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Background: Optimization of cryopreservation proto-
cols for cells and tissues requres accurate models of heat
and mass transport. Model selection often depends on the
configuration of the tissue.
Method of approach: A mathematical and conceptual model
of water and solute transport for whole hamster pancre-
atic islets has been developed and experimentally validated
incorporating fundamental biophysical data from previous
studies on individual hamster islet cells while retaining
whole-islet structural information. It describes coupled
transport of water and solutes through the islet by three
methods: intracellularly, intercellularly, and in combination.
In particular we use domain decomposition techniques to
couple a transmembrane flux model with an interstitial mass
transfer model.
Results: The only significant undetermined variable is the
cellular surface area which is in contact with the intercel-
lularly transported solutes, Ais. The model was validated
and Ais determined using a 3× 3 factorial experimental de-
sign blocked for experimental day. Whole islet physical ex-
periments were compared with model predictions at three
temperatures, three perfusing solutions, and three islet size
groups. A mean of 4.4 islets were compared at each of the 27
experimental conditions and found to correlate with a coef-
ficient of determination of 0.87±0.06 (mean ± S.D.). Only
the treatment variable of perfusing solution was found to be
significant (p < 0.05).
Conclusions: We have devised a model that retains a sig-
nificant amount of intrinsic geometric information about the

∗Current address: Eli Lilly & Co., Indianapolis, IN, USA.
†Address all correspondence to this author, email: critserj@missouri.edu

system, and thus fewer laboratory experiments are needed to
determine model parameters and thus to develop new opti-
mized cryopreservation protocols. Additionally, extensions
to ovarian follicles and other concentric tissue structures
may be made.
Keywords perfusion; diffusion; cryobiology; multicellular
mathematical modeling; mass transport; domain decompo-
sition

Nomenclature
Lp Hydraulic Conductivity (µm min−1 atm−1)
Ps Solute Permeability (µm min−1)
Ea Activation energy (kCal/mol)
ω Solute mobility (Ps = ωRT )
σ Reflection coefficient
V Cell volume ( µm3)
A Surface area of cell (µm2)
R Gas constant (L atm K−1 mol−1)
T Temperature (K)
S Moles of permeating solute
C Intracellular Concentration cryprotective agent (mol/kg)
K Intracellular Concentration salt (mol/kg )
c Extracellular Concentration cryprotective agent (mol/kg)
k Extracellular Concentration salt (mol/kg)
C Mean concentration CPA (mol/kg)
Js Solute mole flux (mol/µm2/s)
Jv Volume flux (µm/s)
D Solute diffusivity (µm/s2)
λ Tortuosity
t Time (s)
R Radius of whole islet (µm)
r Radius from center of whole islet (µm)



Introduction
The1 effects of cryopreservation on cells and tissues can

be better understood when account is made of the heat and
mass transfer that occurs during each stage of the process.
This understanding of what occurs on a cellular level may
lead to increased survival through optimization of each cry-
opreservation step [2–4]. Although these processes have
been well characterized for single cell suspensions [5, 6],
published work on modeling these processes in multicellu-
lar tissues is relatively scarce.

For tissues, model selection is still an issue. For exam-
ple, models have been constructed that describe water trans-
port through a linear array of cells while neglecting transport
through extracellular pathways [7]. Fidelman et al. [8] de-
signed a model of isotonic solute-coupled volume flow in
leaky epithelia using network thermodynamics to show how
the Kedem and Ketchalsky mass transport parameters must
behave in this system. Diller et al [9] utilized bond graphs
and network thermodynamics to show that, depending on
the transport resistance of the interstitium, the interior cell
volume lags significantly behind the exterior cells. Subse-
quently Schreuders et al. [10] again used pseudo bond graph
and network thermodynamics to model diffusion through a
tissue and show that the effects of coupling on the multiple
species present in the model is significant. Later, de Frietas et
al. expanded a network thermodynamics model of transport
in islet cells to model solute and solvent transport in islets of
Langerhans [11].

Alternatively, cell-to-cell interactions are ignored and a
model based on a diffusion equation with a phenomenolog-
ical, experimentally determined, solute diffusivity [12–16].
These diffusion models may be appropriate for larger and
denser tissues with a considerable number of cell layers. In
fact, many alternate diffusion-based models have been pro-
posed. For example, Xu et al [17] use a one dimensional
porous media model to simulate solute transport in tissues,
and Abazari et al. [18] construct a thermodynamically accu-
rate tri-phasic model for articular cartilage. Another set of
models are Krogh cylinder models [19] used primarily in or-
gan perfusion systems [20, 21]. The Krogh cylinder model
describes a cylindrical unit of tissue of fixed dimensions per-
fused by a capillary with a radius which varies with capillary
volume. The solution behavior in diffusion models is well
understood and usually simple to implement. Unfortunately,
phenomenological diffusion constants depend on both the so-
lute and the tissue structure, and thus applications are often
restricted to experimental conditions in which measurements
have been made.

Because islets are tissues with less than ten layers, it is
computationally feasible to retain geometrical information.
Using this idea, the present work builds upon these existing
models, with the primary goal to model the mass transfer of
solutes and solvents inside islets of Langerhans while retain-
ing as much geometric information as possible. Note that the
geometry of this model has clinically important analogues in
other smaller tissues, such as ovarian follicles, a subject of

1Some of this work appeared as part of a doctoral dissertation [1]

current cryobiological research [22–24].
We first recreate the work of Levin [7] by modeling

transport across an array of cells. However, we model the
geometry of the layers as a series of concentric spheres, with
each layer the thickness of the diameter of an individual islet
cell, and we include the effects of a permeating solute using
Kedem and Katchalsky’s equations [25]. Next we construct a
model to calculate the diffusion of a solute through a sphere
of water, using the radially symmetric diffusion model with
a tortuosity factor to reflect the interstitial matrix in a spheri-
cal tissue. Finally, we combine these models, accounting for
both diffusion through the interstitium of the spherical array
of layers and cell-cell osmosis. This allows solute and water
transport into and out of the deeper layers of the sphere by
one of two methods: serially through each of the overlying
layers and across that portion of the cell membrane that is
exposed to the intercellular transport driven by diffusion.

Previously published data for hamster islets of Langer-
hans [26, 27] supply many of the biophysical parameters.
Here we show that the only previously undetermined vari-
able that significantly affects the model is the cellular sur-
face area that is in contact with the intercellularly transported
CPA (Ais). The model is validated and Ais determined using a
3×3 factorial experimental design blocked for experimental
day. Whole islet experiments are compared with model pre-
dictions at three temperatures (8, 22, 37 ◦C), using three per-
fusing solutions (DMSO, EG, 3×PBS), and three islet size
groups (< 80µm, 80−110µm, > 110 µm radii). Using coef-
ficient of determination (R2) as our statistical measure, we
show that our model provides an accurate description of vol-
ume excursion for whole islets in response to osmotic chal-
lenges.

1 Mathematical Model
1.1 Assumptions

The intra- and extracellular media are assumed to be
ideal, hydrated, dilute multicomponent solutions and the
membranes of the cells are simple and homogeneous. The
equations which we use to analyze non-equilibrium fluxes
of water and solute are based on the work of Kedem and
Katchalsky (K/K) [25] which describe equations based on
the assumptions of ideal and dilute solutions.

We will neglect concentration polarization, the effect of
unstirred layers and advection due to transmembrane flux, on
the permeability of the cells as Benson showed that for tissue
of the size of islets of Langerhans there were significant ef-
fects of solute polarization only in the case where viscosities
were high or in the presence of high fluid velocity fields [28].
We assume that adjacent membranes can be modeled as two
independent membranes in series, resulting in a halving of
effective hydraulic conductivity and solute permeability. An
identical assumption was made in Levin et. al. [7] where they
drew upon the work of Levin et al. [29] to demonstrate that
little solute polarization occurs within the small volume of
aqueous solution separating closely packed cells.

We assume that both the cell surface area in contact with
other cells (Ac) and in contact with intercellular media (Ais)



are constant. The accuracy of this assumption is debatable
(e.g. [30, 31]), however in general many investigators main-
tain constant surface area to avoid the problem of an increase
in membrane surface area when the tissue expands past its
isotonic volume [20, 21]. And we ignore intracellular diffu-
sion effects, assuming that solute that enters a cell (layer) is
distributed evenly across the cell (layer) volume. This as-
sumption may be justified by the diffusion length given by
LD = 2

√
Dtc, where D is the diffusivity, and tc is a character-

istic time. In particular, we have D≈ 900 µm2/s (the approx-
imate diffusivity of DMSO or ethylene glycol), and tc = 10 s
(the approximate time for equilibration of an individual islet
cell). Thus LD = 2

√
900∗10≈ 95µm, which is significantly

longer than the approximate islet cell radius of 6 µm, though
not sufficiently long to discard for an entire islet of diame-
ter approximately 100 µm. We show below that the complete
model is relatively insensitive to the diffusivity, supported by
this length.

1.2 Cell membrane mass transport model
Because parameter data for individual islets have al-

ready been published, we use the same formalism described
by Kedem and Katchalsky, which gives the total volumet-
ric mass flow Jv as well as the permeable non-electrolyte
(e.g. DMSO) mass flow Js across a membrane in terms of
the phenomenological coefficients Lp, ω, and σ [25]:

dV
dt

= Jv(c,C,k,K)A =−LpART (k−K +σ(c−C)) ,

dS
dt

= JsA = (1−σ)CJv +ω(c−C) ,

(1)

where all parameters are defined in the Nomenclature sec-
tion, and CCPA is the average of extracellular and intracellu-
lar CPA concentrations (osmolality) defined by Kedem and
Ketchalsky,

CCPA = (c−C)/[ln(c/C]≈ (c+C)/2.

The intracellular concentrations of salt and CPA during
anisosmotic conditions were determined from the Boyle
Van’t-Hoff relation applied to the osmotic responses of cells
[27, 32].

Finally, it will be convenient later to note that C := S/V ,
and system (1) may be rewritten as follows, with Jw and Js
defined as above

dV
dt

= JvA,

dC
dt

=
d(S/V )

dt
=

JsAV − JvAS
V 2 .

(2)

1.3 Intracellular transport model
The mass transport model (1) was applied to the geom-

etry shown in Fig. 1. This model is a series of concentric

1 2 ... n

2 r

Fig. 1. The cell-to-cell transport model is constructed of concentric
spheres of thickness equal to the diameter of an individual islet cell.
The the cell-to-cell transport is assumed to be radially symmetric, and
boundaries 1 through n− 1 are modeled as two membranes in se-
ries, corresponding to halved permeability coefficients. The exterior
boundary is exposed to the extra-islet concentration ce.

spheres and is built by assuming that the innermost sphere
(sphere 1) is of the dimensions and volume of a single ham-
ster islet cell (approximately 12.2 µm in diameter and 960
µm3 in volume). Each surrounding layer is the thickness of
the diameter of one islet cell. All layers have water and solute
permeabilities equal to 0.5Lp and 0.5Ps except for the outer-
most layer, with permeabilities simply equal to Lp and Ps. We
then set Lp and Ea of Lp, Ps and Ea of Ps, and σ equal to values
found for hamster islet membranes for DMSO and EG [26].
The nonosmotically active portion Vb of the cells (layers) was
also set to be 0.40 from previous experiments [27]. p

1.3.1 Results
Figure 2 shows the results of modeling of a seven layer

intracellular transport model (approximately 150 µm in to-
tal diameter) where the extra-islet concentration was fixed at
1.5 mol/kg DMSO. The first two plots (A and B) show the
water volume and DMSO concentration in each of the seven
layers, respectively and the third plot (C) shows the total islet
model water volume (µm3) as a function of time. Transport is
delayed in interior layers and subsequently whole islet equi-
libration takes over 1000 seconds.

1.4 Intercellular transport model
We next construct a model of inter-islet transport mod-

eled solely by diffusion, where the entire membrane of each
cell in the islet is available to a local concentration modeled
by free diffusion. Using the assumption of independent flow,
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Fig. 2. The results of a seven layer model of approximately 150 µm in total diameter without interstitial diffusion, subjected to perfusion with
1.5 mol/kg DMSO. In this model solute and water transport take place exclusively across layer membranes. Plots A and B show the water
volume (µm3) and molality (mol/kg) as a function of time (seconds) of each of the seven layers with the interior at the top. Plot C shows
overall model islet water volume (µm3) (x-axis) as a function of time.

isothermal conditions, and with concentration independent
diffusivity, we may use the standard linear diffusion equa-
tion in a sphere [33], coupled with initial and boundary con-
ditions:

∂c
∂t

= D̄
(

∂2c
∂r2 +

2
r

∂c
∂r

)
,

c(r,0) = c0(r), (3)
c(R, t) = ce(t).

Here c is the concentration of solute in moles/kg, D is the
diffusion coefficient in µm2/sec, r is radius in µm, and t is
time.

The diffusion coefficient D for a freely diffusing solute
in water and that for a solute in the tissue interstitium should
be different. However the choice of an appropriate model
is unclear. For example, a porous media model may be ap-
propriate [17], or more complicated relationships between
chemical potential and strain may be developed [18]. We ig-
nore these complications and use the linear diffusion model
(3) with a constant diffusion coefficent for two reasons. First,
for simplicity, the overall model will be of sufficient com-
plexity that we hoped to only provide a level of detail as to
what truly effects the overall outcome of the model. Second,
we are able to demonstrate that the model itself is relatively
insensitive to the overall diffusion coefficient.

We account for the specific geometry of islets by em-
ploying a tortuosity factor λ that scales the diffusivity con-
stant. Specifically, the tortuosity factor is the actual length
of the diffusion path per unit of length of diffusion more-
over this factor is a function of tissue geometry and there-
fore is solute independent. Maroudas et al. [34] have shown
that for diffusion through articular cartilage, D ranges from

603 µm2/sec for urea (MW = 60.03 daltons) to 63 µm2/sec
for sucrose (MW = 342.3 daltons) at 22 ◦C. Further, it was
found that articular cartilage has a tortuosity factor of 1.35.
Page et al. [35] conducted experiments on cat heart mus-
cle which, arguably, has a histology more similar to islets
than cartilage. They found a range of diffusion coefficients
of D = 830µm2/sec for glycerol (MW=92.02 daltons) to
D = 262µm2/sec for sucrose (MW=342 .3 daltons) at 22 ◦C.
It was shown that the temperature dependence was Arrhenius
with an activation energy Ea of 5.46 Kcal/mole. Maroudas
found tortuosity λ to be between 1.38 and 1.44.

Based on the above information we modified the above
diffusion model to account for diffusion through an islet.
Based on the molecular weight of DMSO (78.13 daltons)
and EG (62.07 daltons) we assume the respective diffusion
coefficients to be approximately 800 µm2/sec with an activa-
tion energy Ea = 5.46 Kcal/mole. Further, we choose to use
the extremal tortuosity of 1.44.

When examining the final model which includes solute
uptake from the diffusion channels in the intercellular space
it can be seen that the overall model is not very sensitive to
D or λ. This is demonstrated by comparing whole islet equi-
libration using extreme values for D and λ. In particular,
we set D = 200µm2/sec and λ = 1.44, and D = 982µm2/sec
and λ = 1 in two numerical experiments, respectively. In the
former experimental model whole islet intercellular equili-
bration occurred in about 20 seconds versus approximately
12 seconds in the latter model (c.f. Fig. 3). Further, the
whole islet volume versus time curves for these conditions
and assumptions were visually identical (data not shown).
Therefore, a relatively large difference in D or λ yields an
almost indistinguishable difference in the model.
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Fig. 3. Concentration at the center of a sphere of radius 80 µm as a
function of time and effective diffusivity D̄ = D/λ2. On the rightmost
axis, totuosity is shown for the nominal D = 800µm/s2.

1.5 Combination model
The results of the model outlined in section 1.3 demon-

strate that given the membrane characteristics for individual
hamster islet cells, an entire islet with no intercellular trans-
port perfused with 1.5 mol/kg DMSO would take greater
than 1000 seconds to equilibrate. On the other hand, if the
islet could truly be modeled as a “bunch of grapes,” with
each cell completely exposed to interstitial diffusion, the be-
havior would be dependent on the diffusion characteristics
of a sphere outlined in section 1.4. Since the results from
that section showed that the sphere would be equilibrated in
a relatively small time (regardless of the diffusion coefficient
and tortuosity factor), whole islets should equilibrate on the
same time scale as individual islet cell. Further, if an islet
was truly a “bunch of grapes” its behavior would be reason-
ably independent of the size of the islet, for the same reasons
outlined above.

Benson et al. [26] showed that an individual cell per-
fused with 1.5 mol/kg DMSO at 22 ◦C would equilibrate
in less than 150 seconds. Therefore under a pure diffusion
model, the whole islet would follow a similar time course as
an individual islet cell. In fact, physical experiments below
show that when an islet of approximately 150 µm diameter
is exposed to 1.5mol/kg DMSO the equilibration takes about
600 seconds (see Fig 4). Furthermore, the size of the islet
does affect the equilibration time. Therefore, the behavior of
the hamster islet must be a combination of the two extremes.
It must have some intercellular (interstitial) transport, but
not all cells are completely exposed to this intercellular so-
lute. We have therefore chosen to develop the “combination”
model which follows.
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Fig. 4. Representative plot of radius vs. time for a whole hamster
islet perfused with 1.5mol/kg DMSO at 22 ◦C. The solid line is model
predictions under the same experimental conditions. The best fit
channel radius (corresponding to Ais) for was 2.92 µm and corre-
lation coefficient (R2) was .91.

1.5.1 Modeling
The concept for the combination model can be seen in

Fig. 5. The geometry of this model is again concentric cell
layers with volumes and membrane areas calculated from
the cell-to-cell concentric spherical model, but with cylindri-
cal channels evenly distributed throughout the tissue. Solute
diffusion through these channels is calculated using the dif-
fusion equations from the previous diffusion model, though
we make the notable exception that locally the concentration
of solute in the interstitium is affected by the flux across the
interstitial cell membrane (defined by boundaries Bi) with
which it is adjacent, according to the K/K equations.

In this model we assume that the extracellular (intersti-
tial) volume of the islet remains fixed at 20% of the over-
all islet volume throughout the experimental perfusion. The
value of approximately 20% has been published by several
studies on tissues [35–37]. However, the actual value is not
as important as the concept of the ratio of intra- and extra-
cellular space being fixed. This assumption is supported by
the experiments conducted in Benson et al. [26] and Liu et
al. [27] which demonstrated that the Vb of individual cells
is approximately 40% and the apparent Vb of the whole islet
is also approximately 40%. These data lead to the conclu-
sion that since the respective Boyle Van’t Hoff plots (nor-
malized volume vs. 1/Osmolality) for individual islets and
whole islets are identical, the extracellular volume of the islet
must remain in direct proportion to the overall islet volume,
supporting the above assumption.
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1.5.2 Interstitial surface area (Ais)
There is no clear choice of how to conceptually repre-

sent the interstitium. This conceptual model is necessary in
order to mathematically calculate the volumes and surface ar-
eas of our various components. Here we model the extracel-
lular space within the islet as a series of cylinderical channels
penetrating the spherical model and occupying a constant
20% of the overall islet volume. The sum of cell volumes
is set at 80% of the volume defined by the concentric sphere
model. The surface area of each concentric layer (bound-
aries A1, . . . ,An in Fig. 5) is calculated from the cell-to-cell
transport model with the cross-sectional area of the channels
removed. First, to calculate the number of channels, we have
the volume of one channel, Vchannel = πδ2R,which, in turn
allows us to calculate the number p of channels comprising
20% of the total islet volume p = 0.2Vislet/Vchannel ,and thus
the constant total channel area Ais = p(2πδ). It is convenient
to define the normalized Ais by dividing by the total cellular
surface area

Ais := Ais
Vcell

0.8VisletAcell
.

This ratio is fixed for all cells and all time.
Finally, we note that the total cellular surface area is

based on the calculated surface area of an individual spheri-
cal islet cell in suspension. Because this cell has a minimal
surface area to volume ratio, we expect that because cells
in tissues are aspherical and their physiologic volume is the
same, the effective surface area of cells in a tissue construct
should be higher. This implies that, though based in a the-
oretical framework, the above quantity is phenomenological

and values should not indicate the “true” ratio of interstitial
surface area to intercellular surface area.

1.5.3 “Virtual” Cells
The final question is how to treat the interaction between

cells and their adjacent channels. The transmembrane vol-
ume flux at Bi is governed by a mean concentration along
this membrane, but we wished to include the effects of solute
and solvent mass transfer on the local concentration in the
channels. One possibility would be to create a piecewise de-
fined Robin boundary condition to account for the flux along
boundary B = ∪n

i=1Bi, and solve the diffusion equation in a
two dimensional channel. At this length scale, however, the
diffusion normal to the cell membrane and across the chan-
nel should be nearly instantaneous and the local concentra-
tion would be influenced only by the radial diffusion and the
normal boundary conditions defined by the K/K model.

In practice, this should be identical to the application
of so called “virtual” cells (see Fig. 5). We assume that the
transmembrane flux across any boundary Bi is governed by
the mean local concentration governed by diffusion. This
flux then affects the local concentration independent of dif-
fusion. Numerically, this is achieved by performing a domain
decomposition in r [38] in the channel with each layer con-
stituting a new domain and coupling these layered domains
to their associated cell layers using the K/K model by assum-
ing that the concentration of a virtual cell associated with this
domain is equal to the average of the concentrations of the
nodes adjacent to an islet layer (see discretization in Fig. 5),
and the volume of a virtual cell equal to 20% of the associ-
ated cell-layer volumes.



We now can define the complete model. Suppose that
we have the configuration in figure 5. Let Ω= [0,R], and par-
tition Ω into disjoint subdomains Ωi such that Ω = ∪n

i=1Ωi.
Let ci : Ωi× [0,∞)→ [0,∞) be the concentration in the chan-
nel in the ith domain and Wi,Ci : [0,∞)→ [0,∞) be the water
volume and concentration in the ith cell layer, be defined by
the system of coupled reaction-diffusion and ordinary dif-
ferential equations (note that we use capital and lowercase
variables for intra and extracellular quantities, respectively):

∂ci

∂t
= Di

(
∂2ci

∂r2 +2
∂ci

∂r

)
+ f i

c(c̄i,Ci,Wi) in Ωi× (0,∞),

dWi

dt
= f i

w(c̄i,Ci,Ci−1,Ci+1,Wi),

dCi

dt
= f i

C(c̄i,Ci, ,Ci−1,Ci+1,Wi),

supplemented with initial and boundary conditions (with
Γi := ∂Ωi−1∩∂Ωi):

ci = c0 in Ωi×{0},
ci = ci−1 in Γi× [0,∞), i > 1,

∂ci

∂r
=

∂ci−1

∂r
in Γi× [0,∞), i > 1,

∂ci

∂r
= 0 in ∂Ω× [0,∞),

cn = ce(t) in ∂Ω× [0,∞),

Wi(0) =W 0
i ,

Ci(0) =C0
i ,

where c̄i := 1
|Ωi|

∫
Ωi

ci dx is the mean extracellular concentra-
tion at the ith level, and ce : [0,∞)→ [0,∞) is the extra-islet
concentration. Note that we assume that there is only a sin-
gle diffusing species. In other words, if the extratissue salt
concentration is fixed at isotonic, then the salt concentration
will be uniform throughout the numerical experiment. If the
extratissue salt concentration is non-isotonic, then we do not
model the diffusion of permeating solute species.

Finally, we define the reaction terms f i : Rk→ R which
stem from the K/K formalism. From system (2), we may
define the reaction terms and ODEs

f i
c = Js(ci,Ci)

Ais

0.2Vi
+ Jw(ci,Ci,ki,Ki)

ciAis

0.2Vi
, (4)

f i
w = Jw(Ci,ci)Ais + Jw(Ci,Ci−1,Ki,Ki−1)

A
2

+ Jw(Ci,Ci+1,Ki,Ki−1)
A
2
, (5)

f i
C = Js(Ci,ci)

Ais

Vi
+ Jw(Ci,ci,Ki,ki)

ciAis

Vi

+ Js(Ci,Ci−1)
A
Vi

+ Jw(Ci,Ci−1,Ki,Ki−1)
CiA
2Vi

+ Js(Ci,Ci+1)
A
Vi

+ Jw(Ci,Ci+1,Ki,Ki+1)
CiA
2Vi

, (6)

where Jw(c,C,k,K) and Js(c,C) are defined in display (1).

1.5.4 Summary
We have built a combination model which provides for

effects of intra- and inter-stitial transport within our concep-
tual islet. In fact, the only unknown variable in this model
is Ais. Therefore, when we validate and test the model in
the study which follows, we will let Ais be our only floating
variable.

2 Materials and Methods
2.1 Reagents

Unless stated otherwise, all chemical reagents were ob-
tained from Sigma (St. Louis, MO). Collagenase P was pur-
chased from Boehringer Mannheim (Indianapolis, IN). Cell
culture reagents, including Hanks’ balanced salt solution,
Medium 199, fetal bovine serum (FBS) and 0.25% trypsin-
EDTA, were purchased from Gibco (Gaithersburg, MD)2

2.2 Isolation of Islets From Hamsters
Hamster pancreatic islets were isolated as previously de-

scribed by Gotoh et al. [39]. Briefly, 6-8 wk old golden
hamsters (Harlan Sprague Dawley, Indianapolis, IN) were
anesthetized via inhalation of Forane (Isoflourane; Ohmeda
Caribe inc.; Guayama PR). The common bile duct was
cannulated under a stereomicroscope with a polyethylene
catheter through which approximately 8-10 ml of cold (1-
4 ◦C) M-199 medium containing 0.5 mg/ml of collagenase
P was injected slowly until whole pancreas was swollen.
The pancreas was excised and digested at 37 ◦C for approx-
imately 50 min in M-199 medium containing 100 mg/ml of
penicillin G and 100 mg/ml of streptomycin (no additional
collagenase). The digest was washed three times in cold M-
199 medium and passed through a sterile 500 mm stainless
steel mesh. Islets were purified by centrifugation through a
Ficoll density gradient (1.037, 1.096 and 1.108) at 800 g for
20 min.

2.3 Perfusion of Islets and measurement of resulting
volume excursions

The design and structure of the microperfusion chamber
system is similar to that described elsewhere [40]. Briefly,
the experiments were conducted by introducing 2 -10 islets
into the chamber cavity (height: 1 mm, diameter:2 mm, vol-
ume: 3.14 µl) using the Hamilton syringe. With applica-
tion of negative pressure from below, the solution moved out
of the chamber, but the islets remained on the transparent
porous membrane at the bottom of the cavity (polycarbonate
screen membrane; Poretics Co., Livermore, CA; membrane
thickness: 10 µm, pore diameter: 5 µm, pore density: 4×105

2Certain commercial equipment, instruments, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to im-
ply that the materials or equipment identified are necessarily the best avail-
able for the purpose.



pores/cm2). Next, 700 µl of a perfusion medium was loaded
in the reservoir at the solution inlet and approximately 400
µl was perfused through the chamber by aspiration via a 1
ml syringe. The reservoir (with 300 µl of remaining solu-
tion) was then sealed via application of a glass cover slip,
ensuring no evaporative effects. The entire perfusion took
place in less than eight seconds and the original isotonic so-
lution in the perfusion chamber cavity (3.14 µl) was quickly
replaced over 100 times by the new perfusion medium, en-
suring that none of the original isotonic solution remained
in the chamber and that back diffusion of original solution
into the chamber was impossible. Cells were immobilized
by the downward flow of the perfusion medium during the
perfusion process facilitating the recording of cell volume
changes by a video camera.

The perfusion chamber and cell suspension cavity were
cooled/heated with a temperature controller to reach an equi-
librium. The prepared perfusion media was precooled or
heated in a temperature-controlled methanol bath (Digi-
tal Temperature Controller, Model 9601, Polyscience Co.,
Niles, IL) to the same temperature as the perfusion chamber.
Precooled/heated media was then perfused into the chamber
and around the cell(s). During the experiment, the tempera-
ture variation of the perfusion medium and of the microper-
fusion chamber were monitored and the range of temperature
difference between the perfusion medium and the chamber
was ±0.2 ◦C during experiments (data not shown).

Individual video frames were imported into SigmaS-
can/Image version 1.20.09 (Jandel Corporation, San Rafael,
CA). Islets were then outlined and area was measured by fill-
ing this outline. All islets used in this study were roughly
spherical (unpublished data). A radius was then computed
using this assumption of a spherical shape. Images were
calibrated by measurement of spherical polyethylene beads
(92.12 µm diameter, Coulter corporation, Epic division,
Hialeah, FL).

The coupled system of partial and ordinary differential
equations were discretized spatially as shown in Fig 5, and
the resulting ordinary differential equations were simultane-
ously solved using MATLAB (The MathWorks, Natick, MA)
function “ode45.” Best fit for Ais was found using MAT-
LAB function “fmins” which uses a modified simplex search
method.

Model predictions were compared to experimental data
using coefficient of determination (R2) calculations, and
ANOVA wes performed using the General Linear Models
(GLM) computational procedure of the Statistical Analysis
System (SAS; SAS Institute, Inc., Cary, NC). This procedure
partitioned the variance of the three main treatment effects:
temperature, islet size, and perfusing solution as well as the
two way interaction effects. Further, the 3×3 factorial exper-
iment was also blocked by day. Therefore, day was included
in the SAS GLM model which allowed it to remove variabil-
ity due to day to day variation. Significance of main effect
was tested using the appropriate mean squares (Temperature
effect tested by Temperature × Day interaction as the error
term, etc.).

3 Results and Discussion
A model was developed to describe the behavior of islets

of Langerhans in the golden hamster when they are exposed
to anisosmotic conditions. The model was validated and
Ais determined using a 3× 3 factorial experimental design
which was blocked for experimental day. Whole islet in vitro
experiments were compared with model predictions at three
temperatures, using three perfusing solutions and three islet
sizes.

3.1 Correlation of model with experimental data
Typical results for correlation of several of the exper-

imental protocols are shown in Figs. 4 and 6. These fig-
ures include data from in vitro perfusion experiments using
the three perfusion media (1.5 mol/kg DMSO, 1.5 mol/kg
EG, and 3× PBS) and hamster islets of Langerhans. Super-
imposed on this data is the prediction of the mathematical
model described above. Table 1 contains the combined data
from all of the 27 experiments performed for this study.

A mean of 4.4 islets were compared at each of the 27
experimental conditions and found to correlate with a coef-
ficient of determination (R2) of 0.87 ± 0.06 (mean ± S.D.).
This excellent value for R2 demonstrates that, even with only
one fitting variable, the model predicts the experimental data
with a high degree of accuracy. The remaining 13% of the
variability could possibly be explained by error in measure-
ment.

3.2 Day Effect
The 3×3 factorial design was blocked for day and when

using analysis of variance (ANOVA) for Ais, it was found that
this day effect was significant (p < .05). This indicates that
there is significant day to day variability of Ais for hamster
islets. This variability may be explained by hamster to ham-
ster variability, or by day to day isolation variability. Ham-
ster to hamster variability was seen for hamster oocyte wa-
ter permeability and activation energy [41]. However, it is
more likely that even slight differences in digestion of the
islets in collagenase from day to day could affect the Ais sig-
nificantly. Visually, increased digestion renders some islets
“looser” (Dr. Raymond Rajotte, personal communication)
which could hypothetically increase Ais.

3.3 Interstitial surface area (Ais)
The Ais from 119 islets (10 hamsters over 5 experimen-

tal days) was found to have a mean of 0.54 ± 0.34 (mean
± S.D.) across all treatments. Values greater than one may
seem at first to be counter-intuitive. However, we normalized
our value of Ais to spherical internal individual islet cells,
which have a minimal surface area to volume ratio. There-
fore, non-spherical cells inside the islet would increase the
overall surface area to volume ratio and increase the total
membrane surface area of the islet, thus decreasing our nor-
malized Ais.

We also compared Ais over experimental conditions us-
ing ANOVA and found the treatment variable of perfusing
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Fig. 6. Plots of islets with various radii perfused with 3× PBS at 37, 22, and 8 ◦C. The solid line is model predictions under the same
experimental conditions. The best fits for channel radius (corresponding to Ais) were 1.79, 2.08, 1.21 µm and correlation coefficients (R2)
were 0.99, 0.99, 0.97, respectively.

Table 1. Data from the 3× 3 factorial experiment is shown where whole islets were compared with model
predictions at three tempreatures (7, 22, 37 ◦C) using three perfusing solutions (DMSO, EG, and 3× PBS)
and three islet size groups (<80, 80-110, >110, µm radii).

Temp. radius # of initial radius (µm) Normalized Ais coeff. of det.
CPA ( ◦C) (µm) islets mean S.D mean S.D. mean S.D.

DMSO 37 < 80 3 69.98 7.56 0.34 0.07 0.77 0.10
DMSO 37 80−110 4 95.94 9.85 0.28 0.13 0.78 0.10
DMSO 37 > 110 3 120.07 6.49 0.39 0.14 0.81 0.16

EG 37 < 80 3 75.58 14.36 0.34 0.02 0.88 0.04
EG 37 80−110 4 91.74 3.28 0.20 0.04 0.90 0.02
EG 37 > 110 3 121.53 23.72 0.24 0.11 0.62 0.27

PBS 37 < 80 3 70.12 7.81 0.41 0.31 0.96 0.03
PBS 37 80−110 3 100.79 8.19 0.50 0.16 0.99 0.00
PBS 37 > 110 2 122.80 9.48 0.48 0.09 0.96 0.03

DMSO 22 < 80 2 76.64 6.82 0.22 0.13 0.76 0.15
DMSO 22 80−110 3 92.71 11.03 0.30 0.12 0.89 0.03
DMSO 22 > 110 3 123.27 17.97 0.22 0.14 0.89 0.12

EG 22 < 80 4 66.54 2.37 0.59 0.19 0.82 0.02
EG 22 80−110 3 86.58 10.62 0.42 0.08 0.85 0.00
EG 22 > 110 2 111.85 0.78 0.42 0.22 0.72 0.04

PBS 22 < 80 8 56.21 15.31 1.12 0.87 0.92 0.05
PBS 22 80−110 8 88.78 10.58 1.01 0.25 0.96 0.02
PBS 22 > 110 5 120.80 10.29 0.43 0.25 0.97 0.02

DMSO 8 < 80 6 53.48 14.44 0.48 0.10 0.86 0.07
DMSO 8 80−110 5 93.16 7.16 0.41 0.01 0.87 0.07
DMSO 8 > 110 4 125.03 23.67 0.42 0.05 0.93 0.04

EG 8 < 80 4 65.13 14.02 0.45 0.11 0.80 0.08
EG 8 80−110 5 91.21 8.66 0.42 0.03 0.88 0.05
EG 8 > 110 4 117.38 12.40 0.39 0.01 0.79 0.07

PBS 8 < 80 10 59.30 8.36 1.44 0.56 0.96 0.02
PBS 8 80−110 9 88.77 10.61 1.40 0.37 0.98 0.01
PBS 8 > 110 6 121.77 16.10 0.93 0.29 0.99 0.01

Mean 4.41 92.86 10.81 0.54 0.18 0.87 0.06
St. Dev 2.15 0.34 0.09



solution to be significant (p < .05). Furthermore, ANOVA
with multiple comparisons demonstrated that Ais for PBS
is greater than for DMSO or EG exposure (p < .05). This
seems to suggest that the islets, when exposed to 3×PBS,
have more surface area exposed to the interstitial diffusional
transport than when they are exposed to DMSO or EG. A
possible hypothesis is that there are areas of the islet which
water is able to diffuse out of (in the case of hypertonic PBS
perfusion) but larger molecules such as DMSO and EG are
excluded from. This hypothesis is supported by the work of
Barr et al. [42] who showed that the apparent extracellular
spaces of smooth muscle decreased with increasing molecu-
lar size. Further, Bunch et al. [43] found that only 60% of
total water to be available to DMSO in barnacle muscle. A
second explanation may be that the two CPAs affect the his-
tology of the islet in such a way as to “tighten” it and make
it less susceptible to diffusional effects. Further exploration
of this area may be warranted.

Alternatively, the lack of significant differences in Ais in
the CPA groups EG and DMSO point to the conclusion that
Ais is a truly geometrically dependent parameter. This con-
clusion would indicate that our model has captured more
information than a strictly phenomenlogical diffusion based
model. Because of this, predictions based on knowledge of
this parameter and knowledge of the diffusivities for other
CPAs may be made without experimental measurements.

4 Applications
This validated model may now be used to predict several

stages in the cryopreservation process. For example, these
predictions may include the degree of volume excursion of
each layer in response to exposure to CPAs or other hyper
and hypotonic solutions. It has been shown that rate of intro-
duction and removal of CPAs is important to the success-
ful preservation [44–46] both volume excursion (swelling
or shrinking) and/or solute effects may be important in cell
survival [47]. Combined with equations published for so-
lute/solvent dynamics at low temperatures [9,20,21,48] both
the concentration of CPA within each layer at the time of
freezing, and the concentration of water within the cells at
the time of ice nucleation may be predicted. These val-
ues have also been shown to be of great importance to the
overall outcome of the cryopreservation procedure [5, 6, 49].
There also has been recent discussion on the ice propogation
in concentrically oriented tissues, where solute and solvent
transport have been neglected [50, 51]. It would be of con-
siderable interest to apply the intracellular ice and propoga-
tion theory discussed in these papers in combination with the
model described and validated in this manuscript.

5 Summary
A model has been constructed that accurately predicts

volume excursion in response to osmotic and CPA challenges
for whole islets while maintaining geometric information
about the behavior of the entire islet. This model incorpo-
rates data describing fundamental biophysical characteristics

from previous studies on individual hamster islet cells and
describes transport through the islet by three methods: intra-
cellularly, intercellularly, and a combination of these. De-
velopment of optimal cryopreservation protocols using this
information remains to be accomplished.
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