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A High Performance Spectral Code for Nonlinear MHD Stability
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A new spectral code, NSTAB, has been developed to do nonlinear
stability and equilibrium calculations for the magnetohydrodynamic
(MHD) equations in three-dimensional toroidal geometries. The code
has the resclution to test nonlinear stability by calculating bifurcated
equilibria directly. These equilibria consist of weak solutions with
current sheets near raticnal surfaces and other less localized modes.
Bifurcated equilibria with a pronounced current sheet where the
rotational transform crosses unity are calculated for the international
thermaonuclear experimental reactor (ITER). Bifurcated sclutions with
broader resonances are found for a model of the LHD stellarator
currently being built in Japan and an optimized configuration like the
Wendelstein VII-X proposed for construction in Germany. The code is
able to handle the many harmonics required to capture the high mode
number of these instabilities. NSTAB builds on the highly successful
BETAS code, which applies the spectral method to a flux coordinate
formulation of the variational principle associated with the MHD
equilibrium equations. A new residue condition for the tocation of the
magnetic axis has been developed and implemented. This condition is
based on the weak formulation of the equations and imposes no
constraints on the inner flux surfaces.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The magnetohydrodynamic (MHD) equations describe
the macroscopic behavior of a plasma in a magnetic field.
They have been used successfully to model many aspects of
tokamaks and stellarators. The finite difference code BETA
[1, 2] implemented one of the first numerical methods to
solve the time averaged ideal MHD equilibrium equations
in three-dimensional toroidal geometries. It has been used
extensively for designing stellarators, performing parameter
studies, and studying nonlinear stability and Monte Carlo
transport in both stellarators and tokamaks [3-6]. More
accurate results have been made possible by the develop-
ment of the spectral codes VMEC [7, 8] and BETAS [9].
These codes use Fourier series expansions in the two
periodic angles on the torus and finite differences in the
radial direction. VMEC was one of the first successful spec-
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tral codes, and is the most widely used today. The BETAS
code improved the speed of the computational method with
the development of a preconditioned second-order iterative
scheme. This feature has since been incorporated into
VMEC [10].

This paper describes a new equilibrium code, NSTAB,
and demonstrates how it is used to test nonlinear stability.
NSTAB contains a new residue condition for the location of
the magnetic axis, developed from the variational principle
and the concept of a weak solution. The resultant axis equa-
tions are substantially different from those used by BETAS
and VMEC, which are based on linear extrapolation and
impose constraints on the innermost flux surface. The
residue condition requires no such contraints, so for com-
plicated geometries it allows for more realistic shapes at
standard meshes and may provide a more accurate value for
the energy. Other aspects of the code are based largely
on BETAS.

Several codes have been developed to study stability
properties of MHD equilibria. Methods based on normal
mode analysis are used in [11, 127]. Equibrium codes have
also been used for stability calculations by performing first
an energy minimization to arrive at an equilibrium solution
and then a second constrained energy minimization to look
for regions in function space with lower energy levels [2].
Both NSTAB and BETAS have the resolution to perform a
more direct kind of stability test. Due to the coordinate
system, the arrangement of the unkowns, and the radial
differencing scheme, these codes can capture weak solutions
with current sheets near rational surfaces and other less
localized modes that are important in the applications. This
allows one to test for nonlinear instability by locking for
bifurcated solutions that demonstrate strong nonunique-
ness. Results along these lines will be presented for several
configurations of interest.

Energy level comparisons by the spectral method turn
out to be difficult. The bifurcated solutions may have lower
energy levels when compared to a more standard equi-
librium solution on the same mesh, but the difference is very
small. A true convergence study, with extrapolation to zero
mesh size, would have to be performed before the energy
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comparisons can be considered meaningful. Configurations
like the axisymmetric tokamak or one field period of the
LHD stellarator do not have complicated structure and
accurate solutions can be computed quickly at crude
meshes. In contrast, the weak solutions characterizing
unstable modes tend to have much higher harmonics and
represent a true challenge to the code. It is thus impractical
to perform the extrapolation to zero mesh size required for
true energy level comparisons in all these cases, but the
existence of the bifurcated solutions themselves can be
determined by relatively short runs, and this forms the basis
of our nonlinear stability test.

An improved flux coordinate formulation of the varia-
tional principle which clarifies the role of weak solutions
and the nested surface hypothesis is outlined in Section 2 of
this paper. Problems with the coordinate system at the
magnetic axis and the derivation of a new axis residue con-
dition are described in Section 3. Details of the numerical
impiementation of these ideas are contained in Section 4,
and numerical results are presented in Sections 5 through 8.
Finally, Section 9 consists of concluding remarks.

2. MATHEMATICAL MODEL

To determine the structure of the magnetic field in the
plasma we use the magnetohydrodynamic equilibrium
equations

(1

J xB=Vp, (2)
where B is the magnetic field, p is the scalar pressure, and J
is the current density defined by J =V x B.

These equations are to be solved in three-dimensional
toroidal domains. Following eariier work [1], several
assumptions are imposed to make the problem computa-
tionally tractable. We assume the existence of a nested
family of toroidal flux surfaces of B, labeled by 5. We take
s =1 to represent the plasma boundary and s =10 to repre-
sent the innermost degenerate flux surface, which is a simple
closed curve called the magnetic axis. On each torus
s==const, we introduce periodic coordinates » and b,
representing the poloidal and toreidal angles, respectively.
We define the net toroidal flux in a solid torus s < 5, to be
the flux of B through a cross section v = const. This is inde-
pendent of which cross section is used because V-B=0. In
most cases of interest B will have a strong toroidal compo-
nent that does not reverse direction, so we further assume
that we can choose s itself to be the normalized toroidal flux.

We can now integrate the equation V- B =0 by setting

B=Vsx V0,
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where the level sets 8 =const define another set of flux
surfaces. Locaily, every divergence-free vector ficld has
such a representation, but in general s and # will not have
single-valued global extensions. Under the nested surface
hypothesis s is single-valued, and # must have the form

@ =u—1(s)v+8(s, u, v),

where 8 is periodic in « and v. Here the rotational transform
t(s) s the derivative of the poloidai flux with respect to s

Returning to the force balance equation (2) and taking a
dot product with B, we sec that B - Vp =0, which means that
p is constant on magnetic field lines. In our formulation of
the variational principle this magnetic differential cquation
has been integrated by putting p= p(s). We are thus left
with two equations in two unknowns, s and . There are no
boundary conditions on ¢ other than the periodicity
requirements mentioned above, but 8 is only determined up
to an arbitrary function of s.

There are two arbitrary functions p(s) and t(s) in the
model. The pressure p(s) will be prescribed, although physi-
cally it would be more natural to give the mass within each
flux tube s = const and to compute p(s) from the equation of
state. This simplification seems to produce more or less
equivalent results about equilibrium and stability. The
treatment of the rotational transform depends on the type
of experiment we are modeling. In a tokamak, (s} is
prescribed, which fixes the net poloidal flux as a function of
the net toroidal flux. For stellarators this constraint is
dropped and 1(s) is treated as one of the unknowns. Its value
is determined by minimizing the energy, which is achieved
at zero net toroidal current.

The considerations we have just described are contained
in the standard variational principle of magnetohydro-
dynamics. The energy of the plasma, defined by

E:M (B2 — p(s)} dV, (3)

is minimized subject to the following constraints:

1. There is a nested family of toroidal flux surfaces. Each
surface is labeled by s, the normalized toroidal flux that it
encloses.

2. Ina tokamak, i{s} is prescribed. For steltarators, this
constraint 18 dropped and 1(s) is chosen to minimize the
energy, which is achieved at zero net toroidal current.

3. The pressure p{s) is prescribed.

4. The location of the plasma boundary s =1 is given.
The Euler-Lagrange equations in the calculus of variations,
which come from formally minimizing the energy for all

possible functions s and 8 subject to these constraints, are
equivalent to the MHD equilibrium equation (2). Equation
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(1) is imposed as a flux constraint by the use of s and 6 in
the representation of B.

For several important reasons our computations will be
performed with s, u, and v as the independent variables, This
gives a convenient rectangular computational domain and
allows us to implement the flux constraints p = p{s) and
t=1(s). It also permits us to define § uniquely.

The restriction to nested flux surface configurations
greatly simplifies the model, but there are theoretical issues
concerning the validity of this assumption. There are
axisymmetric solutions in special cases which do satisfy the
nested surface hypothesis, but the KAM theorem has been
used to demonstrate the nonexistence of smooth equilibria
in three dimensions. Line-tracing codes which track
magnetic field lines in a vacuum show that islands can
appear at rational surfaces. The islands consist of smaller
tori which can themselves be nested. Even in axisymmetric
cases where salutions with nested surfaces do exist, there are
resonances at rational surfaces where significant instabilities
can be found by introducing three-dumensional perturba-
tions,

The NSTAB code handles these problems within the
framework of the nested flux surface topology by calculating
weak solutions [ 3]. The weak solutions can include current
sheets which develop at rational surfaces and serve to model
magnetic islands. Numerical examples of these weak solu-
tions are presented in Section 6. A current sheet represents
a jump in the tangential components of B resulting in a
surface current and is analogous to the widely accepted
vortex sheet model of fluid dynamics. In our calculations it
appears as an intersection of two or more flux surfaces. The
variational principle is used to define the concept of a weak
solution, which suggests how to capture such solutions
numerically by giving a natural conservation form of the
MHD equations.

We now derive the MHD equations in the s, v, v coor-
dinate system. Let x,, x,, and x5 be the usual Cartesian
coordinales and introduce cylindrical coordinates 4 +r, z,
and v, where 4 is the major radius of the confinement
device, and
x,=(A+ rjcos(2nv),

X, = (A + rjsin{2no), Xy=Z.

The choice of the poloidal angle u is arbitrary and will be
determined by how the shape of the outer plasma wall 1s
parametrized. We take r, =7 ,(», v) and z,(u, v) to be a given
parametrization of the outer wall s =1, and we let ry(v) and
zolv) represent the location of the magnetic axis s=0.
Imposing a star-like condition on the shape of the flux
surfaces, we write

r=ro(v)+ R(s, u, vifr (u, v) —ro(v)],
z2=z25(0) + R(s, u, v)[ z,{m, )~ zo(v) ],
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where R is a generalized radius that iszeroat s=0and 1 at
s=1. Computations will be carried out to solve for the
unknowns 6, R, ry, and z, as functions of s, u, and v. To
derive equations for these quantities, the energy integral E
is written in this coordinate system and the Euler-Lagrange
equations are calculated.

The Jacobian of the transformation (s, », v) = (X, X5, X3)
has the remarkable factorization

a(xlst,XS) a(r,z)
= = ] 4
a(s, v, 1) a(s, u) KHRR,. 4)
where
dz ar
H“—‘—c.?*ul‘(ﬁ‘ro)*a_lj(zl"ze)

depends only on v and v and K=2n{A + r) is the Jacobian
from Cartesian to cylindrical coordinates, The evaluation of
the Jacobian is crucial if the numerical method is to capture
weak solutions where it becomes singular. Separation of the
Jacobian into an angie factor A independent of s and the
radial factor RR,, involving just one derivative, seems (o
account for the high accuracy in the computations. In the
radial direction where discontinuities occur, the s derivative
is isolated to the term RR, which can be computed with very
little truncation error. We believe it is the combination of
this factorization of the Jacobian and the radial differencing
scheme that allows weak solutions to be captured effec-
tively.

To write B in this coordinate system, we exploit the
invariance of Jacobians to observe that

B=B.-VX=(VsxV8)-VX
_ 6(358,X) __guxu-hevxu
0(x,, x5, x3)  KHRR,

where X is the position vector, Now the energy integral (3]
can be written in the elegant form

k= m ((6 ;(KHRR L

We proceed to derive a weak form of the Euler—Lagrange
equations from the general ¢xpression for the first variation
of the energy with respect to an arbitrary displacement in
the unknowns

— p(s) KHRR_\) ds du dv.

= [|[ (B-6(60.X, - 0.X,)— (48 + p) SKHRR,)]
x ds du dv. (5)

To compute the first variation with respect to 86, we put
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8(0.X,—0,X,)=X,00,—X, 00, and note that KHRR,
does not depend on &, Using Eq. (5) we obtain

SE, = H [(B-X,)d0,— (B-X,}00,) dsdude. (6)

To derive the first variation with respect to R, we use the
identity (KHRR,)=(KHRJR), and find

OE: = [[| [0B- (X 6R),—0,B- (X4 0R),

(7)

Since no second-order derivatives appear in Eq. (6) and (7),
we need only assume that the unknowns R and 6 have first
derivatives. A weak solution is thus defined as a pair of func-
tions R and & that satisfy the integral equations £, = 0 and
£, =0 for all continuously differentiable test functions 88
and 8R.

Returning to (6), we integrate twice by parts and obtain
the Evler-Lagrange equation

—(1B%+ p)(KHR 6R),] ds du dv.

L,(6)=(B-X,),~(B-X,),=0.

This equation is left in the conservation form that results
from the variational principle. From Eq.(7), we can
similarly derive the pseudo-conservation form {undifferen-
tiated terms also appear) of the Euler-Lagrange equation
L,(R)=0. However, a slight rearrangement of the terms
leads to the computationally more efficient formula

Lz(R)=% {6.[(B-X,),—(B-X,),]

+ gu[(B : Xs}u - (B -XU}.‘J] - pf(s) KHRRS}'

In the case of a stellarator, where the rotational transform
1{s) is not held fixed, it must be determined by minimizing
the energy. The first variation of the energy with respect to
tis

SE= m (B-X,) 6:(s) ds du dv = f Ks) 8i(s) ds,

where
1(50):H3-xududu

is the net toroidal current through the region enclosed by
the flux surface s =s,. Thus the Euler-Lagrange equation
which determines i(s) is the zero net current condition
I(s)=0.

3. AXIS RESIDUE CONDITION

The two Euler-Lagrange equations L {(6}=0 and
Lo{R)y=0, the pressure constraint p= p(s) and the
representation B =Vs x V& are equivalent to the magneto-
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static equations (1) and (2). However, we must still derive
equations for ry and z,, which determine the location of the
magnetic axis. Because of our use of a polar coordinate
system there is a singularity at the magnetic axis s =0 and
we need equations to guarantee that the solution wiil
remain continuous there. By allowing for this singularity,
we have developed a new regularity condition that comes
from a more careful consideration of weak solutions defined
by the variational method.

If we repeat the procedure used to derive the equations
L;=0 and L,=0, two additional Euler-Lagrange equa-
tions can be found by calculating the first variation of the
energy with respect to the axis location r, and z,. These
equations have been implemented in previous codes with
mixed success. Apparently numerical errors involved in
many of the terms can become larger than the more critical
quantities.

The VMEC and BETAS spectral codes have relied on the
Taylor series expansion of 5 near the magnetic axis to
generate equations and constraints on the innermost flux
surfaces. This expansion suggests that when the flux surfaces
contract down to the magnetic axis, the limiting shape has
an elliptical cross section. In BETAS, the innermost surface
is required to have eciliptical cross sections. The equations
for the axis location and the parameters describing the ellip-
ses are derived from the variational principle. In VMEC the
axis location is computed by linear extrapolation from the
location of the first and second flux surfaces. Higher Fourier
coeflicients which describe non-elliptical shapes of the
innermost flux surface are determined from their values on
the second flux surface in a way that 1s consistent with the
Taylor expansion of s.

The regularity condition implemented by NSTAB comes,
instead, directly from the variational principle and requires
no constraints on the innermost flux surface. We use the fact
that there is a singularity at the axis to isolate the most criti-
cal quantities. Since the unknowns r, and z, are functions of
v alone, we are free to integrate the terms in the first varia-
tion of the energy by parts with respect to s and ». When this
is done in a natural way the resulting equations turn out to
involve simple combinations of L,(#) and L,(R). However,
there is a residue at s =0 so integration by parts in s can
only be carried out away from the magnetic axis. When this
integration by parts is performed outside a small flux tube
5= 5, containing the axis, a restdual surface integral at s = 5,
remains, forming the basis of our new axis condition.

To derive the residue condition we return to the general
form of the first variation of the energy (5) and write

30.X,—0.X,)=60.6X,—-6,86X,,
HKHRR,)=2nHRR dr+ Kd(r,z,—r, z,),

where the vector 6X =&r i(») + 6z 2 is defined in terms of
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unit vectors ¥(v) and Z. Here we have used Eq. (4) to write
HRR_ = d(r, z)/0(s, u). The first variation of the energy with
respect to r and z is given by

SE = m [(0,B-6X,—0,B-8X,— (LB2+ p) 2nHRR, o

— (1B + pYKb(r,z,—

=[] T ds du av,

where the symbol T is used to denote the integrand. To
compute the first variation with respect to the axis location
ry and z,, we first integrate by parts to remove all deriva-
tions from ér and dz. We then use r =ry+ R(r| —ry) and the
similar relation for z to obtain

r,z,) ds dudp

or=(1— R)ér,, 0z={(1—R) éz,.
Since integration by parts with respect to s can only be done
outside an inner flux tube 5= 5, containing the magnetic
axis, we obtain both a volume term and surface integrals at
s=5¢ and s=1. The surface integral at s=1 disappears
because there R=1.

After performing these steps, the first variation of the
energy can be written in the form

o=

I8

il

5 << 8

Il

=359

[LA{(r) ér+ Ly(z) 827 ds du dv
T ds du dv
(4B*+ pY K(r, 6z —z,, 6r) du dv.

It is easy to verify that

raly(r) +z,Ly(z) = —0,L,(0) =0,
(ri—ro) La(r) +{(z, — 2¢) Li(z} = L;(R) =0,
and by combining these two relations we see that Li(rj=

L4(z)=01is a consequence of the Euler-Lagrange equations
L, =L,=0. We are therefore left with the residue

o

s=up

x [r, 0zo(v) — z, 8ro(v)] du dv

(387 + p) K{1 - R)

+[{[  rasduan

5 < 80

There are several problems with implementing Eqg. (8)
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numerically, Large terms in the integrand which do not
depend on u contribute nothing to the residue, but have
numerical errors that dominate the more critical terms.
There are also errors arising from quantities in the
expression for B? which are poorly computed near the
magnetic axis. To handle these difficulties we make several
simplifications in the integrand.

The first simplification is to keep only the surface integral
from Eq. (8) and to neglect the lower order volume term
over the region 5 < s,. The Euler~Lagrange equations then
reduce to contour integrals around a closed curve circling
the magnetic axis and lying on an arbitrary small inner tube
£ =15,. Numericatly we ¢valuate this integral over the inner-
most surface provided by the computational mesh. We may
remove terms which do not depend on u, such as pis), since
they will integrate to zero on the closed contour and
contribute nothing to the residue. We also divide out the
terms ! — R and K because near the magnetic axis they are
constant in # to lowest order in s.

The only quantity left is B?, which can be written in the
form

(B-X,)? 67 X, xX,|

B = =
X2 ' XI(KHRR)”

The first term is the norm of the toroidal component of B
and the second term is the norm of the poloidal component.
For tokamaks and stellarators, the toroidal magnetic field is
much stronger that the poloidal field and the equation
L.(8)=0 can be used to show that it is independent of u at
the magnetic axis. On the infinitesimal surface s =5, the
toroidal part of B? will be nearly constant in # and
contribute little to the residue. It is thus preferable to
neglect this term, since numerical errors in its calculation
may suppress the remaining poloidal part of B>

We make a final simplification by replacing 82/X] by a
constant. In the axisymmetric case §,= —1(s), so this
assumption can be justified for configurations close to
having such symmetry near the magnetic axis. A similar
argument can be made for configurations close to helical
symmetry near the axis due to the invariance of the
representation of the integrand.

Combining these considerations, the simplified Euler—
Lagrange equations are

_ X, xX,}®
Li(ryi= ijso (KHRR.)? z,du=0,

e XXX P
L4(é(,)_Lm KRRy =0

The most important feature of the equations is the fact that
the Jacobian KHRR, appears in the denominator. This
keeps the magnetic axis roughly centered inside the inner-
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most flux surface and results in a continuous solution at the
axis. For if the axis gets too close to the flux surface 5 =s,,
the Jacobian will become very small and the residue wili dif-
fer from zero. Another important feature of the equations is
that their implementation requires no constraints on the
innermost flux surface s = s,. The assumptions made in their
derivation do indirectly influence the flux surfaces, but only
through the coupiing of the axis cquations and the
Euler-Lagrange equations for R and 6.

To further justify the simplified axis equations we use the
identity

(Kr,)’ + (Kz,)* + (r, 2. = r,2.)° _ | X xX, |2

Vs = =
(Vs) (KHRR.)? (KHRR. )
to write them in the purely geometrical form
Lir)=—=¢ (V5)dz.  Lyz)=§ (Vs)ar
=2y I =59

If we now assume that the innermost flux surface s = s, has
elliptical cross sections r = g, cos(u), z=a, sin{u) with the
axis at the center, then the two equations L, = L, =0 follow
to lowest order by Fourier analysis, since (Vs)? behaves like
a combination of 1, cos(2u), and sin(2x). In this sense, our
axis consition is equivalent to the more geometrical con-
siderations used in BETAS. Indeed, in Section § we describe
the very good agreement between the NSTAB and BETAS
codes achieved in several special cases.

4. THE NSTAB COMPUTER CODE

The NSTAB code uses a preconditioned iterative scheme
to solve the Euler-Lagrange equations

L,(#)=0, L;(R)=0, Li(rg) =0, Ly(z4)=0.
The scheme is based on the second-order Richardson
method invented by Frankel [13], with a preconditioner
and an adaptive algorithm used for determining the
acceleration parameters due to Betancourt [9]. The
combination of the preconditioner and the iterative
scheme results in a dramatic improvement in performance
as compared to previous schemes [ 10, 14].

The iteration is performed on the Fourier coeflicients of
the unknowns R, 6, ry, and z,. A combination of the
pseudospectral method [ 15] in the angles on the torus and
a finite difference scheme in the radial direction is used. At
each step in the iteration, the variables R, 0, ry, z4 and their
u and v derivatives are first computed at equally spaced
collocation points in # and v from their Fourier coefficients.
Finite differences and a staggered grid described in [2, 3]
are used to compute the s derivatives. The terms in the
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operators L(f), L.{R), Li(ry), and L,(z,) are then
evaluated at the collocation points. Finally their Fourier
coefficients are computed and used by the iterative scheme
to compute new values for the Fourier coefficients of the
unknowns. Further details may be found in [14].

The differencing scheme provides high resolution and
minimal coupling between flux surfaces when combined
with our simple representation for the Jacobian KHRR,.
These properties are desirable if current sheets and other
localized modes are to be captured accurately. The dif-
ference formulas are chosen to be second-order accurate
and to give the exact answer in the example of a one-dimen-
sional screw pinch. Codes based on similar and more
elaborate differencing schemes [87, but with a different
arrangement of the unknowns, do not seem to have the
resolution to calculate solutions with current sheets and
other types of modes as accurately as NSTAB and BETAS.

The NSTAB code takes as input the parametrization in u
and v of the separatrix which defines the outer plasma wall.
The coordinate ¢ has been defined as the toroidal angle, but
the definition of « is arbitrary. The actual location on a flux
surface of the equally spaced mesh points in « will depend
on how the cuter wall is parametrized and on the location
of the magnetic axis.

Let ¢ represent the polar angle in the coordinate system
centered at the magnetic axis. The coordinate system puts
the mesh points at the intersection of the rays ¢ = const and
the flux surfaces s = const. 1f the outer wall is far from cir-
cular, or if the magnetic axis is substantially shifted from the
center of the plasma, points equally spaced in arc length
along the boundary will not necessarily be equally spaced in
¢, and that results in poor spacing on the flux surfaces near
the magnetic axis. In practice, we rezone the parametriza-
tion of the outer wall to obtain a compromise between
equally spaced points in arc length on the boundary versus
equally spaced points in ¢. This simple method works well
but does require some care. A more sophisticated proce-
dure, where the zoning is chosen to maximize the con-
vergence of the Fourler series of the other unknowns, is
described in [16]. However, that method is questionable
because it introduces an additional unknown.

The coordinates of the outer wall r, and z, are defined by

rohizy=e™ Yy 4, e

o

We have used this formula because it provides a natural
association between the coefficients 4,,, and the corre-
sponding harmonics in the winding law used to determine
the separatrix. Zoning 18 handled by making the change of
variable

u=u'+Y Z, . sin(mu —nv),

m,n
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with collocation points chosen to be equally spaced in «’. In
the simplest cases only Z, , is nonzero, to account for an
outward shift in the position of the magnetic axis. In harder
examples such as the H1 Heliac, where the outer wall is far
from circular, proper zoning is critical for good con-
vergence. It is found that large coefficients 4,, , may require
rezoning by the corresponding coefficient Z,, ,,, as can be
seen from the calculation of the H1 Heliac in Section 8.

5. CONVERGENCE STUDIES

We now present several studies to demonstrate the
convergence properties of the computational method and
validate our simplified axis equations. The equilibria used in
this study are an axisymmetric tokamak, a straight helical
stellarator, and the LHD stellarator being built at the
National Institute for Fusion Science in Japan. These cases
show that the convergence of the method is only first order
with respect to the radial mesh size. In spite of this, the
method is still very accurate so that stability tests can be
performed with as few as 15 radial points. The well-known
high order convergence of the spectral method in the
poloidal and toroidal directions is established, and there is
very little improvement once one increases the number of
harmonics above a certain value. Unfortunately, even in
relatively simple cases this threshold is surprisingly high. In
terms of the degrees N, and N, of the trigonometric polyno-
mials used to represent the solution in the poloidal and
toroidal angles, N,= N,=8 is adequate for equilibrium,
while N, = N,= 16 may be required for stability.

4 r T T T T T T T
3 K\_,’_- DEGREE 4 i

100000 (E-E0) / EO
o
7

. . DEGREE 16
* DEGREE 8

0 Q.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
RADIAL MESH SIZE /NS

FIG. 1. First-order convergence of the energy E with respect to radial
mesh size is shown for the = 3% LHD stellarator at three degrees of the
treigonometric polynomials specifying the spectral truncation. The limited
accuracy of the spectral method when N =4 is perhaps surprising for this
simple problem where the outer wall is defined by a rotating ellipse. In this
case only six figures in the energy are significant and this is too few to
resolve stability 1ssues from the energy landscape.
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The axisymmetric tokamak and straight helical equilibria
were used to establish the validity of the new axis condition.
For these cases we compared NSTAB to BETAS, which has
been shown elsewhere to converge to exact solutions {97].
Satisfactory agreement was obtained for the energy levels,
since the values computed by NSTAB and BETAS agree to
seven figures when extrapolated to zero mesh size. For the
axis location the extrapolated values agree to 10~ * in units
of the plasma radius. These studies also show that the con-
vergence of both the energy and axis location is only first
order in the radial mesh size. For compiete details, see [147].

The convergence of the energy and axis location with
regaid to the degrees of the poloidal and toroidal harmonics
N, and N, are displayed for the LHD stellarator in Figs. 1
and 2. For this study we used an aspect ratio of 6.23 and a
pressure profile of p{s) =0.41(1 —s). This results in a § of
3%, where § is given by .
5 2iipdv

{{y B> dv"

In each of the 10 field periods, the plasma column forms a
rotating ellipse given by 4,,=1 and 4, , = —0.325 (see
Section 4 for the definition of 4,,,). The equilibrium
calculations were performed over just one field period of the
device with 15,22, 29, and 57 radial points. Clearly
N,= N,=4isinadequate, even in this simple casec where the
plasma column has elliptical cross sections. However, the
spectral method has converged quite well as soon as
N,=N,=8. The figures show that the convergence of the
energy and the shift in the magnetic axis is again only first
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FIG. 2. First-order convergence of the shilt in the magnetic axis with
radial mesh size is shown for the f=3% LHD stellarator at different
degrees of the trigonometric polynomials specifying the'spectral truncation.
For a degree N truncation, 4N? terms are used in the spectral representa-
tion of the solution and the mesh sizes in the poloidal and toroidal
directions are 1/(3N).
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FIG. 3. Flux surfaces in four cross sections of one field period of the
LHD stellarator showing the deformed structure of the inner surfaces with
an average f = 6 %. This calculation was performed with 31 radial points
and degree eight trigonometric polynomials,

order with respect to the radial mesh size, but that the
method is still very accurate. Even at the crudest radial
mesh of 15 points, the error in the axis position is only 2%
of the plasma radius, which should not affect stability
results.

To show the advantages of the new axis condition we
compare NSTAB and BETAS in the case of the LHD
stellarator with §=6%. At this value of §, the axis has a
noticeable helical excursion and a large outward shift which
substantially deforms the inner flux surfaces. The resuits
from NSTAB are dispiayed in Fig. 3. The new axis condi-
tion imposes no constraints on the inner flux surfaces, and
the calculations show that even at a fine radial mesh these
surfaces have a pronounced tear-drop shape. The magnetic
axis has an outward shift of 0.48, or half the plasma radius.
The BETAS code requires that the innermost flux surface be
an ellipse. This in turn forces other surfaces to have less of
a tear drop shape and introduces errors over a significant
volume of the plasma. The overall effect is that all the flux
surfaces become less deformed and the magnetic axis has an
outward shift of only 0.36, This is a significant difference
because errors in the axis location of this size can affect
stability results. At f=9%, NSTARB places the axis at 0.60,
resulting in severely deformed flux surfaces which are
perhaps incompatible with the imposed elliptical outer wall.
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6. CAPTURING CURRENT SHEETS

In this section we demonstrate the high accuracy of the
flux coordinate method and its ability to calculate weak
solutions with well-resolved current sheets. The success of
the method suggests that it could also be used to capture
vortex sheets in fluid dynamics. In Fig, 4 a bifurcated equi-
librium, calculated with only 12 radial points, is shown for
the ITER tokamak [17]. A current sheet has developed so
that several flux surfaces intersect at 1=1. The solution is
not axisymmetric, thus by rotating it in the toroidal direc-
tion within the axisymmetric torus we can generate a family
of equilibria, all identical except for a phase angle in ».

To model the ITER tokamak in these computations, we
used an aspect ratio of 3.33, a D-shaped plasma boundary
given by dgo=1, 4,,=—-02, and 4_, (=02, and the
rotational transform :(s) = 1.2 — 0.75s. The pressure profile
was taken to be p(s)=0.04(1 — 5} with §=4.4%, but the
instability is current driven and can be scen even at zero f.
The computations were performed with 12 radial, poloidal,
and toroidal points with degrees N, =N, =4.

The existence of bifurcated equilibria form the basis of
our stability test. They confirm the well-known result that a
tokamak equilibrium becomes unstabie when the rotational
transiorm crosses unity in the plasma. At the meshes we use
to make these runs, it is not always practical to rely on the

FiG. 4. Anm=1 n=1mode in the ITER tokamak with B=44%. A
current sheet has developed where 1 crosses unity, and it becomes clearly
visible in this calculation on a 12x 12 x 12 mesh of radial, toreidal, and
poloidal points and Fourier terms up to degree 4 x 4. This plot is evidence
of the contention that the NSTAB code captures weak solutions of the
equilibrium problem characterized by nested KAM surfaces.
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energy landscape to determine stability. The bifurcated
solutions do indeed have lower energy than the axisym-
metric solution, but the difference is smail, and convergence
studies become difficult in the harder cases with more
complicated gecometry.

The bifurcated equilibria can be produced by simply
using many iterations and allowing noise to trigger the
unstable mode. When such a run is made, it at first
converges to the axisymmetric solution. As the iteration
proceeds, the energy decreases monotonically to the
axisymmetric vaiue, where it remains untii the mode finally
gemerges. Then the energy starts to decrease further and the
run converges to a bifurcated solution like the one shown in
Fig. 4.

This procedure can be greatly acclerated by the use of an
inhomogeneous term as described in {14]. At =1 we lock
for the internal kink mode which has an m =1, n=1 mode
structure. To trigger this mode, we add an m=1, n=1
inhomogeneous term ¢ to the partial differential equations
for a few hundred iterations. We use a term for ¢ similar to
that given in the references about a second energy minimiza-
tion [2, 3]. After the term has been removed the run con-
verges to the bifurcated equilibrium shown in Fig. 4. The
convergence rate for the bifurcated solution is substantially
slower than the convergence rate of the axisymmetric solu-
tion. The axisymmetric case completely converges in 1000
iterations. While it only takes 3000 iterations to establish
the existence of a bifurcated solution, 50,000 iterations are
required to converge the run to 14 significant figures in the
energy, which takes 15 min on the CRAY Y-MP computer.

7. STABILITY TEST

In addition to the localized current sheet modes in the
previous example, our computational method also has the
resolution to test for nonlinear instability by looking for
bifurcated solutions with broader perturbations. Such com-
putations require many poloidal and toroidal harmonics
because the instabilitics are associated with high mode
numbers.

One example is the LHD stellarator described in
Section 5. In the standard configuration it is known to be
marginally stable [12]. However, we analyze a family of
nearby configurations that can be made unstable by
reducing the outward shift of the magnetic axis. This is
achieved by adding small harmonics to the shape of the
outer wall that model the effect of increasing the vertical
magnetic field. For moderate shifts, bifurcated solutions
appear over two field periods of the device. The existence of
these additional solutions prove that the more standard
equilibria for these nearby configurations (obtained by
performing the caleulations in just one field period) are
unstable.

581/110/2-15

415

A ballooning instability is shown in the bifurcated equi-
librium presented in Fig. 5. This calculation was performed
in two field periods, with an average § of 3 %. Small values
4,,=003 and 4, , =0.01 were added to the shape of the
outer wall, but they are barely visible in the figure. They
have the effect of reducing the outward shift of the magnetic
axis from 28% to 22% of the plasma radius. The mode
appears in the middie third of the plasma volume, where the
rotational transform crosses £ and £, so it has a combined
m=6,n=235and m=235, n= >3 structure over the fuil 10 field
periods of the LHD.

This bifurcated solution is computed in a similar manner
as the current sheet mode in the tokamak. The calculations
are performed in two ficld periods, where the mode has an
m=06, n=1 and m=35, n=1 structure. The mode is
triggered by the temporary addition of an m=6, n=1
inhomogeneous term to the equilibrium equations. After
this term 1s released the mode decays quickly, but it even-
tually levels off to a value which produced the bifurcated
solution shown in Fig. 5. The computation required
3000 iterations and used 30min of CPU time on the
CRAY Y-MP 1o converge to seven significant figures in
the energy. It was performed with 22 radial points and a
trigonometric polynomial of degree N, = 16 in the poloidal
angle and N, = 24 in the toroidal angle.

@
{)

FIG. 5. Four cross sections of two field periods of a bifurcated LHD
stellarator equilibrium with # =3 % are shown. A mode which breaks the
one field period symmetry is visible. In two field periods, the mede has an
m=6,n=1and m=S5, n=1 structure. Small sidebands 4, , =0.03 and
A, =001 in the shape of the separatrix have reduced the usual outward
shift of the magnetic axis, destabilizing what is otherwise cansideted to be
a standard configuration. Nonuniqueness of the solution is made ¢vident
by the asymmetry.
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It is important to choose a fine enough mesh if
instabilitics are to be resolved. For the mode described
above, meshes with as few as 15 radial points are adéquale.
However, in the polpidal direction harmonics must be
allowed up to N, = 16. If less are used, the mode is not seen
because one must resolve adequately its m = 7 sideband and
m=12 overtone.

[t is only in special cases that we can compute completely
converged bifurcated equilibria. For example, in stable con-
figurations of the LHD with smaller vaiues of the sidebands
in the outer wall, the mode decays after the inhomogeneous
term is removed, eventually becoming negligible. On the
other hand, if the value of 4 , is increased to 0.02 moving
the axis in another 5%, the equilibrium becomes highly
unstable. After the inhomogeneous term is removed the
moede grows so large that the computations eventually
break down. In such cases the energy decreases indefinitely
and is clearly lower than the energy of the regular equi-
librium. The difference of the energy levels in this case is in
the seventh figure.

The method seems well adapted to modes associated with
rational surfaces corresponding to moderate m and » values
which occur in one or two field periods. Te determine if a
configuration is stable with respect 1o this type of mode, one
must attempt to trigger all such modes. A range of design
parameters must alse be studied to determine if a
reasonably sized stable regime exists and to validate the
technique by showing that there are also regimes where
instabilities are detected. Lower modes, such as the m=2,
n=1, occur in the full 10 field periods of the LHD, where
the calculations are more difficult for this technique due to
the different length scales involved.

Stellarators may also have very poor plasma confinement
for reasons not associated with MHD instabilities. Using
Monte Cario methods to track individual particles in an
LHD equilibrium provides a good estimate of transport
[4, 5]. In the LHD, calculations based on a plasma radius
of 60 cm, a magnetic field of B=4T, an average tem-
perature of 3keV, and .a plasma density of 10'cm >
predict an energy confinement time of only 5 ms.

8. ADVANCED STELLARATORS

Compared to the tokamak and the LHD, many of the
recently designed steilarators have a quite complicated
shape. More harmonics are needed to represent the outer
wall, and the solutions have a much fuller Fourier series.
The fine structure of these devices and the large poloidal
and toroidal meshes required 1o model them have caused
difficuities with the equilibrium codes. We have developed a
very robust, general tuning of the input parameters for
NSTAB that works well in a variety of these harder cases.

Two advanced stellarators are presented here. The first is
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similar to the Helias designed in Germany [ 67, but has been
modifted to provide an unstable test case for the NSTAB
code. We have calculated two different, fully converged
bifurcated solutions over one field period of the device. The
two dramatically deformed equilibria, shown in Figs. 6 and .
7, were calculated by triggering the m =7, n =6 mode with
opposite signs of the inhomogeneous term. The existence of
these two minima leads us to conjecture that there is a third,
less deformed but linearly unstable solution lying between
these two bifurcated solutions. This is plausibie because of
the mountain pass theorem.

To capture this high order instability, the computations
were performed with N, = 16 and N, == 12 which required 42
collocation points in the toroidal direction and 36 in the
poloidal direction. The mode is not seen if less harmonics
are used, but just 19 radial points were sufficient. One of
these cases has been run for 40,000 iterations, taking 200
minutes on the CRAY Y-MP and convergence of the bifur-
cated solutions to nine significant figures in the energy was
observed. The computed rotational transform varies
between § and § with very little shear, and the stellarator has
an aspect ratio of 10 with six field periods and a pressure
profile p(s) =0.03(1 —5) at §=3%.

Our second case is a model of the H1 Heliac at the
Australian National University. This experiment has a large

F1G. 6. Four cross sections of one field period of a bifurcated equi-
librium soution for an advanced stellarator configuration with §=3%. In
one field period, ¢ is roughly 4 throughout the plasma, and the mode clearly
shows an m=7, n=1 structure. The run has exemplary convergence,
establishing that the NSTAB code can handle equilibria with complicated
harmonics on a fine mesh with 22 x 48 x 36 points and Fourier terms up to
degree 16 x 12,
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FIG. 7. A bilurcated equilibrium for the advanced stellarator similar
to that shown in Fig. 6 but with the opposite sign of the displacement,
which establishes the existence of two different solutions.

helical excursion of the magnetic axis and pronounced
triangularity of the wall shape, so many harmonics are
required to describe the solution. We used an aspect ratio
A =35, three field periods and a pressure profile p(s}=
0.055(1 —5)* which gives f=2%. The plasma wall is
defined by 4,,=123 4_,_,=030, 4,,=-0.14,
4;,=—0.36, and 4, ;=0.10.

A fully converged equilibrium computed by the NSTAB
code is shown in Fig. 8 The computed rotational transform
increases from 1.08 on axis to 1.14 at the outer wall. For this
run we used 15 radial points and degree N, =N, =12 for
the trigonometric polynomials. Rezoning of the outer wall
to distribute the collocation points well on the inner flux
surfaces proved important in achieving good convergence.
It was rezoned in u (see Section 4) by setting Z_, _, =0.30,
Z,,=-010, Z,,=—-0.15, Z,;=0.10, and making the
change of variable ¥’ =u—v. In a series of runs at the
Australian National University it was not possibie to get
the VMEC code to converge on such a fine mesh, We have
also been unable to get BETAS to converge in this case,
although the performance of both codes could probably be
improved with additional tuning.

The H1 equilibrium computed by NSTAB required 2 h
on a CRAY 2 and 40,000 iterations to achieve 11 significant
figures in the energy, and there is no reason to believe that
NSTAB would not converge to more figures if the run were
continued. The energy E reached a minimum when only
nine of the 11 figures had stabilized, and then E was
increasing as it converged to its final value. In using the
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FIG. 8. Four cross sections of one field period of the f=2% H1
Heliac at ANU. The complicated triangularity and crescent structure of
this case were resolved on a mesh with 15x 36 36 points and Fourier
terms up to degree 12 x 12. The run has converged to 11 significant figures
in the energy.

spectral method, this type of behavior is not unexpected,
since the discrete quadrature formula for the energy is not
directly related to the discrete equilibrium equations as it
would be if finite differences or finite elements were used.

9. CONCLUSIONS

We have developed the new three-dimensional MHD
equilibrium code NSTAB. The code uses the spectral
method and a flux coordinate formulation of the variational
principle associated with the MHD equations. It has the
resolution to compute bifurcated equilibria with well-
resolved current sheets at rational surfaces and other,
broader perturbations. A configuration is considered to be
nonlinearly unstable when several bifurcated solutions can
be shown to exist. It is less practical to usc the energy
landscape to determine stability properties, although in
cases where comparisons are possible the energy levels of
the bifurcated solutions are less than those of the more
standard equilibria, verifying that they represent true
physical instabilities. _

The method has low order convergence with respect to
the radial mesh size, but is still highly accurate. Conclusive
stability tests can be performed with as few as 15 radial
mesh points. The method is well adapted to the moderate
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mode numbers of the instabilities that develop in one or two
field periods of typical stellarators, To capture bifurcated
solutions with these modes, many poloidal and toroidal
harmonics must be used, but NSTAB does converge in these
hard cases.

We have given a new residue condition to determine the
location of the magnetic axis. It is derived from the weak
form of the equations resuiting from the variational prin-
ciple and imposes no constraints on the shape of the flux
surfaces. Several simplifications are made to implement the
condition numericaily, but it has held up well in practice. In
cases with elliptical flux surfaces at the axis the resulting
condition is related to the geometrical condition used by
BETAS and there is good agreement between NSTAB and
BETAS. In harder cases, the lack of constraints allows for
more realistic flux surfaces. The shape of these surfaces can
have a significant effect on the axis location, which is cfitical
for accurate stability results.
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