, c value is computed. Its purpose is to increment the length of Markov chain so that
when T reaches its final value Tf ; L also reaches its final value Lf . Thus, the value of c depends on the total number of tem-

perature reductions r made in the algorithm. If r is the total number of temperature reductions then Tf ¼ arT0; r ¼
logðTf Þ$logðT0Þ

logðaÞ ,

and therefore c ¼ exp logðLf Þ$logðLÞ
r

! "
.

Basically DRSA consists of a while loop, which is executed while current temperature T does not reach its final value
Tf ¼ 1) 10$7, and an inner for loop that performs L perturbations at the current temperature. Right before the inner for loop
starts, the value of the variable improvement is set to false and right after it ends the value of improvement is tested. During
the latter if improvement is false then current temperature T is decreased by a and current length L of Markov chain is incre-
mented by c; but if improvement is true then T and L remain unchanged; the idea behind this is to modify T and L only if the
global best solution was not improved in the recently completed Markov chain.

Two main components of the algorithm are neighborhood function g and evaluation function f. The neighborhood func-
tion g perturbs the current solution x producing a new solution y ¼ gðxÞ. If the cost f ðyÞ of the new solution is better than the
cost of the current solution x, then y is accepted as the new current solution; otherwise y becomes current solution with
probability e$ðf ðyÞ$f ðxÞÞ=T .

3.2. Internal dual representation

Given a graph with n vertices, BMPG consists of labeling the vertices of the graph with the integers 1;2; . . . ;n such that the
bandwidth of the graph is as small as possible. DRSA uses permutations of the set f1;2; . . . ;ng to represent BMPG solutions,
but since we can denote the n vertices of the graph by 1;2; . . . ;n respectively we have two possible interpretations of a per-
mutation s ¼ ðs1; s2; . . . ; snÞ : si as the label of vertex i; and si as the vertex with label i. In order to distinguish the two inter-
pretations of a permutation s, we will use p ¼ ðp1;p2; . . . ;pnÞ, where pi represents the label of vertex i, and
q ¼ ðq1;q2; . . . ;qnÞ, where qi represents the vertex to which label i is assigned.

Each of the three perturbation operators is defined over one of the two internal representations, however every time one
representation is modified we propagate this change to the other representation in order to maintain the consistency of the
two representations. The three perturbation operators have as a basic operation the exchange of two elements in the repre-
sentation over which they are defined. Suppose that we are working with the p representation and elements at positions i
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and j of p were exchanged (pi $ pj); to propagate this exchange in q the elements of q at positions pi and pj are exchanged
(qpi

$ qpj
). Similarly, an exchange of elements at positions i and j of q (qi $ qj) is propagated in p by exchanging its ele-

ments at positions qi and qj (pqi
$ pqj

).
The reason for using two representations p and q is that the neighborhood function is composed of operators that work

over the p representation and operators that work over the q representation and this way DRSA can have a balance of explo-
ration and exploitation of the BMPG search space.

3.3. Neighborhood function

DRSA uses neighborhood function g to perturb the current solution and obtain a new solution. The algorithm evaluates
the new solution using the evaluation function f and determines whether the new solution replaces the current one. As pre-
viously stated, the neighborhood function consists of three perturbation operators:

* First operator is Random Exchange Operator (REX) that works over p representation. This operator selects randomly two
positions i and j of p and exchanges their contents.
* Second operator is Neighbor Exchange Operator (NEX) that also works over p representation. This operator selects ran-

domly a vertex i of the graph and exchanges its label with the label of one of its neighbors j also selected randomly; since
the indices of p represent the vertices of the graph, the NEX operator exchanges the contents of positions i and j of p.
* Third operator is Rotation Operator (ROT), introduced in [27], that works over q representation. This operator selects two

positions i and j of q with i < j; then, element at position i is moved to position j, and elements between positions iþ 1
and j are shifted one position to the left. ROT operator makes a smooth change in the affected vertices as each vertex from
qi to qj$1 changes its label from i to iþ 1, with the only big change occurring for vertex qj as it changes its label from j to i.

In a graph G ¼ ðV ; EÞ with jV j ¼ n vertices and jEj ¼ m edges, the absolute differences between labels of adjacent vertices
varies from 0 to n$ 1 (0 occurs for reflexive edges). Next we analyze the three perturbation operators in greater depth taking
into account the number of absolute differences affected by one application of each operator, the magnitude of the change in
these differences, and the number of possible applications of the operator.

REX exchanges the labels pi and pj of two random vertices i and j. Let k ¼ m=n be the average degree of the vertices in the
graph. One label exchange affects on average 2k absolute differences when vertices i and j are not adjacent, and 2k$ 1 abso-
lute differences when vertices i and j are adjacent. Now, for each edge incident to vertex i or vertex j, the magnitude of the
change of its value (assuming the other vertex of the edge is vertex k) is: jjpk $ pij$ jpk $ pjjj ¼ j2pk $ pi $ pjj given that
difference jpk $ pij is replaced by difference jpk $ pjj or difference jpk $ pjj is replaced by difference jpk $ pij after

Fig. 1. REX exchanges labels of two vertices i and j selected randomly. In the figure numbers inside circles are labels assigned to vertices, and numbers
below circles are numbers of vertices. In this case, labels of vertices 2 and 4 were exchanged by the REX operator. The state of p and q representations is
shown before (left) and after (right) application of REX.
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exchanging labels of vertices i and j. REX can be applied over any pair of vertices, without considering how close or far apart

they are in the graph, and thus the number of possible applications of REX is n
2

# $
. Fig. 1 shows the use of the REX operator.

The neighbor exchange operator (NEX) is a specialized version of REX operator. NEX operator takes two neighbor vertices i
and j and exchanges their labels pi and pj. On average, the number of absolute differences affected by one application of the

Fig. 2. The neighbor exchange operator NEX exchanges labels of neighbor vertices i and j. In the figure labels of neighbor vertices 1 and 6 were exchanged by
one application of the NEX operator. The state of the p and q representations is shown before (left) and after (right) the application of the operator.

Fig. 3. ROT moves the element at position i of q to position j, and shifts the elements iþ 1; iþ 2; . . . ; j, one position to the left. In this case i ¼ 2 and j ¼ 6, so
q2 ¼ 3 is moved to position j ¼ 6, and the elements q3 ¼ 4;q4 ¼ 6;q5 ¼ 7;q6 ¼ 2 are shifted one position to the left. The state of the p and q representations
is shown before (left) and after (right) the application of the operator.
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operator is 2k$ 1, and the magnitude of the change in the values of the edges incident to vertex i or vertex j is equal to (again
assuming that the other vertex of the edge is vertex k): jjpk $ pij$ jpk $ pjjj ¼ j2pk $ pi $ pjj.

All edges affected by NEX are connected to edge ði; jÞ, so every application of NEX involves vertices and edges that are located
in the same region of the graph, in contrast with REX that can modify very distant regions of the graph on every application.

It is worth mentioning that the work done by NEX can also be realized by REX, but the probability m= n
2

# $
that vertices i

and j are neighbors in the graph is low, especially for sparse graphs. Fig. 2 shows the use of NEX operator.
ROT was introduced in [27]. If i and j are the bounds of ROT then this operator can be decomposed into a sequence of ji$ jj

exchanges of adjacent positions in the q representation. The first exchange is between the elements at positions i and iþ 1,
the second exchange is between the elements at positions iþ 1 and iþ 2, and the last exchange is between the elements at
positions j$ 1 and j. This way, the element at position i is moved to position j and the elements in positions iþ 1; iþ 2; . . . ; j
are moved one position to the left. Fig. 3 gives an example of applying ROT.

On average, one application of ROT affects ðj$ iþ 1Þk absolute differences, as j$ iþ 1 vertices change their labels. This num-
ber is greater than the absolute differences affected by the other two operators, but the magnitude of the change is smaller than
with those operators. Since ROT works over q representation the magnitude of the change in the affected differences is of one
unit, except for the differences defined by the edges incident to vertex qj. The vertices with labels i; iþ 1; . . . ; j$ 1 get the labels
iþ 1; iþ 2; . . . ; j respectively, so the magnitude of the change in the differences defined by the edges incident to these vertices is
of one unit. The vertex with label j gets the label i and so the magnitude of the change in the affected differences is of j$ i.

In this work i and j in ROT operator satisfy 1 6 ji$ jj 6 5. For this, a random value between 1 and 5 is selected and
assigned to a variable r. Then the position i is selected randomly from the set f1;2; . . . ;n$ rg, and position j is set to iþ r.
The restriction 1 6 ji$ jj 6 5 is for keeping the value of ji$ jj small since then ROT does more exploitation as less absolute
differences are affected. This is in contrast with the situation in which the value of ji$ jj is large so that ROT must then do
more exploration as more absolute differences are affected and the magnitude of the change in the absolute differences
defined by the vertex that changes its label from j to i is increased. Another reason to restrict the bounds of ROT is that
one application of this operator requires more computational work than one application of the other two operators.

Let r be the maximum separation between the limits i and j of ROT; the number of possible applications of ROT is a func-
tion of r. For r ¼ 1 there are n$ 1 possible applications, where n is the number of vertices in the graph. Table 2 shows the
number of possible applications of the operator as a function of r.

In every call of the neighborhood function g one of the three operators is applied to perturb the current solution. Each of
the operators REX, NEX, and ROT has a probability value of being selected, values denoted by PROBABILITY_REX, PROBABIL-
ITY_NEX, and PROBABILITY_ROT, respectively. To select an operator the function g gets a random number 0 6 p 6 1 and
based on the value of p the function applies one of the three operators to the current solution x, as shown in Algorithm 2.
In Section 4 we explain the process for determining probabilities for the operators that maximize the effectiveness of g.

Algorithm 2. The neighborhood function g.

Table 2
Number of possible applications of the ROT
operator as function of r.

r Number of possible applications

1 n$ 1
2 ðn$ 1Þ þ ðn$ 2Þ ¼ 2n$ 3
3 ðn$ 1Þ þ ðn$ 2Þ þ ðn$ 3Þ ¼ 3n$ 6
( ( ( ( ( (
k ðn$ 1Þ þ ( ( ( þ ðn$ kÞ ¼ k ( n$ kðkþ1Þ

2
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3.4. Evaluation function

This section describes the DRSA evaluation function f. The choice of this function was inspired by the evaluation function
introduced in [27]. A main feature of this function is that it takes into account all the absolute differences between labels of
adjacent vertices in order to discriminate among solutions with the same bandwidth.

For an undirected graph of n vertices there are 2nðnþ1Þ=2 possible adjacency matrices. Each of these matrices has a band-
width b 2 f1;2; . . . ;n$ 1g, so the 2nðnþ1Þ=2 matrices can be partitioned into n equivalence classes by putting matrices M1 and
M2 in the same equivalence class if and only if they have equal bandwidth. Average cardinality of these equivalence classes is
2nðnþ1Þ=2

n .
One possible evaluation function is the bandwidth b of the solution being evaluated. A solution s is better than

another solution s0 if BsðGÞ < Bs0ðGÞ. However, an evaluation function based only on bandwidth of the solution
makes the algorithm susceptible to being trapped in plateaus, as the algorithm cannot differentiate among solutions
that have same bandwidth. A better evaluation function should discriminate among such solutions in order to escape
plateaus.

Consider a solution s ¼ ðs1; s2; . . . ; snÞ. Let d be the vector of size n whose i-th element di (0 6 i 6 n$ 1) is the number of
absolute differences equal to i induced by the labeling s. The interpretation of each di in the adjacency matrix of the graph is
the number of non-zero elements in a diagonal located i positions away from main diagonal.

For i ¼ 0;1; . . . ;n$ 1, the number of absolute differences equal to i is at most n$ i; for example, there can be at most n$ 1
differences equal to 1. This way 0 6 di 6 n$ i for each di so that the number of possible values for each di is n$ iþ 1.

Let v be the vector of size n such that v i (0 6 i 6 n$ 1) is the number of possible values that di can have; so
v ¼ ðnþ 1;n; . . . ;2Þ. With vectors d and v we define a positional numbering system of variable base. Under this system, vec-
tor d is interpreted to represent a number with respect to the base, a number whose digits are the components of d, with the
number of possible values for the positions of d given by v.

In a positional numbering system with fixed base, the positional value of the digit at position i (from right to left) is the
base raised to i$ 1. This generalizes to a variable base numbering system as the product of the number of possible values for
each of the last i$ 1 digits. Thus, the positional value for each di is ðn$ iÞ!. The number of possible values that this positional
numbering system can represent is

Pn
i¼1i ( i! ¼ ðnþ 1Þ!$ 1 and given that adjacency matrices with the same vector d belong

to the same equivalence class, the average cardinality of the classes is 2nðnþ1Þ=2

ðnþ1Þ!$1. This average is much smaller than the average
cardinality of the equivalence classes based only on the bandwidth of the matrices.

It is desirable to have an evaluation function composed of two parts: an integer part (the bandwidth b) and a
fractional part (with values in the rank 0 to 1, not including 1). This way the fractional part enables us to discriminate
among solutions of equal bandwidth. One way to compute the fractional part is to transform the vector d into an
integer z (0 6 z < ðnþ 1Þ!$ 1) using the positional numbering system of variable base described above and then
compute z ¼ z=ðnþ 1Þ! (0 6 z < 1), see Algorithm 3. Unfortunately during this computation z and ðnþ 1Þ! can be very
large making this computation unfeasible. However not all is lost since the way in which z is computed and results
reported by Cygan and Pilipczuk [7] bring up the idea of a computation using continued fractions in terms of d and
v, a computation that does not involve huge integer values and still maps vector d to a normalized value d (0 6 d < 1):

d ¼

d0
v0
þd1

v1
þd2

v2
þ d3

..

.

vn$3
vn$2
þ dn$1

vn$1
;

this computation is implemented in Algorithm 4.

Algorithm 3. Mapping of vector d to a normalized z value (0 6 z < 1).
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Algorithm 4. Mapping of vector d to a normalized d value (0 6 d < 1).

Using b (1 6 b 6 n$ 1) and d (0 6 d < 1) the evaluation function f for DRSA is f ¼ bþ d where b is the bandwidth of the
solution and d is the fractional part corresponding to vector d. The inclusion of d in the evaluation function permits discrim-
ination among solutions with same bandwidth. However, since using zero differences dbþ1; . . . ; dn$1 in Algorithm 4 can pro-
duce very small values of d, Algorithm 4 has been implemented to consider only the differences from d0 to db.

4. Tuning of parameters

As shown in Algorithm 1, DRSA requires three parameters: initial temperature T0, cooling rate a, and final length of the
Markov chain Lf . For better performance, we established the values for these parameters through a full factorial tuning pro-
cess. In addition, we also tuned the probabilities of being selected of each perturbation operator.

We carried out the tuning process using a full factorial design for five factors:

1. Initial temperature T0.
2. Cooling rate a.
3. Final length of the Markov chain Lf .
4. Instance of the BMPG.
5. Probabilities of the three operators of the neighborhood function.

The levels or possible values for the first four factors are shown in Table 3. For the probabilities of using the perturbation
operators we used the sixty-six non-negative integer solutions of the Diophantine equation aþ bþ c ¼ 10. By dividing by 10
the values a; b, and c of every solution of the Diophantine equation we get probabilities for the operators REX, NEX, and ROT:

PðREXÞ ¼ a=10
PðNEXÞ ¼ b=10
PðROTÞ ¼ c=10

The BMPG instances selected were mcca, fs_183_1, and impcol_e. These instances were selected because of the difficulty to
reach their best known bandwidths [26,27,23], so they are good options to identify best combinations of factor values. This
way, the possible values for factors in the full factorial design are five for T0, three for a, three for Lf , three for the BMPG
instances, and sixty-six for the probabilities of the three operators. The number of test cases, or combinations of factor val-
ues, for the full factorial design is: 5) 3) 3) 3) 66 ¼ 8910. For statistical validity we repeat each test case 31 times [14].
Therefore, the number of times that DRSA was executed for determining the best combination of values for the factors was:
31) 8910 ¼ 276;210.

The selection of the best combinations of factor values takes into account the criteria:

1. Average bandwidth over the 31 runs.
2. Standard deviation of the bandwidth over the 31 runs.
3. Average, over the 31 runs, of the number of times that the neighborhood function was applied to reach the bandwidth.

The main criterion is average bandwidth; to break a tie standard deviation of the bandwidth is used; and to break a sec-
ond tie average of the number of applications of the neighborhood function is used. For the three selected instances the best

Table 3
Values for the factors T0 ;a; Lf , and instance of the BMPG. The values for factor Lf are in terms of the number of vertices n and the number of edges m of the
instance.

Factor Value 1 Value 2 Value 3 Value 4 Value 5

T0 1 4 40 200 1000
a 0.8 0.9 0.99 – –
Lf nm 10 nm 40 nm – –
Instance mcca fs_183_1 impcol_e – –
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seven parameter combinations are shown in Table 4. The first column of the table is the name of the instance; columns 2–4
contain the solution ða; b; cÞ of the Diophantine equation aþ bþ c ¼ 10, where a corresponds to the REX operator, b corre-
sponds to the NEX operator, and c corresponds to the ROT operator. Columns 5–7 are the other three factors of the full fac-
torial design, T0;a, and Lf . Columns 8 and 9 are average bandwidth and standard deviation of the bandwidth of the 31 runs;
and the last column is the average of the number of times that the neighborhood function g was applied.

Table 4 shows that there is no absolute winning combination of parameters, so we choose the winning combination as
follows: for the parameters initial temperature (T0), cooling rate (a), and final length of the Markov chain (Lf ) we select
the statistical mode value:

* T0 ¼ 1000 (it occurs ten times in the twenty-one results).
* a ¼ 0:99 (it occurs eleven times in the twenty-one results).
* Lf ¼ 10 nm (it occurs twelve times in the twenty-one results).

Table 4
The best seven combinations for the instances mcca, fs_183_1, and impcol_e.

Instance REX NEX ROT T0 a Lf AVG b STDV b AVG # g

mcca 8 0 2 1000 0.80 40 nm 39.19 2.30 1261541.06
mcca 1 4 5 1000 0.99 10 nm 39.38 2.84 2224687.48
mcca 3 6 1 40 0.80 40 nm 39.41 2.45 1760819.77
mcca 6 2 2 4 0.90 40 nm 39.41 2.56 1150486.48
mcca 5 4 1 1 0.99 nm 39.41 2.67 824155.25
mcca 4 0 6 1 0.99 10 nm 39.51 2.78 1529674.74
mcca 3 4 3 1 0.99 10 nm 39.58 2.49 1293136.61
fs_183_1 7 1 2 1000 0.80 10 nm 60.00 0.00 3379060.77
fs_183_1 7 0 3 40 0.99 40 nm 60.00 0.00 4090972.87
fs_183_1 7 3 0 200 0.90 10 nm 60.00 0.00 4258474.35
fs_183_1 7 0 3 1000 0.99 10 nm 60.00 0.00 4271006.64
fs_183_1 7 3 0 40 0.99 nm 60.00 0.00 4330434.48
fs_183_1 5 3 2 200 0.80 40 nm 60.00 0.00 5017583.35
fs_183_1 4 5 1 1000 0.90 10 nm 60.00 0.00 5018727.93
impcol_e 5 4 1 200 0.99 40 nm 43.35 1.55 7970134.90
impcol_e 9 0 1 1000 0.80 10 nm 43.41 1.91 4213421.12
impcol_e 5 4 1 200 0.99 nm 43.45 1.68 6088128.61
impcol_e 8 1 1 1000 0.90 10 nm 43.48 1.54 5678842.90
impcol_e 9 0 1 1000 0.99 10 nm 43.48 1.62 6330422.80
impcol_e 6 3 1 1000 0.99 10 nm 43.48 2.40 6124540.90
impcol_e 8 1 1 1000 0.90 10 nm 43.51 1.60 5850374.25

Fig. 4. Evolution of DRSA for the instance mcca using only one operator and using the three operators with the probabilities obtained with the tuning
process.
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We determine the value for the three perturbation operators of the neighborhood function g using the average of the
number of times each operator was applied, see Table 4:

REX ¼ ð8þ 1þ 3þ ( ( ( þ 6þ 8Þ=21 ¼ 124=21 + 6
NEX ¼ ð0þ 4þ 6þ ( ( ( þ 3þ 1Þ=21 ¼ 48=21 + 2
ROT ¼ ð2þ 5þ 1þ ( ( ( þ 1þ 1Þ=21 ¼ 38=21 + 2

Then, the probabilities for the three perturbation operators are:

PðREXÞ ¼ 6=10 ¼ 0:6
PðNEXÞ ¼ 2=10 ¼ 0:2
PðROTÞ ¼ 2=10 ¼ 0:2

This result shows that the neighborhood function requires the three operators (each with its own probability of being
applied). Fig. 4 shows the evolution of DRSA with the instance mcca for each operator alone, and for the mixture of the three
operators using the determined probabilities. The graph shows the results of computing the average bandwidth of 31

Fig. 5. Performance of DRSA using only the ROT operator, but with maximum separation r ¼ 3;4;5;6;7 between the bounds of the ROT operator. The best
results were obtained with r ¼ 5.

Table 5
The nineteen instances with two or more connected components.

Instance Total number of vertices Vertices in the largest component

bcsstk20 485 467
bcsstk22 138 110
dwt_234 234 117
gent113 113 104
impcol_a 207 206
jpwh_991 991 983
lns_131 131 123
lns_511 511 503
mbeacxc 496 487
mbeaflw 496 487
mbeause 496 492
mcca 180 168
mcfe 765 731
nos1 237 158
nos2 957 638
pores_3 532 456
saylr3 1000 681
sherman1 1000 681
sherman4 1104 546
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executions of DRSA with each operator alone and with the mixture of operators. From the plot we can conclude that the use
of the mixture of the three operators is more powerful than the use of each operator alone.

Finally, Fig. 5 shows the performance of DRSA with instance mcca when ROT is the only perturbation operator. The plot
shows the results of running DRSA 31 times for each r 2 f3;4;5;6;7g and computing the average bandwidth over the 31
runs. This confirms the choice r ¼ 5 as the maximum separation between the limits i and j of ROT.

5. Computational results

In the previous section we computed values for the parameters of DRSA, and the probabilities of using the three pertur-
bation operators. In this section, we describe the computational experimentation done to test DRSA. DRSA was coded in stan-
dard C, compiled with GCC 4.4.6 using the optimization flag -O3, and executed in a processor AMD Opteron™ 6274 at
2.2 GHz.

The benchmark to test the algorithm consists of 113 instances of the Harwell-Boeing sparse matrix collection[22]. This
benchmark has been used in important works for bandwidth minimization based on meta-heuristics [4,19,23,26,27]. Some
instances of the benchmark have more than one connected component, and in previous works the number of vertices in the
largest connected component was considered as the number of vertices of the instance; however, we take into account the
entire graph and compute the labeling for all vertices in the graph. Table 5 lists the instances with more than one connected
component.

According to the number of vertices in an instance, the benchmark can be divided in two sets: the set of small instances
formed by 31 instances with less than 200 vertices, and the set of large instances formed by 82 instances with more than 200
vertices.

Currently, the state of the art algorithm for bandwidth minimization is the variable neighborhood search (VNS) method of
Mladenović et al. [23]. And previous to the VNS algorithm, the state of the art method was the improved simulated annealing
(SA) algorithm of Rodriguez-Tello et al. [27]. So we compare DRSA against these two methods, and against the GRASP with
path relinking method of Piñana et al. [26] which is another important algorithm for solving BMPG.

DRSA was run on an AMD Opteron 6274 at 2.2 GHz, while the other three algorithms were executed on different proces-
sors. We ran the VNS algorithm on the Opteron 6274 processor and got an execution time of 35.4 s for the instance dwt_419.
The time reported in [23] for this instance is 69.21 s, so we can conclude that the Opteron 6274 is 69:21=35:4 ¼ 1:95 times
faster than the Pentium 4 used in [23]. Using this valuable information we scaled the results reported in [23] for the

Table 6
Results for the 33 small instances from the Harwell-Boeing Sparse Matrix Collection (in bold font improved solutions, in italics font optimal solutions).

Instance n LB Best GRASP-PR SA VNS DRSA D

b t b t b t b t

arc130 130 63 63 63 0.49 63 11.83 63 0.01 63 18.27 0
ash85 85 9 9 9 0.14 9 0.56 9 1.71 9 0.35 0
bcspwr01 39 5 5 5 0.04 5 0.20 5 0.21 5 0.06 0
bcspwr02 49 7 7 7 0.21 7 0.10 7 0.12 7 0.10 0
bcspwr03 118 9 10 11 0.37 10 0.61 10 0.73 10 0.49 0
bcsstk01 48 16 16 16 0.38 16 0.31 16 0.15 16 0.15 0
bcsstk04 132 36 37 37 1.68 37 40.39 37 0.02 37 2.33 0
bcsstk05 153 19 20 20 2.47 20 5.41 20 0.10 20 2.11 0
bcsstk22 138 9 10 10 0.60 11 2.80 10 19.06 10 1.68 0
can_144 144 13 13 14 1.10 13 8.98 13 0.12 13 4.15 0
can_161 161 18 18 18 0.25 18 1.53 18 0.24 18 3.92 0
curtis54 54 10 10 10 0.24 10 0.25 10 0.01 10 0.13 0
fs_183_1 183 52 60 61 4.08 61 4.44 60 7.27 60 6.71 0
gent113 113 25 27 27 0.32 27 1.99 27 1.09 27 1.89 0
gre_115 115 20 23 24 1.24 23 0.82 23 8.13 23 1.42 0
gre_185 185 17 21 22 2.30 22 3.47 21 0.58 21 4.62 0
ibm32 32 11 11 11 0.11 11 0.15 11 0.02 11 0.20 0
impcol_b 59 19 20 21 0.38 20 0.61 20 0.07 20 0.62 0
impcol_c 137 23 30 31 1.70 30 1.58 30 5.00 30 2.15 0
lns_131 131 18 20 22 0.97 20 0.92 20 1.30 20 1.70 0
lund_a 147 19 23 23 1.82 23 20.71 23 0.01 23 8.06 0
lund_b 147 19 23 23 1.82 23 20.81 23 0.01 23 6.69 0
mcca 180 32 37 37 3.37 37 41.72 37 15.41 37 6.96 0
nos4 100 10 10 10 0.58 10 0.46 10 0.45 10 1.16 0
pores_1 30 7 7 7 0.11 7 1.58 7 0.45 7 0.09 0
steam3 80 7 7 7 0.37 7 4.54 7 0.00 7 0.39 0
west0132 132 23 32 35 3.21 33 2.75 32 21.78 32 1.16 0
west0156 156 33 36 37 3.33 36 1.43 36 6.49 36 0.81 0
west0167 167 31 34 35 2.18 34 2.45 34 35.33 34 1.08 0
will199 199 55 64 69 10.26 65 3.11 65 5.75 64 1.33 $1
will57 57 6 6 7 0.15 6 0.56 6 0.64 6 0.17 0
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GRASP-PR, SA, and VNS algorithms. In Tables 6–8 the execution times for these algorithms of the 113 instances are presented
in scaled form as described below. In what follows we describe Tables 6–8. Each line in the tables corresponds to an instance
and data associated with the instance. Columns 1–4 contain the name of the instance, the number of vertices (n), the lower
bound (LB), and the best-known bandwidth (Best) for the instance. The next six columns contain data from the three meth-
ods against which we compare DRSA (GRASP-PR, SA, and VNS). For each of them we show the best bandwidth (b) reported
and the time (t) in seconds required to reach the bandwidth. For DRSA we also show the best bandwidth achieved (b) and the
time (t) required to reach that bandwidth. Finally, the last column D is the difference between the best result of DRSA and the
best result among the other three algorithms (when the value is negative it means DRSA improves the previous best known
result). We show in bold font the cases where DRSA improves the previous upper bound and in italics the cases that are
optimal.

The DRSA final numbers are 31 new upper bounds and the matching of 82 best-known solutions (22 optimal). The best
permutations found by DRSA for the 113 instances are available at [28]. With respect to the VNS algorithm (the current state
of the art algorithm) DRSA improved 34 solutions and executed faster in 50 instances.

A statistical comparison of best solutions produced by DRSA against best solutions produced by the algorithms GRASP-PR
[26], SA [27], and VNS [23], was done using Wilcoxon signed-rank test for two dependent samples. The three tests defined
were: GRASP vs DRSA, SA vs DRSA, and VNS vs DRSA. The null hypothesis (H0) and the alternative hypothesis (Ha) for each
test were:

* H0: There is not a significant difference between solutions produced by DRSA and solutions produced by the GRASP (SA or
VNS) algorithm.

Table 7
Part I of the results for 80 large instances from the Harwell-Boeing Sparse Matrix Collection (in bold font improved solutions, in italics font optimal solutions).

Instance n LB Best GRASP-PR SA VNS DRSA D

b t b t b t b t

494_bus 494 25 28 35 5.46 32 12.44 29 10.24 28 18.27 $1
662_bus 662 36 39 44 13.25 43 35.90 39 36.41 39 13.57 0
685_bus 685 30 32 46 4.91 36 31.62 32 29.34 32 145.02 0
ash292 292 16 19 22 3.53 21 17.54 19 20.07 19 3.53 0
bcspwr04 274 23 24 26 1.90 25 14.28 24 17.10 24 3.22 0
bcspwr05 443 25 27 35 6.57 30 13.67 27 14.56 27 6.56 0
bcsstk06 420 38 45 50 17.26 45 126.43 45 106.54 45 15.15 0
bcsstk19 817 13 14 16 34.04 15 113.68 14 101.66 14 96.76 0
bcsstk20 485 8 13 19 4.26 14 22.75 13 26.59 13 10.04 0
bcsstm07 420 37 45 48 39.23 48 110.01 45 106.86 45 13.65 0
bp_0 822 174 234 258 192.81 240 71.76 236 63.04 234 1218.72 $2
bp_1000 822 197 283 297 321.25 291 110.26 287 118.17 283 4988.25 $4
bp_1200 822 197 287 303 321.21 296 111.28 291 91.38 287 1165.12 $4
bp_1400 822 199 291 313 261.68 300 110.87 293 109.28 291 2140.12 $2
bp_1600 822 199 292 317 275.24 299 118.22 294 123.74 292 2261.37 $2
bp_200 822 186 257 271 210.74 267 85.88 258 91.43 257 1638.61 $1
bp_400 822 188 267 285 207.18 276 91.80 269 104.37 267 2340.62 $2
bp_600 822 190 272 297 203.94 279 98.58 274 81.00 272 1315.45 $2
bp_800 822 197 278 307 231.73 286 112.15 283 126.35 278 1064.59 $5
can_292 292 34 38 42 2.83 41 31.36 38 28.25 38 5.59 0
can_445 445 46 52 58 18.80 56 58.14 52 61.04 52 10.90 0
can_715 715 54 71 78 4.99 74 113.73 72 98.27 71 181.88 $1
can_838 838 75 86 88 12.54 88 195.94 86 205.14 86 70.16 0
dwt_209 209 21 23 24 0.43 23 14.89 23 12.90 23 2.06 0
dwt_221 221 12 13 13 2.71 13 11.93 13 12.18 13 6.54 0
dwt_234 234 11 11 11 0.76 11 0.56 12 5.23 11 1.26 0
dwt_245 245 21 21 26 5.66 24 4.74 21 5.20 21 8.95 0
dwt_310 310 11 12 12 3.30 12 6.63 12 5.84 12 10.48 0
dwt_361 361 14 14 15 0.30 14 4.23 14 3.68 14 23.26 0
dwt_419 419 23 25 29 10.85 26 30.55 25 35.30 25 44.80 0
dwt_503 503 29 41 45 2.71 44 83.38 41 88.94 41 49.60 0
dwt_592 592 22 29 33 43.62 32 63.09 29 56.77 29 52.74 0
dwt_878 878 23 25 35 39.69 26 54.42 25 53.40 25 85.27 0
dwt_918 918 27 32 36 4.61 33 123.93 32 113.83 32 61.93 0
dwt_992 992 35 35 49 105.13 35 59.36 37 63.54 35 107.00 0
fs_541_1 541 270 270 270 8.26 270 42.02 270 47.44 270 0.77 0
fs_680_1 680 17 17 17 14.31 17 20.30 17 21.78 17 27.11 0
fs_760_1 760 36 37 39 38.92 38 48.76 38 40.47 37 38.91 $1
gr_30_30 900 31 33 58 36.64 45 188.75 33 226.00 33 56.98 0
gre_216a 216 17 21 21 3.54 21 1.78 21 1.92 21 4.86 0
gre_343 343 23 28 29 8.11 28 3.77 28 4.13 28 4.13 0
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* Ha: There is a significant difference between best solutions produced by DRSA and best solutions produced by the GRASP
(SA or VNS) algorithm, in the sense that solutions of DRSA are better than solutions of the GRASP (SA or VNS) algorithm.

Table 9 contains the results of the Wilcoxon signed-rank tests; a negative rank appears when the solution produced by
DRSA was better than the solution produced by the other algorithm, i.e., DRSA produced a smaller bandwidth; and a positive
rank appears when DRSA was unable to reach best result of the other algorithm. According to the result of the 2-tailed
p-value, we can accept the alternative hypothesis Ha at a level of significance of a ¼ 0:01. We can conclude that there is a
statistically significant difference between best solutions produced by DRSA and best solutions produced by the other
algorithms, in the sense that DRSA solutions are better.

Table 8
Part II of the results for 80 large instances from the Harwell-Boeing Sparse Matrix Collection (in bold font improved solutions, in italics font optimal solutions).

Instance n LB Best GRASP-PR SA VNS DRSA D

b t b t b t b t

gre_512 512 30 36 36 36.33 36 7.50 36 6.91 36 8.87 0
hor_131 434 46 54 64 10.54 55 78.59 55 85.37 54 25.71 $1
impcol_a 207 30 32 34 1.17 32 2.75 32 3.18 32 4.69 0
impcol_d 425 36 39 42 12.30 42 39.52 40 47.11 39 843.50 $1
impcol_e 225 34 42 42 1.28 42 25.30 42 22.27 42 8.47 0
jagmesh1 936 24 27 27 43.32 27 17.24 28 15.31 27 555.47 0
jpwh_991 991 82 88 96 26.10 94 53.19 90 58.34 88 156.68 $2
lns_511 511 33 44 49 22.49 44 63.14 44 64.02 44 30.26 0
mbeacxc 496 246 260 272 719.34 262 904.74 261 500.99 260 313.20 $1
mbeaflw 496 246 260 272 719.91 261 889.90 261 491.25 260 307.09 $1
mbeause 492 249 254 269 814.93 255 657.64 254 454.98 254 530.11 0
mcfe 765 112 126 130 32.36 126 953.14 126 403.99 126 325.44 0
nnc261 261 22 24 25 8.62 25 4.44 24 3.66 24 9.00 0
nnc666 666 33 40 45 21.27 42 55.33 40 54.29 40 552.22 0
nos1 237 3 3 3 1.00 3 0.56 3 0.00 3 0.78 0
nos2 957 3 3 3 6.42 3 58.39 3 49.46 3 63.92 0
nos3 960 43 44 79 72.20 62 413.92 45 336.96 44 326.55 $1
nos5 468 53 63 69 43.23 64 62.17 63 51.61 63 72.03 0
nos6 675 15 16 16 17.01 16 6.37 16 7.46 16 196.48 0
nos7 729 43 65 66 35.22 65 12.19 65 14.35 65 59.93 0
orsirr_2 886 62 85 91 16.36 88 83.89 86 84.12 85 7216.42 $1
plat362 362 29 34 36 1.04 36 96.59 34 91.59 34 10.13 0
plskz362 362 15 18 20 2.81 19 10.66 18 11.37 18 3.89 0
pores_3 532 13 13 13 1.16 13 6.63 13 7.16 13 33.22 0
saylr1 238 12 14 15 3.23 14 1.17 14 1.14 14 1.62 0
saylr3 1000 35 46 52 30.91 53 7.96 48 8.04 46 93.23 $2
sherman1 1000 35 46 52 30.93 52 7.96 47 8.72 46 76.64 $1
sherman4 1104 21 27 27 1.51 27 5.86 27 6.59 27 27.53 0
shl_0 663 211 224 241 35.96 229 107.86 226 99.78 224 17.78 $2
shl_200 663 220 233 247 30.59 235 108.88 233 113.37 233 15.28 0
shl_400 663 213 229 242 38.82 235 112.91 230 91.77 229 20.86 $1
steam1 240 32 44 46 4.32 44 40.34 44 46.11 44 11.02 0
steam2 600 54 63 65 57.71 65 350.57 63 325.98 63 338.34 0
str_0 363 87 115 124 42.38 119 20.35 116 22.11 115 35.14 $1
str_200 363 90 124 135 36.71 128 24.12 125 19.52 124 27.86 $1
str_600 363 101 131 144 29.36 132 28.51 132 33.96 131 25.79 $1
west0381 381 119 149 159 70.27 153 19.43 151 17.85 149 26.23 $2
west0479 479 84 119 127 66.83 123 20.65 121 19.63 119 25.63 $2
west0497 497 69 85 92 36.57 87 70.33 85 57.41 85 11.61 0
west0655 655 109 157 167 96.14 161 41.05 163 38.68 157 471.50 $4
west0989 989 123 207 217 165.84 215 87.77 211 78.42 207 1047.40 $4

Table 9
Results of the Wilcoxon signed-rank test.

GRASP – DRSA SA – DRSA VNS – DRSA

Non-zero differences 81 62 34
Negative ranks 81 62 34
Positive ranks 0 0 0
Sum of negative ranks 3321 1953 595
Sum of positive ranks 0 0 0
Value of Z 7.81 6.84 5.08
2-tailed p-value 5:77) 10$15 7:91) 10$12 3:77) 10$7
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As we have already mentioned, for comparison against previous works we made use of the benchmark of 113 instances;
however, the instances mbeacxc and mbeaflw are identical in structure, and they are only different in the weight of their
edges. Given that for bandwidth minimization the weight of the edges is not relevant these matrices are the same, so the
benchmark really consists of 112 different instances. In this work we processed these two instances independently and
for both DRSA improved their previous best-known bandwidth in one unit (from 261 to 260). In future works one of these
matrices should be removed.

6. Conclusions

We proposed a new simulated annealing algorithm to solve BMPG called DRSA (Dual Representation Simulated Anneal-
ing). The name of the algorithm comes from the fact that it uses an internal dual representation of BMPG solutions. For the
purpose of working over these representations we defined three perturbation operators called random exchange operator
(REX), neighbor in graph exchange operator (NEX), and rotation operator (ROT) that together form the neighborhood function
of the algorithm.

The parameters of DRSA were tuned using a full factorial design. The factors in the design were: (a) parameters for the
simulated annealing algorithm: initial temperature, cooling rate, and final length of the Markov chain and (b) sixty-six solu-
tions of the Diophantine equation aþ bþ c ¼ 10 to assign probabilities to the three perturbation operators. The results of the
tuning process gave an initial temperature of 1000, a cooling rate of 0.99, and a final length of the Markov chain of 10 nm,
where n and m are the number of vertices and edges of the graph, respectively. For the three perturbation operators the tun-
ing process gave a utilization rate of 60% for REX operator, 20% for NEX operator, and 20% for ROT operator.

We tested DRSA with the 113 instances of the Harwell-Boeing sparse matrix collection that has been used before for test-
ing other bandwidth minimization algorithms; results of DRSA were 31 new upper bounds and the matching of 82 best-
known solutions (22 solutions are optimal). We used Wilcoxon signed-rank test for two dependent samples to compare
DRSA with state of the art methods GRASP-PR, SA, and VNS. The result of the test was that a statistically significant difference
in favor of DRSA exists over best solutions produced by the others algorithms. The Wilcoxon signed-rank tests indicated that
DRSA outperforms the other methods in the quality of solutions.

Encouraged by the results of DRSA with the Harwell-Boeing instances, we are currently planning to apply DRSA to other
labeling problems.

Disclaimer

Any mention of commercial products in this paper is for information only; it does not imply recommendation or endorse-
ment by NIST.
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