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Recently a new solute and solvent transmembrane cellular transport model accounting for non-dilute solute
concentrations was introduced. This model depends on a second or third order polynomial expansion in mole
fraction of Gibbs energy for solutes and solvents along with a mixing term that depends only on single solute
data. This model is applicable to cells in so called semi-dilute anisosmotic conditions. The extents of these
conditions are not immediately clear from within the theory. Therefore, in order to provide an estimate of
the upper concentration bound of this model we rederive the original model in the practical molality form,
apply a natural extension of the model to an arbitrary number of solutes, and provide concrete bounds on the
maximal concentrations where the model may be stable, and thus likely physiologically relevant. Moreover,
we apply a similar stability analysis for a simpler, and more classic model based on similar Gibbs energy. The
results show that the classical model has an asymptotically stable rest point for all parameter values, whereas
the new model does in fact become unstable at very high solute concentrations. This instability, however,
occurs at concentrations that are most likely well beyond the intended applicability of the model.
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Applied molecular biology, biochemistry, and bio-
physics depend on accurate estimates of the cellular state
in the presence of anisosmotic extracellular conditions.
Models describing the behavior of cells exposed to ex-
tracellular permeating and non permeating solutes have
been proposed and analyzed for nearly a century (see
Elmoazzen et al.7 for a concise and recent review). Ap-
plications of these models range from pharmicokinetics
to cryobiology to endocrinology and physiology, but the
majority of applications are well within the concentration
range that could be considered “dilute,” and as such, do
not require sophisticated modeling of chemical potential
or osmolality. In the field of cryobiology, however, this is
not the case. Because the unfrozen portion of the extra-
cellular milieu is tied to its phase diagram, multi-molar
concentrations are nearly always encountered upon cool-
ing. Additionally, because the inhibition of deleterious
intracellular ice is usually proportional to the concen-
tration of permeating cryoprotective agents—usually low
molecular weight polyols such as glycerol or 1-2, propane
diol—cells are often exposed to multimolal concentra-
tions of these polyols above the melting point.

In fact, two important challenges in the development
of a cryopreservation protocol require an accurate mass
transport model appropriate for the requisite multi-
solute and multi-molar conditions: the maintainance of
cell volumes between pre-defined volume or concentra-
tion limits, and the prediction of the intracellular viscos-
ity during cooling below the solution melting point.

With this in mind, recently Elmoazzen et al. derived
a new nondilute solute transport equation by combining
the polynomial expansion of the Gibbs energy in mole
fraction7 with their previous work defining solute mixing
terms which only depend on data derived from binary
solutions6. To facilitate applications in a wide range of
biological contexts where the specific mixing terms for

each set of solutes might be challenging to obtain, Elliott
et al. defined specific mixing rules to allow the determi-
nation of the Gibbs energy solely from binary solution
data, and showed that this approach yields a good ap-
proximation of the osmolality and chemical potentials in
solutions of biological interest.

The degree of non-ideality accounted for in this for-
malism is not immediately obvious from within the the-
ory. Additionally it is unclear what effects an arbitrary
number of solutes might have on the model. Elliott et
al. claim heuristically that their formalism should not be
applied for concentrations beyond those measured in the
binary systems6, i.e. those used to determine the model
coefficients. One fairly straightforward approach to test
both of these questions is to analyze the dynamical be-
havior of these models. If some combination of parame-
ters yields unlikely dynamics, either there are unexpected
phenomena that are modeled by the equations, or the
model is invalid in this region of the parameter space
and either result may be of considerable interest. Addi-
tionally, model stability is a component of controllabil-
ity, and in many cases one wishes to control (optimally
if possible) the cellular state. This type of analysis was
performed on a similar but simpler ideal-dilute system
Benson et al. and global stability was shown2. There-
fore, for the non-ideal model the implicit assumption in
membrane mass transfer is that there is a stable equi-
librium. Below we investigate the effects of the model
parameters on the stability at the equilibrium.
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I. OSMOTIC TRANSPORT EQUATIONS

A. Chemical potentials

Elliott et al. use Landau and Lifshitz solution the-
ory when deriving the chemical potential in terms of
molality6,11, but Elmoazzen et al.7 derive the mass trans-
port equations in terms of mole fraction. It is often more
natural for biologists and simpler mathematically to work
in terms of molality instead of mole fraction, therefore,
following Landau and Lifshitz, the n − 1 solute Gibbs
energy is given by

Φ(T, P,N) = N1µ0 +

n∑
i=2

NikT ln
Ni

eN1

+

n∑
i=2

Niψi +
1

2N1

n∑
i,j=2

βijNiNj (1)

where N = (N1, . . . , Nn) is a vector of moles of solutes,
and ψi and βij = βji are functions of temperature and
pressure. We define the chemical potential µi = ∂G/∂Ni,
and scaled molality mi = Ni/N1 differing from the true
molality Mi = mi/νs where νs is the molecular weight of
the solvent. Therefore we have

µ1 = µ0 − kT
∑
i=2

Ni

N1
− 1

2N2
1

n∑
i,j=2

βijNiNj

= µ0 − kT

∑
i=2

mi + (kT )−1
n∑

i,j=2

βijmimj

 . (2)

By similar differentiation for i 6= 1,

µi = kT ln(Ni/N1) + ψi +
1

2N1

n∑
j=1

βijNj

= kT (lnmi + ψ∗i + (kT )−1
n∑

j=1

βijmj), (3)

with ψ∗i = ψi/kT . In this case, Elliott et al. define
βij/kT = (Bi + Bj) where Bi are the second osmotic
virial coefficients determined in the presence of the ith
solute and water alone. Thus in this context we have

µ1 = µ0 − kT

∑
i=2

mi +
1

2

n∑
i,j=2

(Bi +Bj)mimj

 (4)

µi = kT

lnmi + ψ∗i +
∑
j=1

(Bi +Bj)mj

 . (5)

B. Transport models

As mentioned above, modeling of osmotically driven
solute and solvent transmembrane flux has been under-
taken since the 1930s8. The ordinary differential equa-
tion based on Fick’s law of diffusion governing the flux

of water has essentially remained unchanged since its in-
ception:

dN1

dt
= −LpART (πe − πi) (6)

where π = (µ1 − µ0)/kT , superscripts e and i indicate
extra- and intra-cellular properties, respectively, A is the
constant surface area, and Lp is the membrane hydraulic
conductivity. The solute flux equations are similar, and
depend on the governing theory:

dNi

dt
= bi(µ

e
i − µi

i) (7)

for the Fick’s model.
A more recent thermodynamic formalism applied in

this area is Statistical Rate Theory5. This approach ap-
plied by Elliott et al. to transmembrane water flux is

dNi

dt
= bi sinh(µe

i − µi
i)

(8)

where bi is a positive constant5. We will not analyze
the irreversible thermodynamical approach proposed by
Kedem and Ketchalsky9.

Finally, the classical ordinary differential equation gov-
erning the solute flux utilizes a linear approximation of
µi when i 6= 1, and is simply a rate constant times the
difference of extra- and intra-cellular molality:

dNi

dt
= bi(m

e
i −mi

i). (9)

Though Elmoazzen et al. argue that this is thermody-
namically incorrect7, it is commonly employed in the
literature10 so we will treat this as a special case in our
analysis. In fact, we will generalize Eq. (9) to the form

dNi

dt
= bi(µ̄

e
i − µ̄i

i) (10)

where µ̄i is the chemical potential of the solute that has
no mixing terms, e.g. µ̄i =

∑∞
j=1 ajm

j
i , with aj con-

stants, or more concisely,

∂µi
j(m(N))

∂mk
= 0,

for j 6= k.
Therefore we have three analogous nonlinear systems

of first order ordinary differential systems:

Ṅ = bG(N,B), (11)

Ṅ = b sinh(G(N,B)), (12)

Ṅ = b Ḡ(N,B), (13)

where G(N,B) = (G1, . . . , Gn)T = (πi − πe, µe
2 −

µi
2, . . . , µ

e
n−µi

n)T , Ḡ(N,B) = (πi−πe, µ̄e
2− µ̄i

2, . . . , µ̄
e
n−
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µ̄i
n)T , B = (B1, . . . , Bn)T , b = (b1, . . . , bn)T , and

sinh(G) :=

 sinh(G1(N,B))
...

sinh(Gn(N,B)))


T

,

a slight abuse of notation.

II. STABILITY

We now are interested in the stability of systems (11)-
(13) evaluated at the rest point N = N∗. found by ex-
amining the spectrum of the linearized system. If the
real part of the eigenvalues of the linearized system are
all negative, the system is stable, if not, the system is
unstable (c.f.4,13). Moreover, we show below that this
rest point exists except for when Mext

1 = 0.

A. Classical case

In the classical case, we have

∂µi
j(m(N))

∂mk
= 0,

for j 6= k. This is a classical condition (e.g. where
µk(m) = −λkmk, see6,10) where we only need physically
relevant monotonicity conditions for g and µ.

Theorem 1 Suppose x is governed by system (13),
M1 6= 0, and ∂µj/∂mj > 0 for j = 2, . . . , n. Then there
exists an asymptotically stable rest point N∗.

Proof: Suppose there is a rest point N = N∗ with
N∗1 <∞. We have the partial derivatives

∂G1

∂N1
=

n∑
i=1

mi + 2

n∑
i,j=1

(Bi +Bj)mimj , (14)

and for i > 1,

∂G1

∂Ni
= 1 +

n∑
j=1

(Bi +Bj)mj . (15)

Also,

∂Gk

∂N1
= −bk

n∑
j=1

∂µi
k(m(N))

∂mj

∂mj

∂N1

= bk
1

N1

n∑
j=1

mj(N)
∂µi

k(m(N))

∂mj
since mj = Nj/N1

= bk
1

N1
mi(N)

∂µi
k(N)

∂mk

since ∂µk/∂mj = 0 for j 6= k, and

∂Gk

∂Ni
= −bk

∂µi
k(m(N))

∂Ni

= −bk
∂µi

k(m(N))

∂mi

∂mj

∂Ni

= −bk
1

N1

∂µi
k(m(N))

∂mi
since mj = Nj/N1

= − 1

N1
dk.

Thus

∂Gk

∂N1
= −mk

∂Gk

∂Ni
=

1

N1
mk(N∗)dk

Then the Jacobian L := {∂Gi/∂Nj}i,j is

L =
1

N1


−r1 r2 · · · · · · rn
m2d2 −d2 0 · · · 0

... 0
. . .

...
...

mndn 0 · · · 0 −dn

 , (16)

where

r1 =

n∑
i=1

mi + 2

n∑
i,j=1

(Bi +Bj)mimj , (17)

ri = 1 +

n∑
j=1

(Bi +Bj)mj , (18)

We define a diagonal matrix D =
diag(1,

√
r2/a2, . . . ,

√
rn/an) and note that

L∗ = DLD−1 is symmetric with the form

LS =


−r1

√
η2 · · ·

√
ηn√

η2 −d2 0 · · ·
... 0

. . . 0√
ηn 0 · · · −dn

 , (19)

where ηi = ridimi.
If LS is negative definite, then our system is asymptot-

ically stable. It remains to look at the leading principal
minors.

Since mi > 0 and rj > 0, we have r1 > 0, then we note
that the ith principal minor is given by the formula

LS
i = −diLS

i−1 +mi(N
∗)ri

i∏
j=2

(−dj)

= −

r1 +

i∑
j=2

(−1)j+1mj(N
∗)rj

 i∏
j=2

(−dj)

= (−1)i

r1 +

i∑
j=2

(−1)j+1mj(N
∗)rj

 i∏
j=2

dj .
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Therefore, if
(
r1 +

∑i
j=2(−1)j+1mj(N

∗)rj

)∏i
j=2 dj >

0 for i = 2, . . . , n, we are done. But note that

r1 +

i∑
j=2

(−1)j+1mj(N
∗)rj >

n∑
j=1

mi(N
∗)rj

+

i∑
j=2

(−1)j+1mj(N
∗)rj

>

i∑
j=1

mjrj(1 + (−1)i)

> 0,

for each i = 2, . . . , n, which by our hypothesis is positive.
Finally, we claim that by the inverse function theorem

the rest point exists and Jacobian is negative definite.
First, suppose that N∗1 exists. Then we may apply the
inverse function theorem to determine the N∗i for i 6= 1.
Without loss of generality, we may assume that Mi = 0
and thus N∗i = 0 for i 6= 1. Then Ṅ1 = 0 if Nnp/N1 =
M1. Since Nnp 6= 0, if M1 = 0 there is no rest point.

B. New systems

Suppose N = N∗ is the rest point of both systems
(11) and (12) (to be proved below), and now note that,
in fact, both systems have the same Jacobian at N = N∗.
Namely, note that

d

dx
sinh(f(x))

∣∣
f(x)=0 = cosh(f(x))

df

dx

∣∣
f(x)=0

=
df(x)

dx

∣∣
f(x)=0 .

Therefore the local stability of these two formalisms is
the same.

What we are interested in is whether there exist m or
B such that the system is unstable. As shown above,
there are no such m or B for the classical system, but
we will show below that such m do exist for the newer
systems. We are interested in whether this instability
occurs in a region for which the newer systems are appli-
cable. If so, this would either indicate that there are new
phenomena described by the system or that the system is
inappropriate for use in this region. Either result would
be of interest for further study.

We have the main result:

Theorem 2 If

minmi >

(
(n

n∑
i=2

B2
i )1/2 −

n∑
i=2

Bi

)−1
(20)

systems (11) and (12) are unstable at their rest points.

Inequality (20) implies that if any Bi correspond-
ing to a permeating solute is large, then the system

will be unstable for small mi. Choosing two of the
most common components of cryopreservation media, 1,2
Propane Diol and DMSO, with measured virial coeffi-
cients BPG = 0.0399, BDMSO = 0.0843, respectively7, a
system modeling the transport of the two would be un-
stable if maximi > 81, a value well beyond the intended
applicability of the model.
Proof: The Jacobian is defined by the partial deriva-

tives of G and using the definitions from above, ∂G1

∂N1
=

− 1
N1
r1, ∂G1

∂Ni
= ∂Gi

∂N1
= 1

N1
ri,

∂Gi

∂Ni
= − 1

N1

(
1

mi
+ 2Bi

)
,

∂Gi

∂Nj
= − 1

N1
(Bi +Bj) .

and so

J =
1

N1
ΛA (21)

where Λ is a diagonal n×n matrix with diagonal entries
b, and

A =


−r1 r2 . . . rn
r2
... −A1

rn


where

A1 = {Bi +Bj + δijm
−1
i }

n
i,j=2 (22)

:= A∗1 +D(m). (23)

Let r̄ = (r2, . . . , rn)T and note that the matrix A is sym-
metric. We may multiply on the right and left of ΛA by
Λ−1/2 > 0 to yield Λ1/2AΛ1/2 which is negative definite
if and only if −A > 0.
−A > 0 holds if and only if A1 > 0 and A1+r̄r1r̄

T > 0,
and we have two possibilities to check.
A1 is a real-symmetric matrix and thus has smallest

eigenvalue λn(A1) > 0. We apply a standard inequal-
ity for eigenvalues of sums of Hermitian matrices31 and
thus λn(A1) − λn(A∗1) ≤ λ1(D) = (minimi)

−1. For
n > 2 the rank of A∗1 ≤ 2, and it can be shown that
the nonzero eigenvalues are

∑n
i=2Bi ± (n

∑n
i=2B

2
i )1/2.

Thus, λn(A∗1) =
∑n

i=2Bi − (n
∑n

i=2B
2
i )1/2, and

λn(A1) ≤ (min
i
mi)

−1 +

n∑
i=2

Bi − (n

n∑
i=2

B2
i )1/2.

Thus if minimi > (−
∑n

i=2Bi + (n
∑n

i=2B
2
i )1/2)−1,

λn(A1) < 0.
Next, suppose hypothesis (20) is true and assume C :=

A1 + r̄r1r̄
T > 0. Because C is real-symmetric, C > 0 if

and only if λn(C) > 0. Applying the same theorem as
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above,

λn(C) < λn(A1) + λ1(r̄cr1r̄
T )

= r1

n∑
i=2

r2i + λn(A1)

≤ r1
n∑

i=2

r2i + λ1(D) + λn(A∗1).

But λ1(D) + λn(A∗1) < 0 only if (20) holds, and we are
done.

Finally, we note that, similar to the previous proof,
the existence of a stable rest point is guaranteed by the
inverse function theorem if (20) is not satisfied and if
mext

1 6= 0.

III. DISCUSSION AND CONCLUSIONS

In this manuscript we have analyzed the local stability
of three solute-solvent osmotic transmembrane flux mod-
els with an arbitrary number of solutes. In the classical
case, we have found local stability for all combinations
of parameters. In both modern models, we showed first
that their stability is at least locally identical, and that
there is a simple function of the parameters that bounds
the instability region. This region is bounded well away
from the intended applicability of the models used.

Because the stability shown in this manuscript is local
stability, the behavior away from the rest point is unclear.
Because cells are often exposed to high concentrations of
solutes in a step function, further study would investigate
the region of stability. We expect that this region would
depend on B in a similar fashion. A Lyapunov func-
tion for the system would be ideal, but such functions

for n dimensional nonlinear systems are difficult to find.
However, there have been some recent developments in
algebraic geometry which may be promising12.
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