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Abstract

A diffuse-interface model of reactive wetting with intermetallic formation is presented. The model incorporates fluid
flow, solute diffusion, and phase change that are based on the total molar Gibbs energy of a ternary system with four
phases. Numerical simulations were performed successfully revealing the complex behavior of the reactive wetting
process that include nucleation and growth of an intermetallic phase, and initial rapid spreading followed by a slow
and progressive spreading. In addition, the nucleation and growth of the intermetallic phase is shown to be directly
influenced by its kinetic coefficient or the interface energy associated with it.

Introduction

The joining of solid metals with molten solders or filler
metals involves wetting of the solid by the liquid, during
which, the solid dissolves into the liquid phase, and/or an
intermetallic phase or phases form between the spread-
ing liquid and the solid substrate. The strength of the
joint depends on many factors such as wettability, sol-
ubility, and properties of the formed intermetallic com-
pound (see Boettinger et al. (1993) and Eustathopoulos
et al. (1999) for general discussion).

The mechanisms of reactive wetting involve the in-
terplay of fluid flow, heat and mass transport, capillary
phenomena, and phase transformations. To our knowl-
edge, a comprehensive model that incorporates all these
effects is still non-existent. Previous attempts to model
reactive wetting in high-temperature metallic systems
involved fitting experimental dynamic contact angle or
base radius curves by different functions, see for exam-
ple Ambrose et al. (1992, 1993); Eustathopoulos (1998);
Kim et al. (2008); Dezellus et al. (2003). The empirical
formula provides an easy and straightforward calcula-
tion of extent of spreading or general shape of the drop at
any given time. However, these formulas does not give
much insights into the mechanisms involved in the reac-
tive spreading process, i.e., intermetallic formation. In
addition, detailed study of certain effects such as phase

change and dissolution can not be discerned from these
formulas. On the other hand, the use of comprehensive
models requires a more involved numerical calculation
and can present some numerical instabilities aside from
limitations in parameter ranges and choice of length and
time scales.

A different analysis on the kinetics of reactive wetting
has been proposed by Saiz et al. (2000). They argued
that the substrate cannot be described as rigid and insolu-
ble and with a sufficient nucleation barrier, a time regime
exist in which intermetallic formation lags the liquid
front. In this regime, the contact angles are then dictated
by adsorption, and the spreading kinetics are controlled
by the movement of a ridge formed at the liquid-solid-
vapor (L-S-V) triple junction. Although, this step can
happen only in the early stages of the spreading process,
it can play a critical role in the succeeding steps and they
proposed that it should be taken into account when mod-
eling a specific system.

Our goal in this paper is to present a diffuse-interface
model of reactive wetting with intermetallic formation.
The multiphase and multicomponent approach is similar
to previous work on the modeling of dissolutive wetting,
see Villanueva et al. (2008, 2009). The model incorpo-
rates fluid flow, phase change, and solute diffusion. In
the next section, the mathematical model and input pa-
rameters are presented, followed by a brief discussion
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of the numerical approach. In the results and discussion
section, we first present results for a base set of param-
eters. Then we focus on the factors that can affect the
nucleation and growth of the intermetallic phase such as
interface energies between the intermetallic and liquid,
and kinetic coefficient of the intermetallic phase. Next,
flow patterns and concentration profiles are discussed.

Mathematical Model and Parameters

A ternary system of substitutional elements A, B, and
C with four phases, spreading liquid (denoted by L or
sometimes 1 for convenience), solid substrate (S or 2),
intermetallic (I or 3), and vapor (V or 4) is considered.
We begin by setting the total molar Gibbs energy G
given by

G =
∫

Ω

(
Gm(xA, xB , xC , φL, φS , φI , φV , T )

Vm

+
4∑

i,j>i

ε2ij
2
|φi∇φj − φj∇φi|2

)
dΩ , (1)

where T is temperature, Vm is the molar volume, and
xA,B,C are the mole fractions of A,B, C-atoms with
xA + xB + xC = 1. The phase-field variables φi’s
vary smoothly between 0 and 1 and we set the condition
that φL + φS + φI + φV = 1. Our approach is similar
to Villanueva et al. (2008) with the main difference of
the gradient energies following an anti-symmetric form.
The molar Gibbs energy is postulated as,

Gm =
4∑

i

P (φi)Gi
m +

4∑

i,j>i

Wijφ
2
i φ

2
j

+
4∑

i,j,k>j>i

Wijkφ2
i φ

2
jφ

2
k + WLSIV φ2

Lφ2
Sφ2

Iφ
2
V , (2)

with the smoothed step function P (φi) = φ3
i (10 −

15φi + 6φ2
i ). The coefficients εij’s and W ’s are related

to the thicknesses and interfacial energies. An ideal so-
lution for GL,S,V

m and a regular solution for GI
m are as-

sumed, and they take the form

Gi
m = xA

oGi
A + xB

oGi
B + (1− xA − xB)oGi

C

+ RT (xA ln xA + xB ln xB + (1− xA − xB)·
ln(1− xA − xB)), i = L, S, V, (3)

and

GI
m = xA

oGI
A + xB

oGI
B + (1− xA − xB)oGI

C

+ RT (xA ln xA + xB ln xB + (1− xA − xB)·
ln(1− xA − xB)) + ΩxAxB , (4)

Figure 1: Schematic diagram of a reactive wetting with
intermetallic formation.

where, for example, oGL
A is the molar Gibbs energy of

pure A in the liquid phase and R is the gas constant.
An isothermal, viscous, and incompressible system is

considered. The governing equations, similar to our ap-
proach in Villanueva et al. (2008) and Villanueva et al.
(2009), are the following:

(i) conservative convective concentration equations,

1
Vm

(
∂xA

∂t
+ u · ∇xA

)
= −∇ · JA and (5)

1
Vm

(
∂xB

∂t
+ u · ∇xB

)
= −∇ · JB , (6)

where u is the flow velocity and JA and JB are fluxes of
A and B measured with respect to the local flow,

(ii) non-conservative convective Allen-Cahn equa-
tions for the phase-field variables,

∂φi

∂t
+ u · ∇φi = −Mφi

δG

δφi
, i = L, S, I, (7)

where Mφi’s are kinetic mobilities and with natural
boundary conditions n · ∇φi = 0,

(iii) a mass continuity equation for incompressible
flow,

∇ · u = 0 (8)

(iv) and the Navier-Stokes equations for incompress-
ible flow with added surface tension forces,

ρ(φ)
(

∂u
∂t

+ u · ∇u

)
= −∇p̃ +∇ · µ(φ)(∇u +∇uT )

−
∑

i=L,S,I

φi∇
(

δG

δφi

)
, (9)

where p̃ is a nonclassical pressure.
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To complete the concentration equations (Eqns. 5-6),
we write the interdiffusion flux of solutes JA and JB

(with JA + JB + JC = 0)

JA = −LAA∇
(

δG

δxA

)
− LAB∇

(
δG

δxB

)
and (10)

JB = −LAB∇
(

δG

δxA

)
− LBB∇

(
δG

δxB

)
, (11)

where the variation in G with respect to the composi-
tions xj are given by

δG

δxj
=

1
Vm

∂Gm

∂xj
, j = A,B, (12)

and the Lij’s are

LAA = (1− xA)2xAMA(φL, φS , φI , φV )

+ x2
AxBMB(φL, φS , φI , φV )

+ x2
A(1− xA − xB)MC(φL, φS , φI , φV ), (13)

LBB = x2
BxAMA(φL, φS , φI , φV )

+ (1− xB)2xBMB(φL, φS , φI , φV )

+ x2
B(1− xA − xB)MC(φL, φS , φI , φV ), and

(14)

LAB = −(1− xA)xAxBMA(φL, φS , φI , φV )
− xAxB(1− xB)MB(φL, φS , φI , φV )
+ xA(1− xA − xB)xBMC(φL, φS , φI , φV ).

(15)

The mobilities of A, B, and C can be different in each
phase and are given by

Mj(φL, φS , φI , φV ) = ML
j φL + MS

j φS + M I
j φI

+ MV
j (1− φL − φS − φI), j = A,B, C, (16)

where 1 − φL − φS − φI has been substituted for φV .
In the interior of the phases, the diffusivities, Dij , are
defined through the expressions,

JA = −DAA

Vm
∇xA − DAB

Vm
∇xB and (17)

JB = −DBA

Vm
∇xA − DBB

Vm
∇xB . (18)

Input Parameters. The model allows for a ternary
phase diagram such as the one shown as an isothermal
section in Figure 2. The phase diagram is idealized and
the parameters are given in Table 1 along with other in-
put parameters.

Given the parameters in Table 1, we can estimate
more familiar material parameters such as diffusivities
Di, and interface kinetic coefficients kcoeff with the fol-
lowing formulas (Boettinger et al. (2002)),

DL = ML
x RT , etc. (19)

kcoeff =
Vm

3RMφδ
(20)

Table 1: Base set of parameters.
oGL

A = −5.0× 103 J
mol

oGL
B = oGL

C = oGS
A = oGS

C = oGI
C

= −1/2 · oGL
A

oGS
B = oGI

A = 1/4 · oGL
A

oGI
B = −1/8 · oGL

A
oGV

A = −oGL
A

oGV
B = −2 · oGL

A
oGV

C = 1/2 · oGL
A

ΩAB = 5/4 · oGL
A

ML
A = ML

B = ML
C = MV

A = MV
B = MV

C

= 2.67× 10−13 mol m2

Js
MS

A = MS
B = MS

C = M I
A = M I

B = M I
C

= 10−3 ·ML
A

µL = 4.0× 10−3 Pa · s
µS = µI = 106 · µL

µV = 10−2 · µL

ρL = 103 kg
m3

ρS = ρI = 1.05 · ρL

ρV = 10−3 · ρL

MφL
= MφS

= MφI
= 25 m3

Js
T = 450 K
WLS = 2.21× 105 J

mol
WLI = 1.91× 104 J

mol
WLV = 1.43× 105 J

mol
WSI = 2.54× 104 J

mol
WSV = 2.49× 105 J

mol
WIV = 2.33× 105 J

mol
Wijk = WLSIV = 8.75× 106 J

mol
ε2LS = 6.32× 10−9 J

m
ε2LI = 6.71× 10−10 J

m
ε2SI = 7.40× 10−10 J

m
ε2LV = 5.99× 10−9 J

m
ε2SV = 8.24× 10−9 J

m
ε2IV = 7.94× 10−9 J

m
VM = 1.0× 10−5 m3

mol
R = 8.31 J

mol K

Table 2: Calculated interface energies γij’s.
∗γLS = 2.55 J

m2 γLV = 1.91 J
m2 γSV = 2.17 J

m2

γLI = 0.29 J
m2 γSI = 0.35 J

m2 γIV = 1.99 J
m2

∗Since the liquid-solid interface is unstable with the given base set of
parameters, the liquid-solid interface energy is calculated by

suppressing the formation of the intermetallic phase.

Table 3: Recalculated interface energies γij’s with
WLI = 1.47×105 J

mol and ε2LI = 3.87×10−9 J
m while

keeping the rest of the parameters the same.

γLS = 2.55 J
m2 γLV = 1.93 J

m2 γSV = 2.17 J
m2

γLI = 1.54 J
m2 γSI = 0.34 J

m2 γIV = 2.03 J
m2
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Figure 2: Idealized phase diagram of a ternary A-B-C
system at 450 K with four phases; liquid (L), solid (S),
intermetallic (I), and vapor (V).

where M i
x = M i

A = M i
B = M i

C , i = L, S, I, V .
The diffusivities are DL = 10−9 m2

s , DS = 10−12 m2

s ,
and DI = 10−12 m2

s while the kinetic coefficients are
ki

coeff = 16 sK
m where i = L, S, I .

Interface energies. Exact values for the interface ener-
gies were obtained from 1D simulations of each pair of
phases (LS, LI, LV, SI, SV, and IV). The interface ener-
gies are computed from the expression,

γ =
∫ ∞

−∞

[
1

Vm

(
(Gm(xi(z), φi(z); T )

−Gm(xi(±∞), φi(±∞); T ))

−
2∑

i=1

∂Gm(xi, φi; T )
∂xi

∣∣∣∣
z=±∞

·(xi(z)− xi(±∞))
)

+
4∑

i,j>i

ε2ij
2
|φi∇φj − φj∇φi|2

]
dz, (21)

and the values are summarized in Table 2.

Numerical Approach

The numerical simulations were carried out using Fem-
Lego (Amberg et al. (1999)), an open source PDE solver
with mesh adaptive finite element method. All PDEs
are discretized in space using piecewise linear functions.
Each resulting linear systems are solved using Krylov-
type iteration methods either by the conjugate gradient
method (CG) for symmetric and positive-definite sys-
tems or the generalized minimal residual method (GM-
RES) otherwise. The system of Navier-Stokes equa-

Figure 3: Adaptive mesh refinement and derefinement
of cut-off regions corresponding to two different times
with superimposed 0.5 contours of the phase-field vari-
ables φL, φS , and φI .

tions and continuity equation is solved by an incremen-
tal fractional-step algorithm (Guermond and Quartapelle
(1998)) that belongs to a class of projection methods. A
pressure stabilization term is also added in the projection
step to improve stability.

Adaptive mesh refinement and derefinement is uti-
lized due to the need to spatially resolve the interfaces as
a consequence of the phase-field approach. In Figure 3,
cut-off regions corresponding to two different times (ini-
tial and late stage spreading) are shown illustrating the
effective implementation of the mesh refinement and
derefinement. An ad hoc error criterion is used to ensure
mesh resolution along the vicinity of the interfaces. See
Do-Quang et al. (2007) for details of the mesh adaptive
finite element scheme. For the typical example shown in
Figure 3, the initial radius of the drop is R0 = 20 nm
and the domain size is (60 nm × 90 nm). The minimum
mesh size is hmin = 0.13 nm with nodes between 9000-
11000 and triangular elements between 19000-22000.
The capillary time scale tc = µLR0/(2γLV ) is con-
sidered in this study to be especially important which
represents the natural response of the system to reach
mechanical equilibrium.

Results and Discussion

Results with a base set of parameters given in Table 1 are
first presented. The initial configuration is a drop that
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Figure 4: Numerical simulation of the spreading of a
molten metal drop on a solid substrate with the forma-
tion of intermetallic phase between the drop and the sub-
strate. The figure shows snapshots with a maximum
phase-field plot at times t/tc = 0, 1, 200 where tc is
a capillary time scale.

barely touches the substrate with a contact angle close
to 180o, see Figure 4a. There are two ways to visualize
the configuration. Either the 0.5 contours of the phase-
field variables or the maximum phase-field as shown in
Figure 4 can be plotted, that is, at every discrete point
in the domain we find the phase-field variable that has
the maximum value and then designate a corresponding
color; red for φ1, green for φ2, blue for φ3, and white
for φ4. The maximum phase-field plot has been chosen
since it can directly identify triple junctions, which facil-
itates the measurement of contact angles following our
previous approach in Villanueva et al. (2009).

The early stage of spreading is always rapid as vis-
cous or inertial forces dominate followed by a slow and
progressive spreading as diffusion becomes the domi-
nant process. However, phase change can also affect the
spreading process in both stages as it was found in Vil-
lanueva et al. (2009) for dissolutive wetting. Figure 4b
shows an early time t/tc = 1 where the base radius has
increased to R/R0 = 1.07 with an apparent contact an-
gle of the drop at 132.3o. The growth of the intermetal-
lic phase is also rapid, as expected by a balance of ten-
sions with the set of interface energies in Table 2. In the

Figure 5: Comparison of the growth of intermetallic
phase between a fast intermetallic kinetics (a-c-e-g) cor-
responding to times t/tc = 1, 1.3, 3, 20, respectively,
and a slow intermetallic kinetics (b-d-f-g) with the same
corresponding times, respectively. In both cases the in-
termetallic phase eventually grows ahead of the spread-
ing liquid drop.

magnified view of Figure 4b, we see that the intermetal-
lic phase has grown ahead of the spreading liquid and
forms LIV and SIV triple junctions. The drop profile
including the structure of the contact line region is qual-
itatively similar to SEM images of a Sn-0.7 Cu solder
on a Cu-substrate performed experimentally by Nogita
et al. (2009). The drop continues to spread further and
reaches R/R0 = 2.14 at time t/tc = 200 as shown in
Figure 4c. While the intermetallic phase thickens but
remain ahead of the spreading liquid. In the magnified
view of the contact line region, one can observe that the
solid substrate is not planar, nor is the intermetallic layer
which is consistent with SEM images of contact line re-
gions reported in the literature, e.g. Yin et al. (2008) and
Nogita et al. (2009).

Note that there are four possible triple junctions that
can be formed, namely, LSV, LIV, SIV, and LIS. Only
two stable triple junctions (LIV and SIV) are formed
given the set of interface energies in Table 2. In prin-
ciple there should be a case where the other two triple
junctions, LSV and LIS, are stable and co-exist. In this
case the intermetallic phase remains behind the spread-
ing liquid until equilibrium. However we have yet to find
the set of interface energies that will give this outcome.
In addition, there is the possibility of forming a stable
LSIV quadrijunction as proposed by Cahn & Van Vleck
(1999) but it is a challenge to find the set of interface
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Figure 6: Comparison of the growth of intermetal-
lic phase with different liquid-intermetallic interface
energies: (a-c-e) γLI = 0.29 J

m2 at times t/tc =
0.1, 0.3, 1.0, respectively, and (b-d-f) γLI = 1.54 J

m2

at times t/tc = 0.1, 0.3, 1.0, respectively.

energies that will generate this particular case given our
present methodology.

A number of factors can affect the nucleation and
growth of the intermetallic phase such as interface ener-
gies between the intermetallic and other phases, and ki-
netic coefficients of the intermetallic phase. The present
phase field model does not cleanly separate the equiva-
lent interface kinetic coefficients for the LI and SI in-
terfaces. However by decreasing the mobility of the
phase field for the intermetallic phase, one can retard
the growth of the intermetallic between the liquid and
solid phases. Using the approximate formular in Equa-
tion 19, a case is now considered where the mobility of
the phase field is lowered by a factor of 12 from the base
state, while leaving the rest of the parameters the same.
The intermetallic phase becomes more sluggish in the
sense that it will respond more slowly to disequilibrium.
In Figure 5, a comparison between the two cases, fast in-
termetallic kinetics (which corresponds to 16 sK/m) and
slow intermetallic kinetics (192 sK/m) is shown. Fig-
ures 5a-c-e-g show snapshots for the fast kinetics case
with a sequence in time, t/tc = 1, 1.3, 3, 20, respec-
tively, while Figures 5b-d-f-g correspond to the slow ki-
netics case with the same time sequence, respectively.
At t/tc = 1, the intermetallic phase has grown ahead
of the liquid drop with the fast kinetics case (Figure 5a)
while no intermetallic phase has yet grown between the
liquid drop and the substrate with the slow kinetics case
(Figure 5b). The base radii of the liquid drop for both
cases are essentially identical at R/R0 = 1.07 for the
fast kinetics case and R/R0 = 1.03 for the slow kinet-
ics case. The apparent contact angles θ1 for both cases
are less than a degree apart, 132.3o for the fast kinetics
case while 132.1o for the slow kinetics case. The time
sequence t/tc = 1.3, 3, 20 for the fast kinetics case
(Figure 5c-e-g) shows the intermetallic phase moves to-
gether but always ahead of the liquid drop. The thick-

Figure 7: Concentration profiles of B at (a) early fast-
spreading stage t/tc = 1, (b) intermediate stage t/tc =
20, and (c) late slow-spreading stage t/tc = 200 with
superimposed normalized velocity profiles and 0.5 con-
tours of the phase-field variables φL, φS , and φI .
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ness of the intermetallic phase is also increasing while it
slowly penetrates the substrate. The intermetallic phase
is non-planar and so is the substrate. The time sequence
t/tc = 1.3, 3, 20 for the slow kinetics case (Figure 5d-
f-h) shows the nucleation and growth of the intermetallic
phase. The base radii of the liquid drops compared to the
same corresponding snapshot in the fast kinetics case are
also less than an interface thickness in difference. While
the contact angles are less than a degree in difference ex-
cept for the time t/tc = 20 where the fast kinetics case
is 2.4o lower in θ1.

Figure 6 shows the effect of increasing the liquid-
intermetallic interface energy γLI from 0.29 J

m2 to
1.54 J

m2 on the nucleation and growth of the intermetal-
lic phase. We should note that varying an interface en-
ergy γij in the model means modifying the correspond-
ing parameter Wij and εij which can also alter the other
interface energies. However, a 1D recalculation of the
interface energies with the changes in the LI-interface,
WLI = 1.47×105 J

mol and ε2LI = 3.87×10−9 J
m (while

keeping the rest of the parameters the same), yielded a
slight change in other interface energies (see Table 3).

Snapshots for γLI = 0.29 J
m2 at times t/tc =

0.1, 0.3, 1.0 are shown in Figures 6a-c-e, respectively,
while Figures 6b-d-f correspond to γLI = 1.54 J

m2 with
the same time sequence, respectively. At t/tc = 0.1
in Figures 6a and 6b, both cases has no intermetallic
growth and the profiles are almost identical. But then
at t/tc = 0.3, the growth of the intermetallic phase with
γLI = 0.29 J

m2 (Figure 6c) has become noticeable as
compared to the case with a higher γLI = 1.54 J

m2 (Fig-
ure 6d) where the intermetallic phase has just about to
nucleate. At a later time t/tc = 1.0 with the lower γLI

(Figure 6e), the intermetallic phase grows thicker and
is now clearly ahead of the spreading liquid. While the
case with a higher γLI (Figure 6f), the growth of the in-
termetallic phase has become noticeable but it is thinner
compared to the case with lower γLI . Thus Figure 6
demonstrates that a higher liquid-intermetallic interface
energy can also retard the growth of the intermetallic
phase although the intermetallic phase finally gets ahead
of the spreading liquid.

The initial concentrations in each phases can be set
arbitrarily in the model. At equilibrium, the liquid phase
is rich in A while the substrate is rich in B (refer to the
phase diagram in Figure 2). Initially, we start with the
substrate having equilibrium values of xS

A = 0.05 and
xS

B = 0.70 while the liquid has lower concentration of
B, xB = 0.05, than the equilibrium value of xL

B = 0.22
but higher concentration of A, xA = 0.85, than the equi-
librium value of xL

A = 0.54. Solute diffusion is much
slower than fluid flow. So for the purpose of demonstrat-
ing that the concentrations in the liquid and intermetal-
lic reaches their corresponding stable or equilibrium val-

ues within a feasible computational time frame (see Fig-
ure 7), we increase the effect of diffusion compared to
fluid flow, that is, the ratio between the solute transport
due to convection and solute transport due to diffusion
(also known as solutal Peclet number) is decreased by a
factor of 500. Figure 7a shows the concentration profile
of B at an early spreading stage t/tc = 1 with a super-
imposed normalized velocity profile and 0.5 contours of
the phase-field variables φL, φS , and φI . The concen-
tration of B in the liquid evaluated at the center of the
drop (along the z-axis and midpoint between the LV and
LI-interface) has only increased by 2 ·10−5 from the ini-
tial value of xB = 0.05 while the concentration of A
(not shown) has increased by 3 · 10−4 from the initial
value of xA = 0.85. The intermetallic phase has formed
at this time and has spread ahead of the liquid phase.
The flow pattern consists of a vortex with center out-
side of the drop and near the liquid-vapor interface, and
a flow downward from the upper part of the drop then
redirected to the contact line region. And as expected,
there is negligible flow in the solid substrate and in the
intermetallic phase at any given time. The base radius of
the liquid drop is R/R0 = 1.07 and has a contact angle
θL = 137.6o.

At an intermediate stage t/tc = 20 (Figure 7b), the
drop spread further with a base radius R/R0 = 2.30 and
a contact angle θL = 85.4o. The flow pattern is gener-
ally the same compared to the previous time t/tc = 1
except that the vortex moves further away from the solid
substrate. The concentration of A and B in the liquid are
xA = 0.73 and xB = 0.10, respectively. While the con-
centrations in the intermetallic phase are xA = 0.44 and
xB = 0.37. Since the average concentration of the sys-
tem implies only three-phase SIV co-existence, the liq-
uid drop is expected to disappear at equilibrium. In ad-
dition, the equilibrium concentration of the intermetallic
phase is expected to reach the I-corner of the SIV co-
existence triangle (see phase diagram) which has values
xI

A = 0.28 and xI
B = 0.53. At a later stage t/tc = 200

(Figure 7c), the liquid drop shrank, the intermetallic
phase expanded, and portion of the substrate has dis-
solved. Furthermore, the liquid drop has spread further
with R/R0 = 3.24 and contact angle θL = 61.2o. The
concentration of A and B in the liquid are xA = 0.60
and xB = 0.20, respectively, and are close to the sta-
ble values xA = 0.54 and xB = 0.22 (that corresponds
to the L-corner of the LIV co-existence triangle in the
phase diagram). The concentration of A and B of the
intermetallic layer are xA = 0.36 and xB = 0.48 with
its source of A-atoms coming from the liquid drop and
B-atoms from the substrate. Although the average con-
centration (x̃A = 0.07, x̃B = 0.35) lies inside the SIV
co-existence triangle, these concentrations are closer to
the I-corner of the LIV co-existence triangle, that has
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values xA = 0.34 and xB = 0.48, than the I-corner of
the SIV co-existence triangle that has values xA = 0.28
and xB = 0.53. A check at times t/tc = 300, 400, 500
yielded the values (xA = 0.36, xB = 0.48), (xA =
0.36, xB = 0.48), (xA = 0.36, xB = 0.47) respec-
tively, which are also closer to the I-corner of the LIV
co-existence triangle. However, a validation by exam-
ining planar interface (1D) confirms that a three phase
SIV co-existence yields the right concentrations at the
corners of the SIV co-existence triangle.

Conclusions

We have presented a multicomponent and multiphase
model of reactive wetting with intermetallic formation.
The model incorporates fluid flow, phase change, and
solute diffusion. Numerical simulations were performed
successfully revealing the complex behavior of the re-
active wetting process that include the nucleation and
growth of an intermetallic phase, initial rapid spreading
followed by a slow and progressive spreading. In addi-
tion, we have shown that the formation of the intermetal-
lic phase can be controlled by the kinetic coefficient of
the intermetallic phase and/or interface energy associ-
ated with it.
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