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Abstract Cryobiology is a field with enormous scientific, financial and even cultural im-

pact. Successful cryopreservation of cells and tissues depends on the equilibration of these

materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2

propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions,
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the resulting gradients cause large volume fluctuations that have been shown to damage

cells and tissues. On the other hand, there is evidence that toxicity to these high levels of

chemicals is time dependent, and therefore it is ideal to minimize exposure time as well.

Because solute and solvent flux is governed by a system of ordinary differential equations,

CPA addition and removal from cells is an ideal context for the application of optimal con-

trol theory. Recently, we presented a mathematical synthesis of the optimal controls for the

ODE system commonly used in cryobiology in the absence of state constraints and showed

that controls defined by this synthesis were optimal. Here we define the appropriate model,

analytically extend the previous theory to one encompassing state constraints, and as an ex-

ample apply this to the critical and clinically important cell type of human oocytes, where

current methodologies are either difficult to implement or have very limited success rates.

We show that an enormous increase in equilibration efficiency can be achieved under the

new protocols when compared to classic protocols, potentially allowing a greatly increased

survival rate for human oocytes, and pointing to a direction for the cryopreservation of many

other cell types.

Keywords cryobiology · optimal control · cryoprotective agent · mass transfer

Introduction

The economic, scientific and even cultural impact of cryobiology is immense1: billions of

dollars are invested in frozen cells and tissues for use in cell culture transport [4], facilitation

of agricultural and human reproduction [31], improvements in human and animal medicine

[25], and bioengineering [19]. Arguably more important than cooling and warming rates, the

addition and removal of cryoprotective agents (CPAs) to and from cells [26] is a critical and

1 Part of this work appeared as part of a doctoral dissertation [5]
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limiting factor in cryopreservation success—current cryopreservation protocols are limited

by the inability to equilibrate cells with sufficiently high concentrations of CPAs to cause an

intracellular glass to form while cooling. The transport of CPAs across cell membranes is

well described by a system of coupled nonlinear ordinary differential equations, and is often

limited by the existence of cell-specific volume or concentration constraints [26]. To date

only heuristic optimizations of CPA addition and removal protocols have been published

[14,24,23]. Here we show that optimal control theory can be successfully applied to the

introduction and subsequent removal of cryoprotective agents. Moreover, while applying

the general optimization theory outlined recently [7], we are able to add the natural cell

volume and concentration constraints that are encountered in the process of cryoprotective

agent addition and removal [4]. Here we show that for a large set of parameters, at least a

five-fold time reduction can be made over classical techniques. We then provide a specific

application to human oocytes, where the time to safely equilibrate oocytes with vitrification

level ethylene glycol (e.g. more than 40 molal) is reduced by a factor of five to twenty.

There are two conflicting factors in the development of a CPA addition or removal

protocol—the exposure time to multimolal concentrations of CPAs and damaging cell and

water volume excursions (Fig. 1)—which point to the existence of an optimal protocol and

necessitate an algorithm that provides the optimized CPA addition and removal procedure

when the membrane permeability characteristics and the osmotic or volumetric tolerance

limits of a specific cell type are known. Often CPAs are added and removed in gradual steps,

whose durations and concentrations are empirically based [16]. Heuristic methods for the

optimization of CPA addition and removal, deriving protocols where the CPA concentration

is varied continuously [23,24]. These protocols have produced improved but not optimal

protocols limited in the general applicability of the technique.
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We wish to control the extracellular concentrations of permeating and non-permeating

solutes (M2 and M1, respectively) such that cells are equilibrated at a goal state in the shortest

time while remaining within predefined state-constraints. For analytical simplicity we will

use the solute-solvent transmembrane flux model described by Jacobs [18] and commmonly

used in cryobiology [21]. This model recently was noted to encompass a vary large array

of membrane transport phenomena [17]. After simplifying the osmotic pressure to a single

term in a virial expansion and non-dimensionalizing (cf. [20]) we have the system

dw
dτ

= M1 +M2 +
xnp +S

w
,

dS
dτ

= b
(

M2 +
S
w

)
,

(1)

where w and S are the intracellular water volume and moles of solute, respectively, xnp is

the (assumed fixed) moles of nonpermeating solute, b is a unitless relative permeability con-

stant, and τ is a dimensinless temporal variable. Following an approach we have previously

described [6], we factor out w−1 to facilitate a time-transform with

s = q(t) :=
∫ t

0
x1(ξ )dξ , (2)

resulting in a system that is linear in the concentration and state variables (see Table 2 for

parameter definitions):

ẋ1 = (M1 +M2)x1− x2 + xnp,

ẋ2 = bM2x1−bx2.

(3)

Optimal control

We set M̄i > 0 for i = 1,2, the admissible control parameter set

CP = {M = (M1,M2) ∈ R2 : 0≤Mi ≤ M̄i for i = 1,2}, (4)
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Fig. 1 Plot of the effects of two different CPA addition protocols. A hypothetical cell is equilibrated with

a goal concentration C of a permeating CPA. This cell has a lower limit to which it can contract without

damage. If the cell is exposed abruptly to C, the efflux of water causes it to shrink below this limit, causing

cell death. Alternatively, if the cell is exposed to C/2 and then C, the cell does not exceed the limit, but is

exposed to the chemicals for a longer period of time. We wish to find an optimal balance between these two

competing effects.

and the state space S⊂ (0,∞)× [0,∞) (note x1 > 0). In addition, we define x(t) = x(t;x0,M)

to be the solution of the initial value problem (3) and

Cy(t) = {x0 ∈ S : x(t) := x(t;x0,u) = y},

to be the set of initial conditions that can be steered to y ∈ S at time t via a measurable,

admissible control function M : R+→ CP.

We have a time-optimal control problem of steering an initial state xi to a final state x f in

minimal “real” time using controls in the admissible set A, the set of measurable functions

M : R→ CP, and formally we may now define the optimal control problems:

Problem 1 Given an initial state wi in the state space S and final state w f ∈ S, the set of

admissible controls A and defining s∗ ∈R to be the first time that w(s∗) =w f for the solution

of the previously defined initial value problem defined in system (1), determine a control that

minimizes s∗ over M ∈ A, subject to constraints Γ ·w+ k ≤ 0.
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Table 1 Definition of parameters

Variable Non-dimensional parameter description

x1 Cell water volume

x2 Cell permeating solute mass

xnp Cell non-permeating solute mass

xi or x f Initial or final state values, respectively

M1 Extracellular non-permeating solute concentration

M2 Extracellular permeating solute concentration

M̄i Maximal solute concentration

b Unitless relative cell permeability parameter

γ Partial molar volume of the permeating solute

k Upper or lower cell volume limit

τ, t1, t2 Switching times

Using the time-transform function q in (2), we have the equivalent problem

Problem 2 Given an initial state xi in the state space S and final state x f ∈ S, the set of

admissible controls A and defining t∗ ∈R to be the first time that x(t∗) = x f for the solution

of the previously defined initial value problem

ẋ = f (x,M) = A(M)x+ xnpe1, x(0) = xi, (5)

determine a control that minimizes the cost functional

J(M) := s∗ = q(t∗) =
∫ t∗

0
x1(t)dt (6)

over A, subject to constraints Γ ·w+ k ≤ 0.
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Table 2 Definition of controls

Control M1(t) M2(t)

MI 0 M̄2

MII 0 0

MIII M̄1 0

Here Γ = (γ1,γ2)
T ∈ R2 allows the representation of water volume, total cell volume, or

concentration in terms of x1 and x2. The existence of an optimal control along with the

equivalence of these problems is proved in [7].

Though numerical approaches exist for solving Problem 2 with nonlinear and multiple

state constraints using classical numerical optimal control techniques, here we will construct

analytically the optimal control in the most commonly encountered case where there are

total cell volume constraints of the form k∗ ≤ x1 + γ2x2 ≤ k∗ corresponding to upper and

lower osmotic tolerance limits, where the initial and final water volumes are equal, i.e. x f
1 =

xi
1 = x∗1, and either xi

2 = 0 and x f
2 = x∗2, or xi

2 = x∗2 and x f
2 = ε for ε small. These two

cases correspond to the addition or the removal of CPA, respectively. In the second case,

theoretically, one must set x f = (x∗1,ε) because the dynamics of the system only allow an

asymptotic approach to the x1-axis. Furthermore, we assume the bounds 0≤M1(t)≤ M̄1 and

0 ≤M2(t) ≤ M̄2, where M̄i are maximal physical or practical concentration limits (e.g. M̄1

may be limited by the salt or sucrose saturation point and M̄2 may be limited by a maximum

practical viscosity), and because of natural equilibration constraints of the system (cf. [7])

we restrict xi and x f so that xy
2 < xy

1M̄2 and xnp > xy
1M̄1 (y = i or f ).

We define φ λ
t to be the solution of (3) with control M = λ at a time t and the initial

condition φ λ
0 (x) = x. Also we define the curves σ j := {x ∈ (R+)2 : x ∈ φ M j

t (x f ), t < 0}, for
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j = I, II, and III, the time τ > 0 to be the first time that φτ ∈ σ j, and the time t∗ > 0 to

be the total time required to reach x f . In [7] we synthesized optimal controls based on the

Pontryagin Maximum Principle (PMP) [30] and proved optimality based on a theorem of

Boltayanski [8] but did not provide an explicit example or show how to incorporate con-

straints.

For the unconstrained case, the optimal CPA addition and removal controls, respectively,

are given by

MA(t) =


MI , t ≤ τ,

MII , τ < t < t∗,
and MR(t) =


MIII , t ≤ τ,

MII , τ < t < t∗.

While these controls are optimal, they come at the cost of possibly excessive volume excur-

sions (see Fig. 2). To remedy this possibility, we will optimize in the presence of constraints,

which correspond to lines in the state space

`∗ := {(x1,x2) ∈ (R+)2 : γx2 =−x1 + k∗} (7)

and

`∗ := {(x1,x2) ∈ (R+)2 : γ2x2 =−x1 + k∗}. (8)

In practice, if M̄1 and M̄2 are large enough, it is enough to only use constraints of the

form k∗ ≤ x1 + γ2x2 for both CPA addition and removal protocols. We state this in a lemma

which follows directly from the derivation of equations (9) and (13) below.

Lemma 1 In the CPA addition case, where xi = (x1(0),0), x f = (x1(0),η), η > 0, and

Γ · xi < k∗, if M̄2 >
(1−γ2b)η+xnp
(1−bγ2)xi

1
, then φ MI

t (xi)∩ `∗ = /0. In the CPA removal case, where

xi =(x1(0),η), x f =(x1(0),ε), ε small, and Γ ·xi < k∗, if M̄1 >
(1−bγ2)η+xnp

k∗−γ2η
, then φ MIII

t (xi)∩

`∗ = /0.

In both addition and removal cases we will define at most three times t1 < t2 and

τ corresponding to the switching times for control schemes. Note that these are times
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in the transformed space; we must use the s = q(t) function in display (2) to determine

“real” switching times. There are three possibilities to the dynamics of the optimal con-

trol problem: 1) the state constraint is inactive and the bang-bang optimal control outlined

above is optimal; 2) the state constraint is active but φ λ
t (x f ) /∈ `∗ for all t ≤ τ − t∗; 3)

the state constraint is active and φ λ
t (x f ) ∈ `∗ for some t ≤ τ − t∗. These cases are shown

in figure (2). Because of the above argument, it follows that in cases (2) and (3) there

are times t1 and t2 where the unconstrained optimal path intersects the constraint line.

The constrained Pontryagin Maximum Principal states that if the optimal control M ex-

ists, there is a costate variable p such that for t ∈ (t1, t2), M ∈A maximizes the Hamiltonian

H(x, p,M) := f (x,M) · p+ x1, and that the constraint remains active. Moreover, we must

have the jump condition limt→t+1
p(t) = limt→t−1

p(t). Using this fact, we are able to deduce

the optimal controls. For t /∈ (t1, t2) the controls are the same as for the unconstrained sys-

tem. For t ∈ (t1, t2), we must maximize H(x, p,M) with γ2x2 =−x1+k∗, which is equivalent

to maximizing

max
M1,M2

{−M1 p1(k∗− γ2x2)+M2(bp2− p1)(k∗− γ2x2)}.

Derivation of CPA addition optimal controls with an active constraint

In the CPA addition case, from our previous analysis [7] p1(t1)> 0 and p2(t1)> p1(t1)/b,

so p1(t1) and p2(t1) are both positive. Thus, since k∗−γ2x2 > 0, we must choose M1 as small

as possible and M2 as large as possible with the active constraint. Thus, if M̄2 is large in the

sense of Lemma 1, we may set M1 ≡ 0. Because of this, we can explicitly solve system (3)

with Γ · x = k∗ for M2(t). To do so, note Γ · ẋ = 0, which means we have ẋ1 =−γ2ẋ2, or

−M2x1 + x2 + xnp =−γ2(M2bx1−bx2),
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which we solve for

M2 =
(1− γ2b)x2 + xnp

(1−bγ2)x1
, (9)

and substitute this back into the system (3) with M1 = 0 to get

ẋ1 = γ2bxnp/(bγ2−1),

ẋ2 = bxnp/(1−bγ2).

(10)

This system has the solution x = (x1,x2) given by

x1(t) = γ2(t− t1)bxnp/(bγ2−1)+ x1(t1)

x2(t) = bxnp(t− t1)/(1−bγ2)+ x2(t1).

Substituting these solutions into (9) and simplifying, we determine the constrained optimal

CPA addition control

MA
2 (t) =

(1−bγ2)x2(t1)+(1+bt)xnp

(1−b2γ2)x1(t1)−bγ2xnpt
. (11)

Thus for Case (1) we have one switching time, τ , for Case (2) we have switches t1 <

t2 < τ , and for Case (3) we have switches t1 < t2. With these switching times we can define

the optimal controls in each scheme. For all three cases M1(t) ≡ 0, and in Case (1-3), we

have

Case (1) Case (2) Case (3)

M2(t) =


M̄2, t ≤ τ,

0 τ < t < t∗
,



M̄2, t ≤ t1,

MA
2 (t), t1 < t < t2,

M̄2, t2 < t < τ,

0, τ < t < t∗

,


M̄2, t ≤ t1,

MA
2 (t), t1 < t < t2,

0, t2 < t < t∗.

(12)
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Derivation of CPA removal optimal controls with an active constraint

In the CPA removal case, we previously [7] found that at time t1, the inequalities p1(t1)< 0

and p2(t1)< p1(t1)/b hold, and thus we must maximize M1(t) and minimize M2(t). Now, if

M̄1 is large in the sense of Lemma 1, we may set M2 ≡ 0. Because of this we can explicitly

solve system (3) for M1(t) as above to obtain

M1 =
x2(1− γ2b)+ xnp

x1
, (13)

and upon back substitution, we get

ẋ1 = bx2γ2,

ẋ2 =−bx2,

(14)

which has the solution x = (x1,x2) where x1(t) = −γ2x2(t1)e−bt + x1(t1) + γ2x2(t1) and

x2(t) = x2(t1)e−bt . Substituting this solution into (9) and simplifying, we define the con-

strained optimal CPA removal control

mr
1(t) =

ebtxnp + x2(t1)−bx2(t1)γ2

−x2(t1)γ2 + ebt(x1(t1)+ x2(t1)γ2)
. (15)

For Case (1) we have one switching time, τ . For Case (2) we have switches t1 < t2 < τ ,

and for Case (3) we have switches t1 < t2. With these switching times we can define the

optimal controls in each scheme. For all three cases m2(t)≡ 0, and in Case (1-3), we have

Case (1) Case (2) Case (3)

M1(t) =


M̄1, t ≤ τ,

0, t > τ

,



M̄1, t ≤ t1,

Mr
1(t), t1 < t < t2,

M̄1, t2 < t < τ,

0, t > τ

,


M̄1, t ≤ t1,

Mr
1(t), t1 < t < t2,

0, t > t2.

(16)
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Fig. 2 Plot of system geometry and volume constraints defined by regions a, b, c and d. (a) Plot of the optimal

CPA addition trajectory in three cases. With constraint level a the constraints are inactive, and there is only

one switching time τ , and the path is represented by the black line. With constraint level b, the unconstrained

curve intersects b at time t1 and t2 and for t1 ≤ t ≤ t2 the optimal path is along the constraint boundary,

represented by the blue line. With constraint level c, the unconstrained curve intersects c at time t1 and t2,

and for t1 ≤ t ≤ t2 the optimal path is along the constraint boundary, represented by the orange line. In both

latter cases, for t > t2, the optimal trajectory again is the unconstrained curve, represented by the black line.

Comparison Plot of optimal (black) and traditional (purple) unconstrained controls; numbers are unitless

relative times.

Application of optimal control to human oocyte CPA addition

There are significant advantages to oocyte cryopreservation. It allows women who do not

have a reproductive partner to preserve their unfertilized gametes. this becomes especially
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relevant to children or women who may undergo potentially sterilizing iatrogenic proce-

dures such as chemotherapy [2]. Nearly 17% of couples experience fertility problems, and

the use of cryopreserved embryos significantly reduces the costs associated with treatment

[15]. The ethical and legal status of cryopreserved embryos, however, is a significant com-

plication. Successful cryopreservation of oocytes would alleviate these problems and would

also provide time for infectious disease screening that is not currently possible.

In the United States, the cost of all in vitro fertilization (IVF) and intracytoplasmic sperm

injection (ICSI) procedures is nearly $500 million per year, but the indirect costs of the mul-

tiple live births associated with multiple embryo transfers is well over $600 million per year

[10]. The social and psychological challenges of multiple gestations is also of major concern

[3]. one reason multiple embryos are transfered per treatment is that ovarian stimulation and

oocyte collection is an invasive and expensive procedure [2]. If oocytes could be sucessfully

cryopreserved, multiple oocytes could be harvested and stored until needed. This would fa-

cilitate the transfer of single embryos, avoiding the ethical problems of cryopreserving em-

bryos and the patient problems of an invasive and expensive procedure. Transferring single

embryos would reduce the overall cost of fertility treatments by half in the united states.

To date, no practical and clinically acceptable cryopreservation protocol exists for hu-

man oocytes despite these considerable advantages. Much of the failure is attributed to the

sensitivity of the meiotic spindle during CPA addition and removal and while cooling from

room temperature to subzero temperatures. Partly to avoid this chilling sensitivity, kuleshova

and lopata [22] have argued that vitrification of embryos and oocytes is often favorable to

equilibrium (slow) cooling techniques. O’neil et al. [28] have demonstrated that some hu-

man oocytes can be successfully vitrified, but the required concentrations of CPA exposes

cells to extreme osmotic stresses and potential chemical toxicity due to a lengthy addition

and removal procedure. Specifically, to load human oocytes with 6 molar propylene glycol
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required for vitrification, 4 steps are needed using a standard protocol taking at least 122

minutes. On the other hand, the osmotic stress can be managed and the effects of chemical

toxicity minimized by using the continuous addition protocols developed in this chapter.

Using published parameter values for human oocytes shown in table 3, we compared

optimal controls to classic controls for the addition of multimolar (6, 4.16, and 2.46 molar)

propylene glycol, with results shown in table 4. Calculations were made with the assumption

that the maximal external CPA concentration was 6.5 molar, corresponding to M2 = 41, and

a final concentration difference at the highest x f
2 of only 0.5 molar. This value was chosen

because at higher concentrations the viscosity of the solution may make the precise control

of the extracellular CPA concentration may be impossible. The impact of this concentration

constraint can be seen by the relative improvements at each goal concentration level. At the

highest goal concentration the improvement ratio values range from 4.7 to 11.1, whereas at

the lower concentrations the lowest time improvement is 6.5 and the greatest is 19. Never-

theless, even when M̄2− x f
2/x f

1 is small, the time improvements are at least five-fold.

Sensitivity to parameters

In a biological system with several measured parameters, there will be considerable varia-

tion in parameters from one population and even one individual to another. Therefore the

implementation of a closed loop optimal control is bound to be subject to errors induced

by these variations. We are interested, then, in the effects of these variations on particular

endpoints in this protocol, namely, the switching and total times. Additionally, one would

expect that there would be cell-to-cell variability in the state constraint as well. This type of

problem is easier to “engineer” around: one may simply choose a stricter constraint from the
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Table 3 Definition of parameters for oocyte propylene glycol addition

Published and defined parametersa

parameter value (at 22◦c)

Lp
b 0.53 µm min−1 atm−1

Ps 16.68 µm min−1

V i 2,650,000 µm3

Vb 503,500 µm3

V i
w 2,146,500 µm3

A 92,539 µm2

V∗ 0.7 ×vi

T 295.15 K

Calculated (unitless) parameters

Parameter Equation Calculated value

b Ps j/LpRT Miso 4.48

xi
1 V i

w/V i
w 1

xi
2 xi

1ci
s/Miso 0

x f
1 V f

w /V i
w 1

x f
2 x f

1 c f
s /Miso 10.34

k∗ V∗−Vb/V i
w 0.51

a All values from [29] unless noted.

b Water and solute permeability values published in the literature

were determined using a different flux model. to account for

this, the conversion was made in a similar manner to that

described by [9].

c This is about a 44% mass-fraction solution

.
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Table 4 Comparison of multimolal CPA addition equilibration times for human oocytes. Sev-

eral standard protocols with total unitless time tt , are compared with the optimal constrained

protocol. Real times are calculated by multiplying unitless times by LpART Miso/V iso
w =

A/V iso
w Psb2 = 0.234. The maximal permeating solute concentration was chosen to be 41, corre-

sponding a 6.5 molar concentration of PG. CPA addition equilibrium steps were determined by

calculating the smallest CPA concentration M∗2 such that x1 +γ2x2 = k∗, and then following the

solution until the switch time equation was satisfied, at which point a new M∗2 was calculated.

x f
2 switch time tt tt/t∗ actual equilibration equilibration

equation time (min) steps

36 x1(t) = 0.99xi
1 522.6 11.12 122. 4

x1(t) = 0.95xi
1 281.2 5.98 65.8 4

x1(t) = 0.90xi
1 220.2 4.69 51.5 5

20 x1(t) = 0.99xi
1 374.9 19.4 87.7 4

x1(t) = 0.95xi
1 197.3 10.2 46.2 4

x1(t) = 0.90xi
1 128.8 6.7 30.1 4

10 x1(t) = 0.99xi
1 174.9 18.08 40.9 3

x1(t) = 0.95xi
1 94.5 9.76 22.1 3

x1(t) = 0.90xi
1 62.5 6.45 14.6 3

outset, but we wish to know the effects of moving the state-constraint location on the total

transit time.

In the interest of brevity, we will only treat the CPA addition case in which the optimal

control follows case (3) of equation (12). Although an analytic expression for the total tran-

sit time can be found up to fourth order error terms, this complicated expression involves
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Fig. 3 numerical sensitivity analysis plots. the dashed lines surround the values corresponding to case (2)

from display (12). in the case (3) scheme, the error is relatively insensitive to m̄2, but is sensitive to both b

and k∗.

multiple special functions, and thus is impractical to use for sensitivity analysis. Therefore

we will provide a numerical analysis of the sensitivity to the parameters b,k∗, and M̄2.

The percent error of total time, fixing 1 of the 3 parameters for the respective initial

and endpoints xi = (1,0) and x f = (1,1) is shown in figure 3. “Correct” parameter values

were assumed to be (b,k∗,M̄2) = (0.8,0.8,5.8). The plots are divided into three regions

corresponding to the three possible cases, zero, one or two intersections of optimal trajectory

with the state constraint. The region contained inside the dashed line corresponds to the case

(2) from system (12), the region above and to the right corresponds to case (3) and the region

below and to the left corresponds to case (1). For cases (1) and (3) there is a significant effect

of maximum concentration, as expected, but for case (2) there is almost no influence of the

maximum concentration on the total transit time. This is because the total time to and from

the state constraint are small and the total time along the state constratint does not depend

explicitly on M̄2.
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Discussion and conclusions

Theoretical optimization of cryobiological protocols allows for critical engineering and bi-

ological decisions to be made that account for parameter uncertainties in individual cell

populations along with imperfect controls. The predictions of this model, with specific, but

quite typical parameter values indicate that a significant improvement on the order of 10–20

fold over current techniques is achievable. To put this in perspective, current deglyceroliza-

tion techniques require 25–30 minutes for the complete process [1]. Using our proposed

methods, this protocol should take less than 5 minutes, if optimal controls can be achieved.

Unfortunately, accurate estimates of both water and glycerol permeabilities at the wide range

of concentrations needed for blood deglycerolization have not been made.

This technique also may be applied to cell types for which standard equilibrium freezing

approaches are not sufficient: if extremely high concentrations of CPAs can be equlibrated

within the cells, then ultrarapid cooling may “vitrify” both the cells and their surrounding

media, achieving a stable amorphous glass. A distinct advantage of this technique is that

any x f may be specified, allowing the control of the amount of dehydration in the final state,

yielding even better glass forming tendencies.

In general, even for a large range of temperatures and cell types, 10−1 ≤ b ≤ 101 and

0.5≤ k∗≤ 0.9 [5,9]. Because the current “state of the art optimal” CPA addition and removal

protocol depends on step-wise (e.g. M1 and M2 piecewise constant) protocols, we may com-

pare standard approches to the approach outlined in this manuscript over a very large range

of cell types and temperatures. One significant detriment of the traditional approaches is that

these produce multiple osmotic events which may have a cumulative damaging effect, but

moreover, are difficult to implement as standard laboratory procedures. In Table 5 we show



Optimal control for CPA addition and removal 19

Table 5 Relative time improvement of the optimized protocols (with total time t∗) over standard protocols

(with total time tt ) for a range of unitless parameters and both CPA addition and removal schemes. The

number of required equilibrium (standard) steps is also given. In the CPA addition case, x f
2 = 10 and in

the CPA removal case xi
2 = 10. Characteristic maximal concentrations M̄1 and M̄2 were both chosen to be

20. CPA addition equilibrium steps Σ were determined by calculating the smallest CPA concentration M∗2

such that x1 + γ2x2 = k∗, and then following the solution until x1 = 0.95xi
1, at which point a new M∗2 was

calculated. CPA removal equilibrium steps were determined by calculating the largest CPA concentration

M∗2 such that x1 + γ2x2 = k∗, and then following the solution until x1 = 1.03xi
1, at which point a new M∗2

was calculated, except for the last step, when the solution was followed until x1 = 1.01xi
1. Note that for CPA

removal, the optimal transit time does not depend on k∗.

Addition of CPA, x f
2 = 10 Removal of CPA, xi

2 = 10

b k∗ tt t∗ tt/t∗ Σ b k∗ k∗ tt t∗ tt/t∗ Σ

0.1 0.9 859 79.0 10.9 21 0.1 0.7 1.3 1100 30.0 36.7 17

0.1 0.7 492 59.0 8.33 6 0.1 0.7 1.5 713 30.0 23.7 8

0.1 0.5 399 39.0 10.24 4 0.1 0.7 1.7 569 30.0 18.9 5

1 0.9 84.5 7.86 10.8 14 1 0.7 1.3 107. 3.07 34.9 13

1 0.7 46.5 5.83 7.98 4 1 0.7 1.5 69.9 3.07 22.8 6

1 0.5 40.9 3.80 10.8 3 1 0.7 1.7 55.5 3.07 18.1 4

the relative time improvement of the now protocols over “traditional” protocols, along with

the expected step count for the standard approach for each combination of parameters.

This manuscript provides a blueprint for the optimization of cryopreservation protocols,

but makes several critical assumptions that must be investigated before implementation in

a real-world sense. First, we used an ideal-dilute solution model to facilitate the analytic

solution of the optimal control problems. Though mathematically elegant, this assumption

may not provide enough accuracy for solutions ranging above 2-3 molal concentrations.
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Because of this one may have to choose a suitable non-ideal model for high concentration

protocol definition, for example, a simple model that captures much of the non-ideality is

one defined by Elliott et al. [12]. Optimal control of systems of this nature is a current area

of our research.

Additionally, this protocol depends on the accurate control of the extracellular enviri-

onment immediately adjacent to the cell membrane. In order to implement this control,

the extracellular media must be continuously controlled, perhaps by either flowing media

over a cell fixed by pipette or membrane [13,27], or by moving the cell through a counter-

current, dialysis device [11]. Under both of these conditions, achieving accurate control at

the cell membrane boundary involves significant mathematical and engineering effort, with

the complications of nonlinear advection and diffusion along with changing viscosities af-

fecting unstirred and boundary layers. These questions were at least partially addressed by

Benson [5], with results indicating that at single somatic cell sizes, as long as the mem-

brane surface area remains free, diffusion is sufficient to overcome advective effects, and an

ordinary differential equation is most likely sufficient.
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