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Abstract Cell volume and concentration regulation in the presence of changing ex-
tracellular environments has been studied for centuries, and recently a general nondi-
mensional model was introduced that encompassed solute and solvent transmem-
brane flux for a wide variety of solutes and flux mechanisms. Moreover, in many
biological applications it is of considerable interest to understand optimal controls
for both volume and solute concentrations. Here we examine a natural extension of
this general model to an arbitrary number of solutes or solute pathways, show that
this system is globally asymptotically stable and controllable, define necessary con-
ditions for time-optimal controls in the arbitrary-solute case, and using a theorem of
Boltyanski prove sufficient conditions for these controls in the commonly encoun-
tered two-solute case.

Keywords Cellular mass transport · optimization · stability · cryobiology ·
sufficiency theorem

1 Introduction

Recently, a general model of cell volume regulation was introduced that accounts
for active and passive transport of water and a solute across the cell membrane

This work appeared as part of a doctoral dissertation [Benson(2009)]
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[Hernández et al(2007)Hernández, Roca, Gil, Vázquez, and Martı́nez,Hernandez(2003)]

x′ = α−βx/y,
y′ =−γ +σx/y+ ε/y, (1)

where y is a (positive) non-dimensional water volume variable, x is a non-negative
non-dimensional solute mass variable, α and γ are extracellular concentration vari-
ables, and β , σ and ε are cell dependent rate parameters. As discussed by [Hernández(2007)],
this model is a general form for many existing in the literature [Katkov(2000),Katkov(2002),
Kleinhans(1998)]. It is simple to extend this model to multiple permeating solute
species and pathways by defining w1 = y to be the positive non-dimensional water
volume of the cell, and wi, i = 2, . . . ,n to be the n− 1 non-negative solute species
or pathways, and xnp to be the non-negative non-permeating solute species analo-
gous to ε [Katkov(2000)]. In this case, we define Mi : [0,∞)→ [0,∞), i = 2, . . . ,n,
to be extracellular concentration variables analogous to α from system (1), and let
the sum of the extracellular concentrations ∑

n
i=1 Mi be the analog of γ from system

(1), where M1 : [0,∞)→ [0,∞) is the concentration of nonpermeating solute. Finally,
define bi > 0, i = 2, . . . ,n, to be the rate constants analogous to β and σ . Using the
temporal parmeter s and restricitng the state variables {w1,w2,w3, . . . ,wn} to the pos-
itive orthant, we have the general multispecies model

w′1 =
xnp

w1
+

k

∑
j=2

w j

w1
−

n

∑
i=1

Mi,

w′2 = b2

(
M2−

w2

w1

)
,

...

w′n = bn

(
Mn−

wn

w1

)
,

(2)

which we also express in the more compact form

w′ = h(w,M).

Applications of our multispecies model can be applied to cryobiology in particu-
lar [Katkov(2000)] but since there are a large number of intracellular and extracellular
chemical species that permeate across the cell boundary, it is natural to assume that
if cells are placed in any non-physiologic environment, there will be transmembrane
transport of water and more than one solute.

In this manuscript, we will investigate the dynamics of these physiologically rel-
evant models. [Hernández(2007)] showed that model (1) is locally stable at its rest
point provided the rest point resides in the physically relevant region (x > 0 and
y > 0). One would expect that this stability is in fact global asymptotic stability, and
that a similar result is true for the model (2). We are able to prove both results.

Additionally, it is often desirable to determine optimal protocols for the control of
intracellular concentrations of permeating reagents in cells governed by model (1)) or
(2). Examples can range from pharmicokinetics [Ledzewicz and Schättler(2007)] to
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cryobiology [Levin(1982)]. We give the conditions for a controllability result, show
existence of an optimal control, and synthesize an optimal control in the commonly
encountered case of one permeating and one non-permeating solute.

Our analysis hinges on the observation, which we applied previously [Benson et al(2005)Benson, Chicone, and Critser],
that our nonlinear system (2) can be made linear by multiplying the right-hand side
by w1. Specifically, we may factor h(w,M) into g(w) f (w,M) where g(w) = 1/w1,
yielding a system of the form w′ = g(w) f (w), where g : Rn→ R is a positive scalar
valued function. Because g is strictly positive, the qualitative behavior of the system
x′ = f (x) is the same as system (2). To be precise, suppose that v ∈ Rn and s 7→ η(s)
is the solution of the initial value problem

w′ = h(w) := g(w) f (w), w(0) = v (3)

where g : Rn→ R+ and f : Rn→ Rn are smooth, and t 7→ φ(t) is the solution of the
initial value problem

x′ = f (x), x(0) = v.
Using the time transform

q(t) :=
∫ t

0

1
g(φ(τ))

dτ, (4)

we have a basic fact: φ(t) = η(q(t)). To prove it, we use the positivity of g to conclude
that q is invertible with inverse ρ (see [Chicone(1999)]) and define γ(s) = φ(ρ(s)).
This function γ is such that γ(0) = v and

γ
′(s) = ρ

′(s)φ ′(ρ(s)) =
1

q′(ρ(s))
f (φ(ρ(s))) = g(γ(s)) f (γ(s)).

Thus, γ is the solution of the initial value problem (3). In other words, η(s) = φ(ρ(s))
and φ(t) = η(q(t)) as required; or, in less formal language, x(t) = w(q(t)). In the
context of system (2), the function t 7→ x(t) solves the linear system

ẋ1 = xnp +
n

∑
j=2

x j−
n

∑
i=1

Mix1,

ẋ2 = b2 (M2x1− x2) ,
...

ẋn = bn (Mnx1− xn) ,

which we also write in the vector form,

ẋ = f (x,M) := A(M)x+ xnpe1, (5)

where ẋ = dx
dt , M := (M1,M2, . . . ,Mn), A(M) is the matrix

A(M) =


−∑

n
i=1 Mi 1 1 . . . 1

b2M2 −b2 0 . . . 0
b3M3 0 −b3 . . . 0

...
...

...
. . .

...
bnMn 0 0 . . . −bn

 .

and e1 is the usual first unit-basis vector.
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2 Dynamics for M(t)≡M

2.1 Stability

As mentioned in the introduction, [Hernández(2007)] proved local stability for model
2 in case n = 2 and the corresponding Mi are constant functions by showing that the
spectrum of the linearized equations at the steady state lies in the (open) left-half
of the complex plane. Because we have reparametrized to obtain a linear system
that has the same qualitative dynamics as the original system, once we show that
this spectrum lies in the left half-plane for our linear system, we will have a stronger
result: the rest point is globally asymptotically stable. In fact, we will prove a result on
global asymptotic stability for the general case where n≥ 2, and the Mi are constant
functions.

The zeros of system 5 must satisfy x1 = xnp/M1, and x j = M jx1 for j = 2, . . . ,n;
or, in other words, the rest point is x∗ = (xnp/M1)(1,M2, . . . ,Mn)T . Because we have
a linear system, our first theorem has a simple proof.

Theorem 1 If the function M is constant and M1 > 0, then the rest point

x∗ = (xnp/M1)(1,M2, . . . ,Mn)T

of the system ẋ = A(M)x+ xnpe1 is globally asymptotically stable. Moreover, the rest
point x∗ of system (2) is globally asymptotically stable.

Proof Let D be the diagonal n×n-matrix with diagonal (1,(b2M2)−1/2, . . . ,(bnMn)−1/2)
and note that

DA(M)D−1 =


−∑i Mi

√
b2M2

√
b3M3 . . .

√
bnMn√

b2M2 −b2 0 . . . 0√
b3M3 0 −b3 . . . 0

...
...

...
. . .

...√
bnMn 0 . . . 0 −bn

 (6)

is a symmetric negative definite matrix.

3 Optimal Control

3.1 Controllability

The notion of controllability and stability go hand in hand. It is simple to check that
a globally asymptotically stable system is controllable by considering the rank of the
controllability matrix function G : Mn×n×Mn×m→Mn×mn given by

G(A,B) := [B|AB|A2B| . . . |An−1B].



5

In our case, we adopt Mohler’s notion of a bilinear control system [Mohler(1973)]: a
system is bilinear in state x and control vector u ∈ Rm if

ẋ = f (x,u)

= Ax+∑
j

B ju jx+Cu (7)

for appropriately sized matrices A, B j and C. In this bilinear case, we may apply a
result from Mohler. Let A ⊂ Rm denote the admissible control parameter set and
define x(t;x0,u) to be the solution of system (7) with control u and initial condition
x0, and

Cx∗ := {y ∈ Rn : y = x(0), x(t;x(0),u) = x∗, t < ∞, u(t) ∈A }.

Then we have the following proposition

Proposition 1 (Mohler) Suppose that f is bilinear as defined in 7, u(t) ∈ A , and
x∗ ∈Rn and u∗ ∈ interior Ω are such that f (x∗,u∗) = 0. Define Ā f = (∂ f /∂x)(x∗,u∗)
and B̄ f = (∂ f /∂u)(x∗,u∗). If rankG(Ā f , B̄ f ) = n and x∗ is an asymptotically stable
rest point of the system ẋ = f (x,u∗), then Cx∗ = Rn.

We apply this proposition to the bilinear system (5) noting that A f (x∗,u∗) =
A(M∗) and

B f (x∗,u∗) =


−1 −1 −1 −1
0 b2 0 0
... 0

. . . 0
0 . . . 0 bn

 .

Since x∗1B is an n×n upper triangular matrix with non-zero diagonal entries, the first
n columns are linearly independent and thus the rank of G(A(M∗),x∗1B1) = n.

Finally, we combine Theorem 1 with Proposition 1 to obtain the following result.

Theorem 2 For system (5), Cx∗ = Rn.

3.2 Existence of an optimal control

The existence of an optimal control for systems of the form 7 with bounded controls
is a standard result (see [Lee and Markus(1968), Corollary 2, p. 262]).

3.3 A control problem

We prescribe an m-tuple of numbers M̄i > 0 for i = 1,2, . . . ,n, the admissible control
parameter set

CP = {M = (M1,M2, . . . ,Mn) ∈ Rn : 0≤Mi ≤ M̄i for i = 1,2, . . . ,n}, (8)
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and the state space S ⊂ (0,∞)× [0,∞)n−1 (i.e. we do not allow x1 = 0). In addition,
we define x(t) = x(t;x0,M) to be the solution of the initial value problem (7) and

Cy(t) = {x0 ∈ S : x(t) := x(t;x0,u) = y},

the set of initial conditions that can be steered to y ∈ S at time t via a measurable,
admissible control function M : R+→ CP.

We will investigate the time-optimal control problem of steering an initial state xi

to a final state x f in minimal “real” time using controls in the admissible set A, the
set of measurable functions M : R→ CP. This control problem has wide applications
in biology because it is often desirable to implement the control of an extracellular
environment in such a way as to minimize exposure time. This problem is encoun-
tered in ex-vivo settings including cell culture and processing, where extracellular
envirionments must be controlled to achieve final intracellular concentrations of var-
ious reagents. For example, in cryobiology one wishes to equilibrate cell suspensions
with multimolal concentrations of cryoprotective agents such as glycerol or dimethyl
sulfoxide while minimizing exposure times correlating to time-dependent toxicity
effects.

Therefore we define the original time-optimal control problem

Problem 1 Given an initial state wi in the state space S and final state w f ∈ S, the
set of admissible controls A and defining s∗ ∈ R to be the first time that w(s∗) = w f

for the solution of the previously defined initial value problem defined in system (2),
determine a control that minimizes s∗ over M ∈ A.

Using the time-transform function q in (4), we have the equivalent problem

Problem 2 Given an initial state xi in the state space S and final state x f ∈ S, the set
of admissible controls A and defining t∗ ∈ R to be the first time that x(t∗) = x f for
the solution of the previously defined initial value problem

ẋ = f (x,M) = A(M)x+ xnpe1, x(0) = xi, (9)

determine a control that maximizes the functional

P(M) :=−s∗ =−q(t∗) =−
∫ t∗

0
x1(t)dt (10)

over A.

By construction, these problems are, in fact, the same and thus if M(t) is the maxi-
mizer in problem (2), then M(q−1(t)) is the minimizer of system (1). We state this in
the following lemma.

Lemma 1 Problem 1 and Problem 2 are equivalent.

Proof Suppose M∗x minimizes P(M) = q(t∗) (defined in eq. (10) for system (9)) and
define s∗ = q(t∗). Suppose M∗w minimizes s for system (2) in Problem 1 with transit
time s̄. Then M∗w ◦ q−1 is an admissible control for Problem 2, with cost Px(M∗w ◦
q−1) = s̄ = q(t̄), and q(t∗) ≤ q(t̄). Alternatively, M∗x ◦ q is an admissible control for
problem (1) with cost Pw(M∗x ◦q) = q(t∗) = s∗ where s∗ ≥ s̄. Thus q(t∗) ≥ q(t̄), and
thus s∗ = s̄.
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Our basic tool for attacking this time-optimal control problem is the Pontryagin
Maximum Principle (see Lee and Markus for example [Lee and Markus(1968)]). For
our model system (9), we wish to minimize the payoff functional (10) which is the
negative “real” time measured from time s = 0 given by our conversion formula (4).

For our control system (9), we define the (control theory) Hamiltonian

H(x, p,M) = f (x,M) · p− x1.

The state of the system satisfies the differential equation ẋ = ∇pH(x, p,M) = f (x,M)
and the costate p satisfies ṗ =−∇xH(x, p,M). In our case, the state equation has the
explicit form ẋ = A(M)x+xnpe1 and the costate equation is given by ṗ =−A(M)T p+
e1.

For Problem 2, we can immediately deduce the nature of the optimal control by
applying the maximum principle: we have the Hamiltonian

H(x, p,M) = (A(M)x+ xnpe1) · p− x1 = (x1B1M +B2x+ xnpe1) · p− x1, (11)

and we must find M ∈ A such that H(x, p,M) is maximized. Thus we maximize

H(x, p,M) = (A(M)x+ xnpe1) · p− x1

=

(
−

n

∑
i=1

Mix1 +
n

∑
i=2

xi + xnp

)
p1 +

n

∑
i=2

(Mibix1−bix2)pi− x1

=−
n

∑
i=1

Mix1 p1 + . . .+
n

∑
i=2

(Mibix1−bixi)pi + . . .

=−M1x1 p1 + x1

n

∑
i=2

Mi(bi pi− p1)+ . . . ,

where the ellipses represent terms that we may ignore because they are not affected
by the controls Mi. This expression is maximized when

M1(t) =
{

0, p1 > 0
M̄1, p1 ≤ 0 and Mi(t) =

{
0, bi pi− p1 < 0
M̄i, bi pi− p1 ≥ 0.

(12)

3.4 Synthesis of the optimal control in the case n = 2.

Synthesizing the optimal control for n > 2 becomes a technical challenge due to the
number of state and costate cases one must consider. Therefore, we will construct the
optimal control in the commonly encountered and biologically important case where
there is one permeating and one non-permeating solute and n = 2. Our approach is
a classical geometrical method developed by Boltyanskii [Boltyanskii(1966)], (see
[Vakhrameev(1995)] for review).

In the unconstrained case, the maximum principle limits the synthesis to four
possible control schemes, MI , . . . ,MIV associated with four regions (Π I , . . . ,Π IV ) in
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costate space:

ΠI := {p ∈ R2 : p1 < 0,b2 p2− p1 > 0},
ΠII := {p ∈ R2 : p1 > 0,b2 p2− p1 > 0},

ΠIII := {p ∈ R2 : p1 > 0,b2 p2− p1 < 0},
ΠIV := {p ∈ R2 : p1 < 0,b2 p2− p1 < 0},

(see Fig. 1), and the control schemes for initial points in each region (Table 1).

PI PII

PIIIPIV

p1

p2

Fig. 1: Plot of the costate regions ΠI ,ΠII ,ΠIII ,ΠIV , defined by the maximum princi-
ple.

Define S∗ := {x ∈ S : x1 > xnp/M̄1,0 ≤ x2 < M̄2x1} to be the region in the state
space where xi and x f may reside, and define sets P0 = {x f }, P1 = ∪4

i=1σ i, and
P2 = S, where

σ
i := {x ∈ S : φ

λ
t (x f ) = x for t < 0},

and φ λ
t (x f ) is the solution of ẋ = f (x,λ ) from initial point x f under control scheme

λ = MI ,MII ,MIII , or MIV (see Fig. 2). We define regions A ,B,C and D as follows.
Let A ⊂ S be the region bounded by ∂S∪ σ I ∪ σ II ∪ {x f } that does not contain
σ III ∪σ IV . Let B ⊂ S be the region bounded by ∂S∪σ II ∪σ III ∪{x f } that does not
contain σ IV ∪σ I . Let C ⊂ S be the region bounded by ∂S∪σ III ∪σ IV ∪{x f } that
does not contain σ I ∪σ II . Let D ⊂ S be the region bounded by ∂S∪σ IV ∪σ I ∪{x f }
that does not contain σ II ∪σ III .
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ΣI

ΣII

ΣIII

ΣIV

D C

BA

x f
x 1

=
x n

p
�M

1

x 2
=
M 2

x 1

x1

x 2

Fig. 2: Typical plot of the state regions. The geometry of the regions changes as a
function of x f , the “source” of the σ i, though the regions remain bounded by the
same σ i. Also, S∗ is bounded on the left and above by the dashed lines x1 = xnp/M1
and x2 = M2x1.

Table 1: The Pontryagin Max-
imum Principle along with the
Hamiltonian for the n = 2 sys-
tem define the possible optimal
control schemes MI ,MII ,MIII ,
and MIV .

Control Scheme M1 M2

MI M̄1 M̄2
MII 0 M̄2
MIII 0 0
MIV M̄1 0

Using the notation just developed, we define v : S→U :

v(x) =


MI , x ∈ σ I

MII , x ∈ C ∪D ∪σ II

MIII , x ∈ σ III

MIV , x ∈A ∪B∪σ IV

, (13)

which defines control schemes (see Table 1) for initial points xi ∈ int S∗ in the subre-
gions (see Table 2).
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Table 2: Control schemes in the subregions
of S. Our synthesis will be constructed for
initial and final points xi and x f in S divided
into four regions A ,B,C and D . For each
region the First Control is used until a de-
fined switching time τ after which the Sec-
ond Control is used. In the unconstrained
case, the control M(t) is piecewise constant.

Region First Control Second Control

A MIV MIII

B MIV MI

C MII MI

D MII MIII

Theorem 3 The trajectory defined by ẋ = f (x,v(x)) where v is defined by display
(13) is optimal.

To prove this theorem below, we will use the classic result of Boltyanskii, which
states that any “regular” and “distinguished” control is optimal [Boltyanskii(1966)].
For the convenience of the reader, the result of Boltyanskii is provided in the Ap-
pendix.

We next introduce two unexpected results. For initial points in regions A and D
there are simple formulas that describe the total transit time t∗ that are not dependent
on the maximal concentration; i.e. provided the starting point lies in either A or D
the total transit time is solely determined by xi,x f ,xnp, and b2!

Theorem 4 For xi ∈ D , the total optimal transit time under the associated control

scheme is t∗ = x f
1−xi

1
xnp

+ x f
2−xi

2
b2xnp

. For xi ∈ A , the total optimal transit time under the

associated control scheme is t∗ = 1
b2

ln(xi
2/x f

2).

There may be similar formulae for other regions, but the equations become much
more complicated in these cases.

This first lemma, which will be used to prove Theorem 3 shows that there are no
rest points of the controlled system in the interior of S.

Lemma 2 For x f ∈ S∗, there are no rest points of system ẋ = f (x,v(x)) in int S\σ I .

Proof In the union C ∪D ∪σ II∪σ III , M1 = 0, and there is no rest point. In the union
A ∪B∪σ IV , M2 = 0, and the rest point is at (xnp/M1)(1,0)T . Region A is bounded
by σ III and σ IV , for which M2 = 0, because of this, in negative time, ẋ2 > 0, and
thus for all x f ∈ S∗, A is bounded away from the x1-axis. For region B, because
σ IV is bounded away from the x1-axis, it remains to show that if σ I intersects the
x1-axis, it does so for x1 > xnp/M̄1 (e.g. B is bounded away from the associated rest
point). But, for x f ∈ S∗, x1 > xnp/M̄1 and x2 < M̄2x1. In this case, in negative time
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ẋ1 = (M1 + M2)x1− x2− xnp > xnp + M2x1−M2x1− xnp = 0, thus σ I intersects the
x1-axis at some x1 > xnp/M̄1.

The next lemma states that at every point in the interior of S the vector fields
defined by the four controls are not parallel.

Lemma 3 If x ∈ σ III ∩ int S, then f (x,MIV ) and f (x,MIII) are not parallel.
If x ∈ σ I ∩ int S, then f (x,MIV ) and f (x,MI) are not parallel.
If x ∈ σ III ∩ int S, then f (x,MII) and f (x,MIII) are not parallel.
If x ∈ σ I ∩ int S, then f (x,MII) and f (x,MI) are not parallel.

Proof Let η ∈ R. If x ∈ ∂S∗ and x1 = xnp/M1, then − f (x,MI) · (1,0) > 0. Also if
x∈ ∂S∗ and x2 = M2x1, then− f (x,MI) ·(0,1) < 0. Thus, for all x f /∈ ∂S∗, σ I∩(∂S∗ \
R×{0}) = /0. Now suppose x ∈R×{0}. Then − f (x,MIII) · (0,1) > 0, therefore for
all x f /∈ R ×{0}, σ III ∩R ×{0} = /0. The solution of f (x,MIV ) = η f (x,MIII) is
x1 = (xnp/M1)(1−η), x2 = 0. The solution of f (x,MIV ) = η f (x, I) is x1 = xnp/M1,
x2 = (M2xnpη)/(M1(η − 1)). This solution is not in int S for all η . There is no
solution of f (x,MII) = η f (x,MIII). The solution of f (x,MII) = η f (x,MI) is x1 =
(xnp/ηM1)(1−η), x2 = (M2xnp/M1η)(η−1). Factoring out (xnp/ηM1)(1−η), we
get (xnp/ηM1)(1−η)(1,M2). This parametrizes the boundary x2 = x1M2 of S f , and
thus is not in int S for all η .

The next lemma states that given initial points in each region A ,B,C ,D , the
flow along the solution given by the associated control intersects the expected bound-
ary curve σ i in finite time.

Lemma 4 (1) Given an initial point x∈A , there exists a time τ1 > 0 such that φ IV
τ1

(x)
intersects σ III . (2) Given an initial point x ∈B, there exists a time τ1 > 0 such that
φ IV

τ1
(x) intersects σ I . (3) Given an initial point x ∈ C , there exists a time τ1 > 0 such

that φ II
τ1

(x) intersects σ I . (4) Given an initial point x ∈ D , there exists a time τ1 > 0
such that φ II

τ1
(x) intersects σ III .

Proof By Lemma 2 there are no rest points within any of the regions under the control
v. We claim that S is invariant for all controls. In fact, on the x1-axis, all controls have
ẋ2 ≥ 0, and on the x2-axis, all controls have ẋ1 ≥ 0. From Lemma 2 and Theorem
1, regions A and B are bounded away from the asymptotically stable rest point
associated with their control, and thus from any initial point in A or B, the flow
must cross ∂A or ∂B respectively. Because the control in both regions is MIV , by
the uniqueness of solutions of ODEs the flow will not cross σ IV , and thus (1) and (2)
are proved. Now note that for x ∈ S∗, f (x,MI) and f (x,MII) have a positive second
component, thus σ I and σ II (which flow in negative time) will always intersect the
x1-axis, and region C will be bounded away from x2 > x f

2 . Moreover, for x ∈ S, the
first component of f (x,MIII) is positive, σ III must intersect the x2 axis, and thus
region D is bounded. Finally, for x ∈ S∗, f (x,MII) has a positive second component.
Thus for xi ∈ C ∪D , φ MII

t (xi), must intersect ∂C ∪ ∂D , and as above, because the
control in both regions is MII , by the uniqueness of solutions of ODEs the flow will
not cross σ II , and thus (3) and (4) are proved.
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Lemma 5 The transit time τ(xi) from xi to x f is a continuous function of the initial
point xi.

Proof Let y ∈ σ i, define τ2(y) to be the time to reach x f while flowing along σ i,
and define F(t,x,y) := φ(t,x,λ )− y. By Lemma 4, for each xi ∈ G there exists a
τ1 such that φ(τ1,x,v(x)) ∈ σ i. Thus, we have F(τ1,x,y) = 0. Because there exist
no rest points, d

dt F(t,x,y)|t=τ1 6= 0 and we may apply the implicit function theorem
yielding τ1(x) is C1 in a neighborhood of x, thus the transit time τ(x) = τ1(x) +
τ2(φ(τ1(x),x, II)) is continuous.

Next we examine whether there exists a costate that will satisfy the Pontryagin
Maximum Principle.

Lemma 6 The lines `II defined by the solution of H(x(0), p(0),MII) = 0 and `IV
defined by the solution of H(x(0), p(0),MIV ) = 0 are not parallel to the line b2 p2 =
p1.

Proof Setting the initial Hamiltonian for control MII equal to zero, we get

H(x(0), p(0),MII) =
(
−M2xi

1 + xi
2 + xnp

M2b2xi
1−b2xi

2

)
·
(

p1
p2

)
+ xi

1,

= (−M2xi
1 + xi

2 + xnp)p1 +(M2b2xi
1−b2xi

2)p2 + xi
1,

= 0.

We solve this for

b2 p2 =
M2xi

1− xi
2− xnp

M2xi
1− xi

2
p1−

xi
1

M2xi
1− xi

2
.

Note that M2xi
1−xi

2−xnp

M2xi
1−xi

2
= 1 if and only if M2xi

1− xi
2− xnp = M2xi

1− xi
2. But, reducing

this equation we get xnp = 0 in contradiction since xnp > 0. For control MIV , we have

H(x(0), p(0),MIV ) =
(
−M1xi

1 + xi
2 + xnp

−b2xi
2

)
·
(

p1
p2

)
+ xi

1

= (−M1xi
1 + xi

2 + xnp)p1−b2xi
2 p2 + xi

1

= 0.

We solve this for b2 p2 =(−M1xi
1 +xi

2 +xnp)/xi
2 +xi

1/xi
2. Now (−M1xi

1 +xi
2 +xnp)/xi

2 =
(xnp−M1xi

1)/xi
2 +1 < 1, since xnp < M1xi

1.

Proposition 2 Given Problem (2) with an initial point xi ∈ S∗ \∪IV
i=Iσ

i, with its asso-
ciated optimal control scheme λ , switching time τ1, and the control scheme’s associ-
ated initial and final costate regions (Π i and Π f , respectively), there exists a costate
p such that for all t > 0, the Hamiltonian H(x, p,λ ) := f (x,λ ) · p+ x1 = 0, and p(t)
solves ṗ =−∇xH(x, p,λ ) such that p(t)∈Π i for t < τ1, p(τ1)∈ ∂Π i and p(t)∈Π f

for t > τ1.
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Proof We must show that for each control scheme and time τ1 > 0, there exists
an initial costate such that p(t) ∈ Π i for t < τ1, p(τ1) ∈ ∂Π i and p(t) ∈ Π f for
t > τ1. We need only consider Π i = ΠII and the Π i = ΠIV cases . In both cases
H(x(0), p(0),λ ) = 0 defines a line ` in the costate space with non-infinite slope that,
by Lemma 6, also does not equal 1/b2. In the ΠII case, the costate dynamics are
governed by (

ṗ1
ṗ2

)
=
(

M2 p1−M2b2 p2 +1
−p1 +b2 p2

)
. (14)

It is easy to check that this system has an invariant line defined by p2 = p1/b2 +
1/(b2

2 + M̄2b2) that by Lemma 6 will intersect `. We claim that for p ∈ ΠII such
that p2 > p1/b2 + 1/(b2

2 + M̄2b2), there exists a t < ∞ such that the solution of (14)
intersects the p2−axis at time τ1.

We first let p2 > p1/b2 + 1/M2b2. In this case ṗ1 < 0 and ṗ2 > 0, so we must
flow toward the p2-axis, and since limp2→∞ ṗ2/ ṗ1 =−1/M2, the flow does not “blow
up” to p2 = ∞ before crossing the p2-axis. Now for p1/b2 +1/M2b2 > p2 > p1/b2 +
1/(M2b2 +b2

2), ṗ2 > 0. Thus for such p, p2 will increase until p2 > p1/b2 +1/M2b2
and we are done. Next let p2 < p1/b2 + 1/(M2b2 + b2

2). Note that limp1→∞ ṗ2/ṗ2 =
−1/M2, and limp1→∞ ṗ2 =−∞, therefore as p1 gets large, the direction of the flow is
downward and will cross the line p2 = p1/b2.

For the ΠIV case, the costate dynamics are governed by(
ṗ1
ṗ2

)
=
(

M1 p1 +1
−p1 +b2 p2

)
.

We can check that this system has an invariant line at p1 = −1/M̄1. For p such that
p1 >−1/M̄1, ṗ1 > 0, and for p such that p1 <−1/M̄1, ṗ1 < 0 and limp1→−∞ ṗ2 = +∞

with limp1→−∞ ṗ2/ ṗ1 =−1/M, therefore as −p1 gets large, the direction of the flow
is upward and will cross the p1-axis.

Thus, in both cases we can find an initial point along ` such that, following the
respective dynamics, p reaches ∂Π i at t = 0 and at t = ∞. By continuity there exists
an initial point such that p reaches ∂Π i at t = τ1.

We must show that once in Π f , we remain there for all time. For Π f = ΠIII , we
claim ΠIII is invariant because under control MIII , along p2 = p1/b2, ṗ2 = 0, and
ṗ1 = 1, and along the p2 = 0 axis, ṗ1 = M2 p1 +1 > 0. Therefore for Π f = ΠIII , once
the costate flow enters Π f , it never leaves. For Π f = ΠI , the flow may approach ΠI
from either ΠII or ΠIV .

In the case Π i = ΠII , the system is governed by(
ṗ1
ṗ2

)
=
(

(M1 +M2)p1−M2b2 p2 +1
−p1 +b2 p2

)
. (15)

From the above analysis we have shown that p2 > 1/M2b2 when the boundary is
traversed. For such p, ṗ1 < (M1 +M2)p1 < 0. Moreover, along the line p2 = 1/M2b2,
ṗ2 =−p1 +1/M2 > 0 for p1 < 0. Therefore, if we enter ΠI from ΠII , we remain in it
for all time. Finally, if we enter ΠI from ΠIV , from the above analysis, p1 <−1/M1,
and p2 > p1/b2. In this case ṗ1 = (M1 + M2)p1−M2b2 p2 + 1 < M1 p1 + M2 p2−
M2 p1 +1 <−1+1 = 0.
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We are now ready to prove that the synthesis is optimal.

Proof (Proof of Theorem 3) We must show that the controlled trajectory satisfies all
conditions outlined in Section 6
For conditions (1) and (2): define P0 = {x f } to be the lone zero-dimensional cell, and
it will be of the second kind. Likewise P2 = int S will be made up of cells A,B,C,
and D of the first kind. Note that P2− (Pi−1 ∪N) = A ∪B ∪C ∪D . Finally, let
P1 = {σ i}IV

i=I where the σ i are 1-dimensional cells of the second kind. Since v is
constant in each cell A ,B,C ,D , and each σ i, it is continuous and continuously
differentiable and can be extended as a continuously differentiable function into a
neighborhood of each cell.
For condition (3):
(a) We begin by showing that each point of the 2-dimensional cells A ,B,C , and
D has a unique trajectory passing through it. Since v(x) is constant in each cell,
uniqueness is given; and by Lemma 2, for each cell, there are no rest points of the
system.
(b) By Lemma 3 we show that the initial trajectories from regions A ,B,C , and
D “pierce” their corresponding σ i, and by Lemma 4, the trajectory leaves the cell
(A ,B,C , or D) in finite time.
(c) By definition the trajectories in σ i approach the zero dimensional cell, and by
Lemma 2 there is no rest point along any of the σ i.
(d) We do not have any of these cases.
For condition (4): We have defined a unique distinguished trajectory such that only
two cells are traversed before reaching x f .
For condition (5): This is shown in Proposition 2.
For condition (6): This is shown in Lemma 5.

Now that we know that the control is optimal, we can prove the total transit time
result.

Proof (Proof of Theorem 4) First, we address points in region D . By Theorem 3, the
control MII for 0≤ t ≤ τ and MIII for τ < t ≤ t∗ exists and is optimal. If we can find
s and t such that φ MII

t (xi) = φ MIII
s (x f ). Then the total transit time is t∗ = t− s.

For M = MII we have the system

dx1

dt
=−M2x1 + x2 + xnp, x1(0) = xi

1,

dx2

dt
= M2b2x1−b2x2, x2(0) = xi

2.

(16)

We solve ẋ = Ax+(xnp,0)T by variation of parameters:

x(t) = etAxi + etA
∫ t

0
e−τA

(
xnp
0

)
dτ,

where, letting a = (b2 +M2) the fundamental matrix solution is

etA =
1
a

(
b2 + e−atM2 1− e−at

b2M−b2e−atM2 b2e−at +M2

)
. (17)
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We have

etA
∫ t

0
e−τA

(
xnp
0

)
dτ = a−2

(
(M− e−atM +ab2t)xnp

b2e−atM2 (1+ eat(at−1))xnp

)
.

Therefore, the complete solution, after simplification is

x1(t) = a−2(M2xnp +a(xi
2 +b2(xi

1 + txnp))+(aM2xi
1−axi

2−M2xnp)e−at),
x2(t) = a−2(M2(−b2xnp +a(xi

2 +b2(xi
1 + txnp)))+b2(a(−M2xi

1 + xi
2)+M2xnp)e−at).

(18)

Next, for M = MIII , which is the solution along σ III , we have (noting that we may
solve backwards from x f ).

dy1

ds
= y2 + xnp, y1(0) = x f

1 ,

dy2

ds
=−b2y2, y2(0) = x f

2 .

(19)

By direct integration, the solution is

y1(s) = xnps+
x f

2
b2

(1− e−b2s)+ x f
1 ,

y2(s) = x f
2e−b2s.

(20)

Now, we solve x1(t) = y1(s) and x2(t) = y2(s) for s and t:

a−2(Mxnp +a(xi
2 +b2(xi

1 + txnp))+(aMxi
1−axi

2−Mxnp)e−at)
= xnps+

x f
2

b2
(1− e−b2s)+ x f

1 , (21)

a−2(M(−b2xnp +a(xi
2 +b2(xi

1 + txnp)))+b2(a(−Mxi
1 + xi

2)+Mxnp)e−at)
= x f

2e−b2s. (22)

Solving for e−b2s in equation (22) as a function of t yields

e−b2s =(x f
2a2)−1(M(−b2xnp +a(xi

2 +b2(xi
1 +txnp)))+b2(a(−Mxi

1 +xi
2)+Mxnp)e−at),

(23)
which we can substitute into equation (21) and upon simplification we get

t∗ = t− s =
x f

1 − xi
1

xnp
+

x f
2 − xi

2
b2xnp

. (24)

Therefore, if a solution of x1(t) = y1(s) and x2(t) = y2(s) exists, equation (24) is
valid. By Lemma 4, this solution exists for all initial points xi ∈D .

Now we address the case where xi ∈ A . By Theorem 3, the control MIV for
0≤ t ≤ τ and MIV for τ < t ≤ t∗ exists and is optimal. If we can find s and t such that
φ MIV

t (xi) = φ MIII
s (x f ). Then the total transit time is t∗ = t− s.
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For M = MIV we have the system

dx1

dt
=−M1x1 + x2 + xnp, x1(0) = xi

1,

dx2

dt
=−b2x2, x1(0)x2(0) = xi

2.

(25)

Again, we solve ẋ = Ax +(xnp,0)T by variation of parameters. This time the funda-
mental matrix solution is

etA =

(
e−M1t e−b2t−e−M1t

−b2+M1
0 e−b2t

)
and then

etA
∫ t

0
e−τA

(
xnp
0

)
dτ =

(
e−M1t(−1+eM1t)z

M1
,0
)

.

Therefore the complete solution after simplification is

x1(t) =
e−b2txi

2
−b2 +M1

+
xnp

M1
+ e−M1t

(
xi

1 +
xi

2
b2−M1

−
xnp

M1

)
,

x2(t) = e−b2txi
2.

(26)

Using the solution for y from above, as before we must solve x1(t) = y1(s) and x2(t) =
y2(s) for s and t. But x2(t) = y2(t) implies

e−b2txi
2 = e−b2sx f

2 ,

which, upon simplification, gives

t− s = ln(xi
2/x f

2).

By Lemma 4, this solution exists for all initial points xi ∈A .

4 Application to Cryobiology

Here we present an application of our theory to the field of cryobiology. In order for
cells and tissues to be successfully cryopreserved, cells and tissues must be equili-
brated with high concentrations of cryoprotective agents such as glycerol or dimethyl
sulfoxide [Mazur(1970)]. It has been shown that these chemicals have toxic effects
at high concentrations [Fahy et al(2004)Fahy, Wowk, Wu, and Paynter]. Therefore it
is of interest to describe mathematically an optimal protocol for the addition (and
subsequent removal) of these cryoprotectants in which exposure time is minimized.

As an example, consider the two solute system containing sodium chloride and
glycerol with associated extracellular molalities M1 and M2, where sodium chloride
and glycerol are asumed membrane impermeable and permeable, respectively. For
simplicity we normalize concentrations such that isosmolality is the unitary concen-
tration, and suppose that the maximal salt concentration available is 10 times isos-
motic, and the maximal glycerol concentration is 20 times isosmotic. If x1,x2 and
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xnp are the normalized water volume, intracellular moles of permeating and non-
permeating solutes, respectively, then the water and solute concentration (w1 and w2)
inside the cell is given by the solution of

w′1 =−M1−M2 +
xnp +w2

w1
,

w′2 = b(M2−
w2

w1
),

which we reparametrize to

ẋ1 =−(M1 +M2)x1 + xnp + x2,
ẋ2 = b(M2x1− x2).

(27)

Let us suppose we have the initial condition xi = (x1(0),x2(0)) = (1,0) correspond-
ing to an isosmotic salt solution and a desired final condition x f = (x1(t∗),x2(t∗))) =
(1,10) corresponding to a concentration of glycerol roughly equivalent to 3 mol/kg
dissolved in an isotonic salt solution. Finally, suppose that b = 1 (which is a physi-
cally realistic value [Benson(2009)]).

We may check (numerically or graphically) that this combination of initial and
final conditions and maximal and minimal concentrations corresponds to the case
where xi ∈D . Thus the optimal control will be MII on t ∈ (0,τ) and MIII on t ∈ (τ, t∗).

Thus for t ∈ (0,τ) system (27) becomes

ẋ1 =−20x1 + x2 +1,

ẋ2 = 20x1− x2.
(28)

with initial conditions x1(0) = 1 and x2(0) = 0. For t ∈ (τ, t∗) system (27) becomes

ẏ1 = 1+ y2,

ẏ2 = y2.
(29)

Because x(τ) is determined by the intersection of the solution of system (28) forward
in time from xi and the solution of system (29) backward in time from x f , we have
the final condition x f = (y1(t∗),y2(t∗)).

The switching time τ may then be determined from the simultaneous solution of
equations (21) and (22). It is possible to express the solution using special functions;
but, for simplicity, we solve numerically for τ . By Theorem 4,

t∗ =
x f

1 − xi
1

xnp
+

x f
2 − xi

2
b2xnp

=
1−1

1
+

10−1
1

= 9.

It remains to determine the switching time τ and final time t∗ in un-transformed
time, namely q(τ) and q(t∗). These values are given by the integrals

q(τ) =
∫

τ

0
x1(ξ )dξ (30)
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and

q(t∗) =
∫ 9

0
x1(ξ )dξ =

∫
τ

0
x1(ξ )dξ +

∫ 9

τ

x1(ξ )dξ . (31)

Because we have an exact solution for the x1 variable given in displays (18) and (20),
we may directly calculate the integral of x1 on both t ∈ (0,τ) and t ∈ (τ, t∗) yielding
the switching and final untransformed times.

5 Conclusion

We have presented an analysis of a multi-solute extension of a previously published
general model of cell volume and concentration regulation and we have extended the
local stability result in the case n = 2 presented in a previous work to global asymp-
totic stability in the case n≥ 2. Moreover we have given an application of this result
in control theory, and provided a complete synthesis of an optimal control in a com-
monly encountered two solute biological system. Finally, we have demonstrated that
for initial points in two special cases, there are explicit and simple formulas that de-
fine the total transit time. Although the implementation of an optimal control scheme
such as this in the biological setting is dependent on the sensitivity to parameters, as
long as it can be verified that the initial point is in one of the defined regions above,
this optimal control formulation gives an estimate of the minimal transport time that
can be achieved. Because of this, one can determine how much engineering, bio-
physics, or biology is worth undertaking to achieve more optimal protocols.
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6 Appendix

This is from Chapter 4, Section 12, Paragraph 45 of Mathematical Methods of Op-
timal Control, V.G. Boltyanskii, 1971. We add subitems to make some statements
more concrete.

We first introduce the concept of regular synthesis for the system ẋ =
f (x,u) for which the continuity of the derivatives ∂ f i/∂x j and ∂ f i/∂uk will
not be assumed. Suppose that a piecewise smooth set N of dimension≤ n−1,
piecewise smooth sets

P0 ⊂ P1 ⊂ . . .⊂ Pn−1 ⊂ Pn = S,

and a function v : S → A are given. We will say that the sets Pi and the
function v realize a regular synthesis for ẋ = f (x,u) in the region S if the
following conditions are satisfied:
1. The set P0 contains the point a = x1 but does not have limiting points in

the open set S. Each component of the set Pi−(Pi−1∪N)(i = 1,2, . . . ,n) is
a smooth i−dimensional manifold in S; these components will be called i-
dimensional cells. The points of the set P0 will be called zero-dimensional
cells. The function v(x) is continuous and continuously differentiable on
each cell and can be extended as a continuously differentiable function
into a neighborhood of the cell.

2. All cells are grouped into cells of the first and second kind. All n−dimensional
cells are cells of the first kind, all zero-dimensional cells are cells of the
second kind.

3. (a) If σ is an i−dimensional cell of the first kind, then each point of this
cell has a unique trajectory of the equation

ẋ = f (x,v(x)) (32)

passing through it.
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(b) There exists an (i−1)−dimensional cell Π(σ) such that each trajec-
tory of the system (32) traversing the cell σ leaves this cell after a fi-
nite time, arrives at the cell Π(σ) at a nonzero angle, and approaches
the latter with a nonzero phase velocity.

(c) If σ is a one dimensional cell of the first kind, then it is a piece of a
phase trajectory of system (32) approaching a zero-dimensional cell
Π(σ) with a nonzero phase velocity.

(d) If σ is an i−dimensional cell of the second kind distinct from the
point a, then there exists an (i + 1)−dimensional cell Σ(σ) of the
first kind such that from any point of the cell σ there emanates a
unique trajectory of system (32) traversing the cell Σ(σ); moreover,
the function v(x) is continuous and continuously differentiable on
σ ∪Σ(σ).

4. The above conditions make it possible to continue the trajectories of 32
from cell to cell: from the cell σ to the cell Π(σ) if Π(σ) is of the first
kind, and from the cell σ to the cell Σ(Π(σ)) if Π(σ) is of the second
kind. It is required that each such trajectory traverse only a finite number
of cells (that is, each such trajectory “pierces” only a finite number of cells
of the second kind). Moreover, each such trajectory terminates at the point
a. The above trajectories will be called “distinguished” trajectories. Thus,
a single distinguished trajectory (leading to the point a) emanates from
every point of the set G−N. It is also required that a (possibly non-unique)
trajectory of system (32) leading to the point a emanates from every point
of the set N. These will also be called “distinguished” trajectories.

5. All distinguished trajectories satisfy the maximum principle.
6. The value of the transition time from the point x0 to the point a, calculated

along distinguished trajectories (terminating at the point a), is a continu-
ous function of the initial point x0. (In particular, if several distinguished
trajectories emanate from the point x0 ∈N, then the value of the transition
time is the same for these trajectories.)

Theorem 5 If a regular synthesis is realized in S for ẋ = f (x,u) (assuming
the existence of continuous derivatives ∂ f i

∂x j and ∂ f i

∂uk ), then all distinguished
trajectories are optimal (in S).


