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ABSTRACT

Consider a given homogeneous or inhomogeneous linear difference
equation Zi=0 ds(r)y(r+s) = g(r) where ¢ >2 and r = 0,1,2,... .

Suppose y 1s a solution of this equation and u,v are solutions
of the homogeneous form of this equation such that u(x)/v(r) =+ 0,
y(r)/v(r) + 0, u(r)/y(r) ~ 0. It is known that under these circum-
stances algorithms for the computation of y based on forward
recurrence or backward recurrence, such as the Miller algorithm,
are numerically unstable.

Stable algorithms, such as the method of Olver in the case ¢ = 2,
have been based on approximating y(r) by the solutions yn(r) of a

certain sequence of boundary value problems. More specifically, yn(r)

is a solution of the difference equation that coincides with vy(x),
over some fixed initial range of r, say r = i,i+l,...,i+j-1, and
satisfies yn(r) =0 for r = n,n+l,...,n+8~j-1. Here j 1is an

integer whose value depends on the asymptotic behavior of the chosen
solution y(r) and n 1is an arbitrary large integer. Boundary value
problems of this type are shown to be equivalent to two initial value
problems of order j and 2-j by factorization of the linear differ-
ence operator. The solution of the problen of order j is obtained
by forward recurrence; the solution of the other problem is obtained
by backward recurrence.

The algorithm is specified completely for a broad class of linear
difference operators. This class includes, for example, every constant-
coefficient operator. Convergence of yn(r) to y(r) as n - « for

fixed r 1is proved and an expansion of the truncation error is derived.
Numerical stability is demonstrated under appropriate conditions. The
method is tested by numerical examples involving fourth-order equations
with variable coefficients.
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CHAPTER 1. INTRODUCTION

1.1 Miller's and Olver's Algorithms

Linear recurrence relations (linear difference equations) are satis-
fied by many of the higher transcendental functions of mathematics, and
they arise quite naturally in applications of mathematics. Discretization
of ordinary differential equations in numerical analysis is one important
area in which they occur. Because of their special form, linear recurrence
relations are especially well suited to the construction of computing
algorithms. Stability requirements in the case of second~order homogeneous
relations led to the well-known Miller backward recurrence algorithm [ 5],
which was developed for the computation of modified Bessel functions. This
reference was published in 1952. The review paper of Gautschi [9] pro~-
vides a survey of algorithms and applications in the case of second-order
homogeneous equations. Nowadays, the name of Miller often attends when a
minimal solution (defined below) of a homogeneous equation of arbitrary
order is computed using backward recurrence [28]. These algorithms always
involve backward recurrence from assumed starting values (since these are
not known in general) followed by a normalization procedure, such as match-
ing one value of the computed solution with the desired solution in order

to arrive at the proper scale factor which relates these two sclutions.

A different class of algorithms becomes necessary when "intermediate"
solutions of a linear recurrence relation are to be computed. Intuitively
speaking, an intermediate solution is one for which two other solutions can
be found such that one dominates, and the other is dominated by, the inter-

mediate solution. We are speaking here of dominance in the following sense:



if a= (a(®),a(l),...) and b = (b(0),b(1),...) are two infinite
sequences* then b dominates a whenever a(r)/b(r) -0 as r - = ,
Neither forward recurrence nor the Miller algorithm is numerically
stable for an intermediate solution. This is because recurrence in either
direction, when carried out in finite precision, will be contaminated by
small components of the other solutions. An analysis of the prop-
agation of these rounding errors appears in [18]. In the forward direction,
as the recurrence proceeds through more and more steps, the dominant solu-
tions grow and eventually overwhelm the desired intermediate solution.
Since our concept of dominance is really dominance "at infinity", the situa-
tion for recurrence in the backward direction is not completely analogous.
However, if we start at a sufficiently large value of r and recur backward,

other solutions grow at a faster rate than the wanted intermediate solution

as r decreases.

In addition to intermediate solutions, a difference equation has minimal
(or "recessive") and maximal (or "dominant") solutions. Intuitively, a
minimal solution does not dominate, and a maximal solution is not dominated
by, any other solution of the difference equation as r - = , Ultimately,
forward recurrence is stable for maximal solutions since the error cannot
grow more rapidly than the solution. Similarly, backward recurrence is

stable for minimal solutions, at least in a region of sufficiently large r .

TWe shall regard the solutions of a linear difference equation, as well as
the coefficients of the equation, as complex-valued functions of a discrete
real variable. We shall assume that this discrete real variable proceeds
in unit increments; thus the solutions, as well as the coefficients, of
linear difference equations are complex sequences. We shall be interested
only in those linear difference equations whose coefficient sequences are
of infinite length.



The lowest order of difference equation for which an intermediate solu-
tion can exist, and then only when the equation is inhomogeneous, is two.

Such an equation is of the form
(1.1.1)  a(r)y(r-1)-b(x)y(r)+c(r)y(r+l) = d(r) , r = 1,2,...
Since the general solution is

y(xr) = au(r) + Bv(r) + h(r) , r = 0,1,2,... ,

where a and { are comnstants, u = (u(0),u(l),...) and v = (v(0),v(l),

.) are linearly independent solutions of the homogeneous equation, and
h = (h(0),h(1),...) 1is a particular solution of (1.1.1), there can be at
most three asymptotically distinct types of behavior of solutions as
r - « ., Let us assume that Vv dominates u and that h is an inter-
mediate solution. In addition, assume u{0) # 0 and Vv(r) # 0 for all
sufficiently large r . Under these assumptions a stable algorithm for
computing intermediate solutions of (1.1.1) was presented by Olver in [21].
If v = (y(0),y(1l),...) 1is the desired intermediate solution, Olver's
algorithm approximates y by a sequence of solutions v, = (yn(O),yn(l),

.) such that yn(O) = y(0) and yn(n) = 0 where n dis an appropriate-
1y chosen positive integer. Note that only one initial value of the wanted
intermediate solution is required to determine the sequence of approxima-
tions. The sequence is shown to converge pointwise to y as n > * .

Olver's algorithm efficiently produces the first n-1 unknown terms
of v, as the solution of a tridiagonal linear system of order n-1 . The
procedure used for solving these linear equations is equivalent to Gaussian
elimination without pivoting. It comsists, in effect, of a forward elimina-
tion stage followed by a back substitution stage. The algorithm is construct-

ed so that the numerical stability of this procedure may be assessed. The



forward elimination stage is realized by two forward recurrences. One of
these uses the homogeneous form of (1.1.1) to generate a dominant solution
p = (p(0),p(l),...) . The initial values used for starting this recurrence
are p(0) =0 and p(l) =1, and the solution p 1is asymptotically pro-
portional to v . Therefore, the rounding errors ultimately propagate in
proportion to p , although they could propagate faster than p at first
(if p 1is essentially proportional to u for early values of r ,
corresponding to an excessively small value of u(0)). A combined algorithm
that employs both Miller's algorithm and Olver's algorithm in adjacent
ranges of r 1s proposed in [22].

The second forward recurrence in the forward elimination stage of

Olver's algorithm uses the inhomogeneous first-order equation
a(r)e(r-1) - c(r)e(r) = d(r)p(r) , r = 1,2,...,

where the solution e = (e(0),e(l),...) satisfies e(0) = y(0) . Here
two distinct asymptotic forms of behavior may exist, but there is no reason
to expect that the calculation of e will be asymptotically unstable in
general. However, as was the case for the solution p , there may
be applications where rounding errors grow more rapidly then e(r) over
some finite initial range of values of r

The back substitution consists of backward recurrence of the inhomo-

geneous first-order equation

p(r+l)yn(r) - p(r)yn(rﬂ) =e(r) , r=n-1l,n-2,...,1,

starting with yn(n) = 0 . The stability of this backward recurrence is
guaranteed in the "asymptotic region' belonging to the chosen solution

v(r) , that is, the infinite range of r which is such that the asymptotic



behavior of y(r) relative to u(r) and v(r) 1is maintained.
Olver's method of solving the tridiagonal system leads to a very con-

venient representation of the truncation error. For each r and for all

n=r7r , the expansion
z e(s)

(1.1.2) y(r) =y, (&) + p(x) p(s)p(st+D

s=n

is valid. Consequently, for each r and n=zr and v =2 1 we have

nty=-1 e(s)
Yoy (D) =y (0) = p(x) szn O

This expansion is useful ag a basis for deciding on an appropriate value of
n, i.e., for deciding when to stop the forward elimination and begin the
back substitution. Suppose that for particular values of ¢ > 0 and

r, say ¥ =um , it is desired that

jy(m) - yn(m)! < & .

A value of v(= 1) is selected and v(m) 1is approximated by yn+v(m)

The problem then is to determine the smallest value of n such that

|yn+v(m) -y @ <e

This is done by continuing the forward elimination until r = m at

which point calculation of the numbers

r+v-1
e(s) |

n(r) = |p(m) szr Soypsry| * ° 7 m,mtl, ...
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is begun. Forward elimination is continued further, together with the
calculation of m(r) , until a value of r is reached such that n(r) < ¢ .
This value of r is taken for n ; its adequacy may be checked by taking
additional terms in the infinite expansion of y(m) - yn(m) , given by
(1.1.2) with r =m

In addition to being appropriate for computing intermediate solutions
of (1.1.1), Olver's algorithm is suited to computing the minimal solution

of a homogeneous equation. It can therefore be compared to Miller's

algorithm. The advantage of Olver's algorithm over Miller's algorithm
is that the latter does not have a criterion for determining automatically
an appropriate value for n . On the other hand, if an adequate value

of n is known from other considerations (as, for example, from an

asymptotic estimate), then Miller's algorithm may require less computa-
tional effort.

Zahar [27], Oliver {19,20], and Cash [ §] have considered extensions of
Olver's algorithm to linear difference equations of higher order. In the
present work we shall construct and analyze an algorithm which has features
in common with these extensions. We shall also illustrate the algorithm

by means of numerical examples.




1.2 Factorization of Linear Difference Equatious

Let F be the field of complex numbers and let S be the set of all
complex-valued infinite sequences x = (x(0),x(1),...) . Clearly S 1is
an  infinite-dimensional linear space over F . Let DK be the set of

all infinite upper~triangular band matrices of the form

dO(O) . . . . dz(O) 0
do(l) . . . . dﬂ(l)
do(r) . . . . dz(r)
0

where dO,dl,...,dZ ¢ § and do(r) £ 0, dz(r) # 0 for infinitely

d . d

many values of r . We shall also use the concise notation [dO’ 10

2!
to represent infinite matrices in the set DK . If we regard the infinite
sequences in 8 as infinite column vectors, then an infinite sequence

Dx € S is defined for each D € D{ , x € § by ordinary matrix multiplica-

tion. In fact, the terms of Dx are given by

Dx(xr) = ds(r)x(r+s) , r=20,1,2,..

[ s Ta™)

s=0

Clearly, each D ¢ DZ is a linear operator on S under this definition.

We shall say that D is the class of linear difference operators of order

L
£ on S

Note that DE is defined for each integer £ > 0 . We pointed out in

§1.1 that intermediate solutions of linear difference equations
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can exist only if the order of the equation is at least two. But we are
going to factor linear difference operators into a product of two lower-
order operators. Therefore, operators of order one will arise. Further-
more, the formalism to be introduced will allow even the degenerate case

of operators of order zero.

If dO and dﬂ

ence operator [dO’dl""’dﬂ] € DZ is nonsingular; compare {14, §12.0].

have no terms equal to zero, we shall say the differ-

The terms of do and dﬁ will be called the leading and trailing coeffic-

ients of [d.,d ,...,dﬁ] , respectively.

0°1

. i .
We shall use the notation x to indicate a sequence from S whose

first term is =x(i) . Thus
xT = (x(1),x(i+1),...)

The point 1 will be called the initial point of the sequence. When we do

not indicate a superscript it is to be understood that zero is the initial
. .. . i,n
point of the sequence. Similarly, we shall use the notation x ° to

indicate the (finite) subsequence of x  whose final term is x(n) . Thus

x50 = (x(1),x(i+1), .. .. x(0))

The point n will be called the terminal point of the subsequence.

Similarly, for linear difference operators from DE , we shall use the
notation D' or [dé,d;,...,

of each of the £ + 1 sequences involved in the definition of the opera-

i .. . P .
dﬂ] to indicate that 1 is the initial point

tor. See Figure 1. When the superscript is omitted, it is understood
that these initial points are all zero unless it is clear from the context

(as in equation (1.2.1) below) what these initial points are.
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Two further notational conventions to be used in this thesis are

D? , the infinite matrix obtained from Dl by deleting the first ]
columns (0=j=f) ; and D;’n , the leading principal submatrix of order
n-1i+1 of D§ . See Figures 2 and 3. Note that each diagonal of

i L . . \
Dj below the principal diagonal is a subsequence of one of the sequences

dg’di""’d3-1 , the sequence of d; is on the principal diagonal, and
the sequences d§+1,. .,dz form the diagonals above the principal dia-

gonal. The form of the finite matrix D;’n is similar, with the finite
subsequence d;’n lying on the principal diagonal.

A linear difference equation is an equation of the form Dx = g ,

where g € S and D ¢ DK are prescribed. Either x € S (or a sub-
sequence of x of the form xl’n) is to be determined. This equation

is equivalent to the infinite linear algebraic system
Dx(r) = g(r) , r = 0,1,.

Analogously to linear differential equations, auxiliary conditions are
required in order to specify a unique solution. In our investigations
these auxiliary conditions will consist of two finite subsequences

Xi,i+j—1

Xn,n+k—l (or possibly only ome of these) which are to be

and
specified in advance, where j + k = £ and 3 =0, k=0 . These are

called the initial and terminal conditions, respectively, when n 2 1 + ]

Let us consider the following finite boundary value problem: Deter-

R
mine y1 i,n-1 such that

(12.1) Dy(r) = g(r) 5 r = i,i‘*‘l)---;n—j—l
together with initial conditions

(1.2.2) y(it+r) = ar , t=20,1,...,3-1

11



12

and terminal conditions

(1.2.3) y(nt+r) = Br , v =0,1,...,k-1

are satisfied, where D € DK , L=1,g€S8, Jc¢ {0,1,...,8} , k = £-]

i>0,nz=21i+3j and ao,al,...,aj_l,ﬁo,ﬁl,...,Bk_l € F . 1In view of
.2.2) an .2.3), the finite subsequences ¥ " an »HTRT
(1.2.2) and (1.2.3), the fini b L=l g ontk-l
i,i+j-1

are known. Of course, if j =0 then vy is null., Similarly if

k = 0. These cases correspond to the absence of either (1.2.2) or (1.2.3).
i+ji,n~-1 . e . ,
The unknown subsequence vy satisfies a linear system of algebraic

equations which can be expressed in matrix terms using the notation we

introduced above. The system is

(1.2.4)
Di,i+j-l i,i+j-1
phoni-Lodti,n-l | fin-j-1 | 70 7 _ 0
J 0 n-2,n-j-1 n,n+k-1
DK v
provided that n - i - j = max(j,k) . The first partitioned column vector

on the right side of (1.2.4) has j entries in the upper part, and the
second partitioned column vector has k entries in the lower part. The
length of the other column vectors appearing in (1.2.4) is n - 1 - j
This is what gives rise to the restriction n - 1 - j = max(j,k) . This
restriction is irrelevant for the applications we have in mind, since we
shall be considering sequences of finite boundary value problems as n - «.
Note that the number of zeros represented by the symbol O in the parti-
tioned column vectors is n - i - 2j in the first vector and n - i - £
in the second vectér. Obviously, the partitioned column vectors reflect
the influence of the boundary conditions (1.2.2) and (1.2.3).

Solution of the boundary value preblem (1.2.1) to (1.2.3) is equiva-

lent to solution of the linear system (1.2.4). Equation (1.2.4) possesses
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i,n=-j=-1

a unique solution if, and only if, the matrix DJ is nonsingular.

If in addition we assume that the difference operator D is nonsingular,

then the solutiomn vl’n+k—l of (1.2.1) to (1.2.3) extends uniquely to

J

y € § by forward and backward recurrence. However, nonsingularity of D

is not necessary for this unique extension to exist; for example, some

of the leading and trailing coefficients of D which appear in the
i,n-j-1

finite matrix Dj could be zero.

Let us consider the nonsingular triangular cases of (1.2.4). The

first is given by j = £ . Then (1.2.4) assumes the form
Di,i+£—lyi,i+£—l
(1.2.4a) Dz’n"ﬂ‘ly”@’n‘l I I
0

Writing out these equations in detail, we have

£-1
d,(Dy(i+e) = g(d) - 1 d_(D)y(i+s)
s=0
£-2
d, ({+1)y (i+0) + d,(i+1)y(i+0+1) = g(i+l) - ) d_(i+D)y(i+s+l)
-1 4 s=p S
2
Yod (i) y(itlts) = g(i+d)
s=0 s
L
Z ds(n—ﬂ—l)y(n—ﬂ—l+s) = g(n-£-1)
s=0

Since this system is lower triangular, it is solvable by determining
y(i+L) from the first equation, y(i+{+1) from the second equation, and
so on. This process is equivalent to developing y(i+l) ,y(i+l+1), ...,y (n-1)

from (1.2.1) by forward recurrence starting with the given values (1.2.2).



The second triangular case is given by j =0 . Then (1.2.4) assumes

the form

Di,n-l i,0-1 _ gi,n—l 0

O y ................
n—ﬁ,n—lvn,n+ﬁ—l

Writing out these equations in detail, we have

£
L 4 (Dy(i+s) = g(1)
=0
£
z d (n-£-1)y(n-L~1+s) = g(n-£-1)
s=0 s
L
do(n—Z)y(n—Z) + dl(n—Z)y(n—l) = g(n-2) - Z d (n-2)y(n~-2+s)
s=2 S
£
d,(0-1)y(n-1) = g(n-1) = ] d_(o=1)y(n-l+s)
s=1

Since this system is upper triangular, it is solvable by determining
v{n~-1) from the last equation, y(n-2) f£from the next-to-last equation,
and so on. This process is equivalent to developing y(n-1),y(n-2),...,
v(i) from (1.2.1) by backward recurrence starting with the values (1.2.3).
The nontriangular cases of (1.2.4) in which 0 < j < £ will be of
greater interest to us. Our primary goal is to find a way to solve these
problems by performing, in effect, a forward recurrence of order j
followed by a backward recurrence of order £ - j

Definition 1.2.1 A nonsingular boundary value problem (1.2.4), or equi-

valently (1.2.1) to (1.2.3), having initial point 1 , terminal point n,
number of initial conditions j and difference operator

.»d

€ DK , will be called factorizable provided there

ol €
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exist difference operators Al = [aé,ai,...,aj] of order j and
i+ i+ i+5 i+

37 = [bO J,bl ],...,bk J] of order k =4£ - j such that
(1.2.5) D;’H'J'l = A?’n—j_lBé+j’n-l

. o i i+] -
If in addition the sequences aj and bO J are free of zeros and the

infinite matrix factorization

(1.2.6) pt = atpttd
i

is valid, then we shall say that the difference operatnr D is (4,3) -

factorizable.

i,n-j~1

Several remarks may be made here. Note that Dj and D? are

band matrices each having total bandwidth £ + 1 , lower bandwidth j ,

and upper bandwidth k . A nonsingular and factorizable boundary value
; . . , . . i,n-j-1

problem is one for which a finite matrix factorization of Dj
exists such that the left factor is lower triangular with total bandwidth

j + 1 and the right factor is upper triangular with total bandwidth

. s
k + 1 . The difference operators AT and gty may be arbitrary as long
as they satisfy the condition (1.2.5), since (1.2.5) involves only a finite

i i+ .
submatrix of each of AT and B I, Equation (1.2.5) is illustrated

in Figure 4. Since D;’H—J_l is nonsingular, both A?’H_J“l

and

(i e

Bé Jsn-l are nonsingular. Thus the entries on the principal diagomals
C (bt e

of A;’n i-1 and B; jsn-l are all nonzero.

Now suppose the difference operator D € Dﬂ is (i,j) - factorizable;
it need not be a nonsingular operator. Because of the triangular forms

. s
of A; and gt , equation (1.2.6) implies equation (1.2.5) for every

n=i+3+1. In words, every leading principal submatrix of D% is

equal to the product of the corresponding leading principal submatrices of
5 I . .y
Aj and B ] . The assumption that the subsequences a% and bl+J
] 0

are free of zeros is equivalent to assuming that the entries on the
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The factorizatrionm (1.2.5).

Figure 4.



principal diagonals of the infinite matrices A% and Bl+j are all non-
3

zero. It follows that every leading principal submatrix of D} is
]

nonsingular. Thus we have proved the following theorem:

Theorem 1.2.1 Let D ¢ DK be (i,j) - factorizable. Then, for every

n>1i+ 3+ max(j,f-j) , the boundary value problem (1.2.4) having differ-

ence operator D, initial point i, number of initial conditions j and

terminal point n is nonsingular and factorizable. [EH

The next theorem shows it is possible to obtain a solution to a fac-
torizable boundary value problem, in theory at least, by performing an
appropriate forward recurrence followed by an appropriate backward

recurrence.

Theorem 1.2.2 Let (1.2.4) be a nonsingular and factorizable boundary

value problem with initial point i, number of initial conditions j, term-
. . . i i+j

inal point n and difference operator D ¢ DE . If A and B are
difference operators of order j and k = £-j , respectively, such that

(1.2.5) is wvalid, then the solution of (1.2.4) is identical to the solu-

tion of
(1.2.7)
R NI RS N O
(A?—K,n—j—l)—anwﬂ,n—j—lyn,n+k—l
3 2
(44 e
where z- 1°" 1 is the solution of
(1.2.8)
iaitg-l i, i4i-1
Ai,n—3~1zi+j,n-l i,n-j=1 B 0

17
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Proof The matrices A%’n -1 and Bé j»n-l are nonsingular because

D;’H—J_l is nonsingular; see (1.2.5). Therefore, the diagonal elements
. (hd e
of A;’n i-1 and Bé -1 (which are triangular matrices) are nonzero
and (1.2.7) and (1.2.8) are nonsingular linear systems. Furthermore,
n-£,n-j-1 , . o . )
Aj is nonsingular because it is a principal submatrix of
i, n—j -1 . . . . .
Aj Therefore the right side of (1.2.7) is unambiguously defined.

i,n=-j~1

Now, premultiplying (1.2.7) by AJ and using (1.2.5) and

(1.2.8), we obtain

i,n-j-1 i+j,n-1 _
i 7 B

D

i,i+j~lyi,i+j-l

J - —3-1. = - 4= -
0 (A? £, n—] l) an £,n~j lyn,n+k 1
L
Consider the last product on the right side of this equation. Its block

structure is

-----------------------------------------------------

i . . Ayfﬁ,n—j-l ] (Ag-ﬂ,n~j~l>—lDE—K,n—j—lyn,n-k—l

where O in the matrix denotes a zero submatrix with n - i - £ rows
and k(= £-j) columns, 0 in the vector denotes a zerc subvector of
length n -1 - £, and * in the matrix denotes a submatrix which needs
no further identification here. Therefore, the product in question is

equal to the vector

o-{,n-j~1 n,n+k-1
2 y



19

Substitution into the equation and comparison with (1.2.4) completes
the proof. Eﬁ
An important remark is that if (1.2.6) is valid, i.e. if D is (i,j)-
) , i . i+j
factorizable with left factor A and right factor B , then

Dn—ﬂ,n—J—l - Ag—ﬂ,n—J—an—k,n—l
L i k

n~-k,n-1
k

in (1.2.7). The truth of this remark is apparent from Figure 4.

An—ﬂ,n—j—l)—l

In this case B may be written in place of (

Dn-Z,n—j-l
The next theorem gives necessary and sufficient conditions for a

difference operator to be (i,j) - factorizable. The proof also shows

that (i,j) - factorizations may be constructed by Gaussian elimination in

natural order, i.e., without any row or column interchanges.

Theorem 1.2.3 Let D € DK . Then

i) A nonsingular boundary value problem having initial point i,

number of initial conditions j and terminal point n is factorizable if
every leading principal submatrix of D;’n_j-l is nonsingular.

ii) D is (i,j) - factorizable if every leading principal submatrix
of D? is nonsingular,. Furthermore, this condition is necessary if D
is nonsingular.
Proof Our approach is to apply Gaussian elimination [10,§2.1] without any
row or column interchanges. Because Gaussian elimination is so familiar,
we merely sketch the proof. The proof of (i) is contained in the first
n ~1i - j stages of the proof of (ii); therefore we supply only the
proof of (ii). We begin by proving sufficiency of the condition.

The first row of D? is used to annihilate every nonzero element
below the first element in the first column. This is possible because

the pivot element, which is the leading principal minor of order one, is

nonzero. Because of the band structure, only the j rows immediately follow-
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ing the first row are affected. Also (again because of the band structure)
the trailing coefficient in each of these rows is not changed. The
multipliers used in these annihilations go into positions 2 through j + 1
of the first column of the lower triangular factor A? . The first ele~
ment is unity and every other element of the first column of Aj is zero,
This completes the first stage.

Now suppose the (r-1)st stage has been completed. Let the notation
5% denote the transformation of the original D; resulting from the first
r - 1 stages. The leading principal submatrix of 5? of order r 1is
upper triangular, having resulted in effect from the corresponding principal
submatrix of the original D? by Gaussian elimination in natural order.
Its diagonal elements are all nonzero, by hypothesis. Therefore the
pivotal element is nonzero and the r-th row of 5; may be used to
annihilate every nonzero element below the r-th element in the r-th column.
Only the j rows immediately following the r-th row are affected, and the
trailing coefficient in each of these rows is not changed. The multipliers
used in this annihilation go into positions r + 1 through r + j of the
r-th column of A; ; unity goes into the r-th position, and zeros go into
every other position. This completes the r-th stage.

Let Bi+j be the infinite upper triangular matrix which results from
the full sequence of transformations on D? . By our construction, both

A; and Bl+J have the bandwidths required by (i,j) - factorizability.

. (s
Also by our construction, formally multiplying A;' on the right by g
results in D? ; compare (1.2.6).

In order to prove necessity of the condition in part (ii), note that

the factorization produced by the foregoing process is such that leading

) . - ' .
and trailing coefficients of both A; and B 'Y are nonzero if D is
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nonsingular. Therefore, no row or column interchanges could be made with-
out widening the btandwidth. Therefore, Gaussian elimination in natural
order is the only possibility for arriving at the factorization. But
GCaussian elimination in natural order is possible only if every leading
principal minor is nonzero. This completes the proof. ]i]

Examination of the proof of Theorem 1.2.3 shows that a unique (i,j)-
factorization does not exist, since a different scaling of the rows is
possible. This would result in the appearance of entries on the principal
diagonal of A? that are other than unity. In fact, the scaling used
in the (0,l)-factorization in Olver's second-order algorithm put the
sequence (p(2),p(3),...) on the principal diagonal of the right factor:
compare $1.1. Thus the principal diagonal of the left factor will contain

entries other than unity, in general.




1.3 A Preliminary Development of the Algorithm

Let D €7D It is clear that an extension of Olver's algorithm

R
for computing a particular solution y of a given difference equation
Dy = g should involve the posing of a boundary value problem whose solu-
tion yn is an approximation of y over some finite subsequence yi’m .
The boundary value problem will have some number j = 0 of initial
conditions (depending on the particular solution being sought). These
will consist of a subsequence of j consecutive values of y . The
terminal conditions of the boundary value problem will be yn(n) = yn(n+l)
= +ee o= yn(n+k-l) =0 , where k = £ - j

The first task is to decide how to choose j . A necessary pre-
requisite is a classification of possible solution types when the operator
is of order higher than two. Oliver [19] provided an early extension of
Olver's algorithm. He also provided the following definition of dominance.

Suppose we are given two sequences a , b € S . Then b dominates a

if there exists some i > 0 such that

(1.3.1) [b(r+1)/b(r)| > la(r+l)/a(r) ]

for all r = 1 . Oliver considered only those difference operators for
which a system of complementary solutions could be found such that the
complementary solutions are linearly ordered under this definition of
dominance. Furthermore, he considered only those particular solutions of
the given linear difference equation which could be compared to each of
the complementary solutions. But not all possible particular solutions
can be so compared; for example, no particular solution which has an

infinite subsequence of zeros can play the role of either a or b in

(1.3.1).



In §1.1, we adopted a different definition of dominance: b

dominates a if

lim a(xr) _

r=o b(r) 0

(1.3.2)

This differs from Oliver's definition (which 1s equivalent to requiring
that ultimately {a(r)/b(r)l be monotonically decreasing). Another
difference is that the limit of !a(r)/b(r)! under Oliver's definition
may be greater than zero, as the example a(r) =1 + 1/r and b(r) =1
immediately shows.

Let D € DK . The set K(D) = {x€S|Dx=0} will be called the kermel
of D . Obviously, K(D) 1is a linear subspace of S . Let us suppose
that K(D) has dimension £ , so that there exist £ linearly indepen-
dent sequences xl,xz,...xz € K(D) which span K(D) . A sufficient

condition for this to be the case is that D be nonsingular; compare

M4,812.17. We shall say that the set xl,xz,.”,xe forms a basis

for D

Definition 1.3.1 We shall say that D ¢ DK is totally separable (as

r - =) provided there exists a basis yl,yz,‘..,yK for D such that
Varl dominates ys in the sense of (1.3.2) for each s , 1 s < £ .

Any basis which satisfies the conditions of Definition 1.3.1 will be

called totally ranked. Such a basis is not unique because Vi e for example,

could be added to each of VoseeYp and the resulting basis would also
be totally ranked.

For each s , 1 =s =< 4£ , let Ks denote the linear subspace of S
which is spanned by AR PYRRTES S In particular, Kﬁ = K(D) . 1t
seems obvious, and it will be proved in a more general setting in Chapter
2, that every totally ranked basis generates the same subspaces. The

subspaces satisfy

23



K. ¢ K. ¢ .. C

1 9 KZ = K(D)

Each set inclusion is proper, since the dimension of KS is s . This
ascending chain of subspaces induces an obvious classification of the
solutions of Dy = 0 into £ distinct types. However, we are interested

in classifying the solutions of Dy = g £for nonzero, and indeed, arbitrary

g € S . Therefore, we frame the definition so as to cover all cases:

Definition 1.3.2 Let D € DZ be totally separable with totally ranked
basis yl,y7,...,yz . Then, for each v € S , we shall say that the
type of y (with respect to D) 1is s , where 0 < s < £ , and we shall

write type(y) = s , provided that

. y(r)
1im ~ =0
(1.3.3) o ys+l\r)
and
(1.3.4) w > Lim sup y(r) | - 0
T - e yg ()]

Furthermore, if (1.3.3) is true for s = 0 , we define type(y) =0 ,
and if (1.3.4) is true for s = £ , we define type(y) =41

The type of each y € § 1is the same regardless of which totally
ranked basis is used. This will be proved for a more general classifica-
tion of sequences in Chapter 2. Thus we are justified in defining the
type with respect to D rather than with respect to a particular totally
ranked basis.

The conditions for Olver's algorithm [21] suggest that Definitions
1.3.1 and 1.3.2 are appropriate for an extension of the algorithm to
arbitrary order; see also Cash [6 ]. But it would be desirable to have a

classification scheme which is applicable, for example, to every difference
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equation with constant coefficients. Not every constant-coefficient
éperator is totally separable, however. In the next chapter we shall
introduce a more general class of difference operators (separable
operators) which does include every constant-coefficient operator.
Incidentally, the class of difference equations considered by Oliver [19]
includes every constant-coefficient equation, since the standard basis
(see §2.1 below) is linearly ordered under his definition of dominance.

Before stating the next theorem, we explain what we mean by matrices

and determinants associated with the name Casorati. If Xl’XZ""’X €S
S

are  arbitrary sequences, then for each r = 0 the s X s matrix

xl(r) xz(r) ceee xs(r)

xl(r+l) Xz(r+l) e Xs(r+l)

x, (r+s- +s-1) .... +s-

bxl(r s-1) xz(r s-1) xs(r s ll

will be called a Casorati matrix. Let X = {xl,x?,...,xs} . We shall use

the concise notation [X](r) to denote the Casorati matrix above. Further-

more, ;X}(r) will denote the Casoratian (of X at r), defined by

|X((r) = det [X](r) , r =20,1,...

If D ¢ DK is nonsingular, Casorati's theorem [14,812.11] states that
B RE DT RERTE.Y) forms a basis for D if, and only if, !X!(r) # 0 for
all r

Theorem 1.3.1 Let vy be a solution of the difference equation Dy = g ,

where D € D, has a totally ranked basis Y = {yl,yz,...,yz} . Let

L



i = type(y) . Then vy is uniquely determined by its values v(i),y(i+l),
..,y{(i+i-1) provided that i = 0 is a point at which the leading prin-

cipal minor of order j of |[Y|(i) is nonzero.

Proof Assume j = 0 ; then the condition on the Casoratian is vacuous

and we must show y 1is uniquely determined without knowledge of any of

its values. Suppose z # y 1is another solution of type zero; then there

exist unique scalars al,az,...,ae {not all zero) such that

y(r) = z(r) + alyl<r) + e+ aﬂyﬂ(r) , r =0,1,..

Let a be the nonzero scalar of highest subscript. Dividing through by
yt(r) and allowing r - = , we see that at = 0 , which is a contradiction.
Next, assume j > 0 . Suppose =z # y 1is another solution of type j

such that

z(i+r) = y(i+r) , r = 0,1,...,3-1
There exist unique scalars al,az,...,az € F (not all zero) such that

y(r) = z(r) + a,y. (r) + ... + @Kyz(r) , r =20,1,...

171

It is proved easily that each of aj+l,...,a£ is zero by a method similar
to that of the previous paragraph. The remaining scalars are determined

by the linear system

i,i+j-1 i,i+j-1
e+ =
lyl + ajyj 0
(where 0 stands for a column vector of j =zeros and we have used the

notation developed in §1.2). This system is nonsingular by the assumption

on the Casoratian; therefore, at =0, t=1,2,...,7 , which is a

contradiction.



Theorem 1.3.1 confirms the adequacy of the selection of j initial
conditions in the approximating boundary value problem, where j = type(y).

In 3.3 we will demonstrate that stability considerations demand exactly

j initial conditions, in general, for a solution of type j.

Now let us suppose that a value of j has been selected, where

o (i e
i = type(y) . Since y;’l -l yl’l i-1 and yn,n k=l 0 , the linear
system to be solved is

Di,i+j—lyi,i+j-l
C i1 44t one C
(1.3.5) D;’n ] lyi Il gl’n =L .Q .............. ;
0

compare (1.2.4). The value of n 1is to be found in the course of the
computation. In view of Theorem 1.3.1, y 1is the unique solution of the

infinite linear system

i,i+j-1 i,i+j-1
i it+] 1 0 y
(1.3.6) D, =g -

0

................

Ve assume that D 1is (i,j)-factcrizable, i.e., that linear difference
operators Ai € Dj and Bi+j € Dﬂ—j exist such that D; = A?Bi+j
As shown in the proof of Theorem 1.2.3, successive rows of this factoriza-
tion, and indeed of the triangularization of the infinite system (1.3.6),
may be generated indefinitely by the forward stage of Gaussian elimination
without pivoting. The stability of this process, also, will be discussed
in §3.3.

In consequence of Theorems 1.2.1 and 1.2.2 and the terminal conditions

n,ntk-1
7n

= 0 , the solution of (1.3.5) may be obtained as the solution of

i+j,n~1_i+j,n-1 _ i+j,n-1
(1L.3.7) BO Vo z
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i+i,0-1 o
where z= J°0 is a finite subsequence of the solution of
ol 4 44
e . Dg,l 3 ly1,1+3 1
(1.3.8) Az =gt o Y : .

Comparison of (1.3.8) and (1.3.6) and reference to the identity
. (i
D; = AJ,IBl 3 show that

et i "
(1.3.9) Byt = gt

Thus (1.3.7) represents the finite linear system that results from (1.3.9)

, . , i+ 1+
by truncation at the (n-i-j)th row and column. Since B b oand 27
are generated by Gaussian elimination without pivoting, the solution of
(1.3.5) for any n is easily programmed for an automatic digital computer.

The algorithm comprises two stages: (i) forward elimination (solution of

(1.3.8)); (4i) back substitution (solution of (1.3.7)). The forward

elimination can be continued arbitrarily far. The back substitution is
numerically equivalent to backward recurrence, and proceeds until we
return to the initial point i

The question of the stability of the back substitution is easily

settled. For totally separable operators we have the following theorem:

Theorem 1.3.2 Let D € Dﬂ have a totally ranked basis Y = {yl,yz,..‘,yg} .

Suppose 1= 0 and j € {0,1,...,£-1} are such that D is (i,3) -
factorizable and the leading principal minor of order j of }Y)(i) is

. . -+. . . ~i+
nonzero. If D% = A;Bl d is an (i,j) - factorization of D , then B J
J
is totally separable. Furthermore, if =z € S has type j or less with
i+j , i+s
respect to D , then =z J has type zero with respect to B~ -

Proof Suppose j = 0 . Then A% is a diagonal matrix with nonzero ele-
- J

ments on the diagonal; see Definition 1.2.1. For each y €Y we have



D’y = A'By =0, i.e.
L
) ay (Db (D)y(r+s) = 0, r = 1i,i+l,...
s
s=0
Therefore,
£
Y b (x)y(r+s) =0 ,r = i,i+l,...
s
s=0

* y € Y} 1is a totally ranked basis for B* . It follows

which proves {y
that zi has type zero with respect to Bi whenever 2z has type zero
with respect to D

Suppose 0 < j< £ . Let U= {yl,yz,.ﬁ.,yj} . Since |Uj@) # 0
it is possible to find a linear combination x of yl,yz,...,yj such

that x(i),x(i+l),...,x(i+j-1) take on any prescribed set of values.

Therefore, appropriate linear combinations xS , s = j+i,j+2,...,2 ,

can be found such that ys(r) + x (r) vanish for r = i,i+1,....1+7-1 .
bo-J

Let vs—j =5, + x ., 8 = j+1,3+2,...,4 . It is easy to verify that

{yl,...,yj,vl,...,vk} is a totally ranked basis for D . Now let

v € {vl,vz,...,vk} . In view of Theorems 1.2.1 and 1.2.2, the remark
following Theorem 1.2.2, and the facts that Dv =0 and v(itr) =0
et e
for r=0,1,...,j-1 , we conclude that gden 1 satisfies
AL DU 0 ...,
n~-k,n-1 n,nt+k-1
B v

k

for every n = i + j + max(j,k) ; compare equation (1.2.7). On letting

et ik s i S ‘

n - « this proves I 2 0 . Thus {v? J,v; J,...,vk J} is a
s .

totally ranked basis for g Finally, let =z be of type j or less

with respect to D . Let s € {1,2,...,k} . Then
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z(r) _ z(r) -0 5w
RORE NN O FEI) T

i+j . 3 i+j ]
which shows that =z has type zero with respect to o heed

In consequence of Theorem 1.3.2 and our remarks in §1.1, when
i = type(y) the back substitution stage of the algorithm is stable, at
least for all r in a sufficiently large range.

It remains to determine the appropriate value of the truncation

parameter n . It is necessary to introduce Green's formula for linear

difference operators; see, e.g., Miller [13]. We apply Green's formula

i+ ,
not to the operator D but to the operator B J Our development is

essentially the same as that of Cash [6 ].

Let B = [bO’bl""’bk] 3 Dk . The infinite upper triangular matrix
O’gl""’gn] € Dk which is obtained from B by deleting the first

k columns and transposing the result, i.e. whose entries are defined by

B=[b

~

(1.3.10) b (r) = b (r+s) ,

is a linear difference operator of order k . We shall call B the

operator which is adjoint to B , or more briefly, the adjoint operator

of B . An operator and its adjoint satisfy a number of elementary

properties which are easily verified from the definition. Among these are

(1.3.11) 3P _ (BE)Tr
(1.3.12) 8207 - (Biyq)Tr

(1.3.13) B

= T
[
—
o
N



Bp+k,q+k Tr

(1.3.14) gPd < ¢ 0 Yoo,

k

valid for q=p and p = 0,1,2,...
Now take any u,v € S and B ¢ Dk , and assume k > 1 . Green's
formula is the identity

q-1 .
(1.3.15) Y {v(r)Bu(r) - u(r+k)Bv(r)}
r=p

- +k~1 p,ptk-1
- (Vp,p+k l)Ter,p k-1 p,P

- ,qt+k-1 q,q+k-1
_ (vq,q+k l)Tqu q R

valid for q=p+k, p= 0 . Green's formula may be verified by express-

ing the left side of (1.3.15) in the form
4~ r s 4= +k, g+k- 5 -
(Vp q l)T (Bu)p q-1 _ <up k,qtk l)Tr<Bv)p,q 1

and reducing this expression with the aid of the definition (1.3.10) and

the identities (1.3.11) - (1.3.14).

Theorem 1.3.3 Let D; = A;‘B1+J be an (i,j)~-factorization of D ¢ D@ R

where D 1is totally separable and j < £ . Let y be a solution of
b3 e .

Dy = g , where type(y) < j and g € S . Let y; o1 and z 9 be

the corresponding solutions of (1.3.5) and (1.3.8). Also, let s be a

s+
fixed integer satisfying i + j + k- 1=<s<n and w: L. (ws(s+l),

ws(s+2),...) be the solution of

%s—k+i,s s-k+l,s
Es—k+l s+1 - 0 WS

(1.3.16) " Woo T T et
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(1.3.17) wz’k+l’s = (0,0,...,0,1)
Then

n-1
(1.3.18) y (s) = rzs w (r)z(r)/by(s) ,

s
where bo(s) is the (s-i-j+l)st leading coefficient of Bl J

Remark: Equations (1.3.16), (1.3.17) are equivalent to the initial value

problem

-

:

b (w (x+t) = 0, 1 = s-k+l,s-k+2,...
£=0 t S

with initial conditions ws(s—k+l) = o= ws(s—l) =0, ws(s) =13

compare (1.2.1)-(1.2.3) and (1.2.4a).

Proof: Let p=s-k+1, qg=n,v= wS and u = yn in (1.3.15). By

virtue of (1.3.7), (1.3.16) and (1.3.17), the left side of (1.3.15)
becomes

n-1
Low (02

r=8

Since uq,q+k—l = yz,n+k—l = 0 , the second term on the right side of
(1.3.15) is zero. Thus, expanding the right side and using (1.3.17),

we derive



Vp,p+k-—l Ter,p+k—1up,p+k—l

( )
» T "'1
= (0,0,...,0,1) bo(s—k+l) N bkpl(s—k+l) yn(s—k+l)
by () v, (8)
g i A b

bO(S)yn(S)

Equating the left and right sides thus arrived at, we obtain (1.3.18). YZ]

In §3.2 with appropriate conditions it will be proved that

Lmy (r) = y(x)

for each fixed r = i + j . Thus, allowing n = = in (1.3.18), we have
(1.3.19) y(s) = w_(r)z(r) /by (s)

r=s
for each s> 1+ j + k-1 . Similarly, if

(=)

nn@) = y(s) -V,

is the truncation error incurred in accepting the approximation yn(8>

for y(s) , we have

<o

(1.3.20) n (s) = 7} w_(r)z () /by (s)
r=n
for each s>1+ j + k ~ 1.
Let us compare (1.3.20) with (1.1.2), the truncation error expansion

for the original algorithm of Olver. Suppose £ =2 and j =Lk =1
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The difference operator which is implicit in (1.1.1) is D = [do,dl,dz]
where

do(r) = a(r+l) , dl(r) = - b(r+l) , dz(r) = ¢ (r+l)
for r =0,1,2,... . Similarly, the right side of (1.1.1) is, in our

present notation,
g(r) =d(e+1) , v = 0,1,2,..

1
The rows of the (0,1)-factorizarion Dg = A?B are scaled so that

- + [ —
1 1.1 )
for r =1,2,..., where B = [bO,bl] and p = (p(0),p(l),...) 1is the

sequence defined in §1.1. The solution zl of the forward elimination

stage of the algorithm is given by

z(r) = e(r) , r=1,2,...
compare (1.3.8). Finally, it may be verified readily that the solution
of the adjoint equation ﬁws(r) =0, r =s,s+l,... such that wS(s) =

is given by

w (ry = R8pCsHL)
S

p(r)p(r+l)

Making these substitutions into (1.3.20) and exchanging the roles of r
and s , we obtain (1.1.2).

The simple form of the equation for ws(r) depends solely on the
particular scaling of the (0,1)-factorization used by Olver and the fact
that k =1 . A similar simplification can be obtained for difference

equations of arbitrary order provided only that k=1 . It stems from

1
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the fact that the order of the adjoint equation is one, hence all solu-
tions can be expressed as multiples of a single particular solutiom.
These conclusions were also arrived at in Cash's paper [6].

The expansions (1.3.19) and (1.3.20) may be employed in the estimation

of the optimal value of =n such that a given termination criterion is met.

Typical termination criteria would be to require one or more values of
yn(r) in the range i + j < r <m to approximate y(r) to a specified
absolute or relative precision. Since the back substitition stage is
stable, controlling the absolute or relative error only at the point r =m
is often sufficient. In practice equations (1.3.19) and (1.3.20) are
employed by replacing the upper limit by =n + v , where v 21 1is a
parameter chosen to suit the problem at hand.

The solution of (1.3.16), (1.3.17) is obtained by forward recurrence.

The stability of this process will depend on the behavior of ws(r) for

large r relative to the other solutions of the adjoint equation. In
general there is no reason to expect that ws(r) will not contain a com-
ponent of a maximal solution. Thus the solution of (1.3.16) will normally
be stable, although there could be an initial range where some unstable

rounding error propagation takes place,
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CHAPTER 2. CLASSIFICATION OF SEQUENCES

2.1 Constant-Coefficient Operators

Let D = [dO’dl""dZ] € DK be a constant-coefficient operator. By

this we mean that there exist 60,61,...,6K € F such that 60 #0 ,

5, # 0 and ds(r) = 58 for all r . We assume without loss of

Z

generality that 6£ = 1 in every constant-ccefficient operator. Since
every constant-coefficient operator is nonsingular, by our definitions, the

kernel K(D) has dimension £ ; see discussion preceding Definition 1.3.1.

A particular basis, which we shall call the standard basis, exists

for each constant-coefficient operator; see [14,5§13.0-13.1]. The polynomial

P(z) = £° + 6£_l££_l + e+ 5,

is known as the characteristic polynomial for D . The standard basis is

the set of sequences

A= (™) €SP0 =0 and mw € {0,1,...,u00)-1}}

where (M) denotes the multiplicity of the root N\ . We are using the

. m, r . .
notation (r A') here as an alternative way of denoting the sequence

(pm,x,zmxz,gmx3,...>

where =1 and Oon = 0 when m> 0

)

The standard basis of a constant-coefficient operator is not necessarily
totally ranked; recall Definition 1.3.1. For example, if Xl and XZ

are two distinct zeros of the characteristic polynomial such that

{xl[ = {Xzi then !X;! = fng for all r . Neither solution dominates

the other.
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let us write a < b whenever a,b € § are such that a is dominat-
ed by b . We shall say that a and b are separated (at infinity) if
a< b or b < a . A totally ranked basis is linearly ordered by <«
but in general the standard basis is not, as we have just seen. However,

we can introduce a linearly ordered partition of the standard basis. We

shall proceed to do this.
m m

It is apparent that (v lki) < (r 2

x§> if, and only if, either (i)

or (ii) [N\, | = szf and m, < m, . Let o denote the

2‘ l‘ 1 2

number of roots of P(&) = 0 of distinct absolute value, and let

’Xll < ]K

xl,xz,...,xc be representative roots of P(§) = 0 such that IXSF < {Xs+ll

for each s . Define = max{L) ||N] = |[X |} . We define the sets
g | s

a = (™) enl A = T s s = L2, 0
and, for each s , the sets
m. v
A = A ea ey = ,m=0,1,...,u -1
Ay o = 1) A ey z e} o, m=0 b

b

It may be verified readily that the sets AS o are disjoint and nonempty

and

g =1

(2.1.1) A= U U A

s=1 mw=0 7

The sets AS o are linearly ordered according to the definition:

A < A if, and only if, either (i) s < s' or (ii) s = s' and

An illustrative example is afforded by the constant-coefficient equa-

tion



y(r+8) - (4+4V2)y(r+7) + (15+16V2)y(r+6) - (48+12V2)y(r+5)
- 12y (x+4) + (192+64V2)y(r+3) - (208+256V2)y(r+2) + (256+192V2)y (r+1)

- 192y(x) = 0 .

Its characteristic polynomial, in real factored form, is

(2.1.2) (E-1) (£-2) (£+2) (£2-2V2z+4) 2(2-3) = 0

The roots of (2.1.2) include the complex numbers V5(1+i) and VE(l~i) s
each of multiplicity two. The subsets of the linearly ordered partition

in this example are

r

b o=}
by o= 125, (-2)" Val1-)" V2" (1+1) T}
by 1= (V25 (-0, V2T (1+0) T}
T
A3,O = {37}
Note that if a € A2 0 and b € A2 1 then fa(r)/b(r)[ = r—l when r > 1
In contrast, if a ¢ As and b € A, where s < s' then [|a(r)/b(r)]

contains a decreasing exponential factor.

In general, if a,b € A are such that a < b , then the separation

ratios fa(r)/b(r)' decrease as the product of a power of r-l and an

exponential function in r . If the exponential function is identically
equal to one, as will be the case whenever a and b are standard basis
solutions which correspond to characteristic roots of equal magnitude,

then we shall say that a and b are algebraically separated. Otherwise,

we shall say that a and b are exponentially separated.

Figure 5 is obtained by plotting the roots of (2.1.2) in the complex
plane and drawing circles through them, centered at the origin. There are

three circles, corresponding to the distinct absoclute values of the roors.



The double roots are indicated on the circle of radius two; it is help-
ful to imagine them duplicated on a second circle of radius two that is
raised slightly out of the plane. Let us number the four circles, thus

arrived at, by increasing three~dimensional distance from the origin.

This determines geometrically the proper linear ordering of the four sub-
sets A n of the partition. The ordering of elements within any one of

the subsets is unimportant for our purposes.

Clearly, this geometric indication of the linear ordering of the sub-

sets of the partition can be extended to any constant-coefficient operator.

Figure 5. The roots of (2.1.2). The double roots V2(1*i) are

denoted A, A
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Theorem 2.1.1 Let (2.1.1) denote the linearly ordered partition of the

standard basis for a given constant-coefficient operator. Then:

i) If a & A and b &€ A |, then a< b 1if, and only if,
s,m s’',m
As,m < As',m'
i) If a,b €A, then la(r)| = |b(r)| for all
iii) If a.,a.,...,a , b € A where the a's are distinct, and
1°72 q S,m
A, 58, s...,a € F are all nonzero, then
1" 72 q
q
(2.1.3) lim sup| ) apap(r)/b(r){ > 0

o0 p=1

Proof: Parts (i) and (ii) are trivial consequences of our definitions.

Turning to part (iii), we note that the sequence Z;=l apap(r)/b(r) is

not identically zero (since the a's are linearly independent). Let
y P

Kl,Xz,...,Xq,X be the characteristic roots associated with the set AS

such that

,M

m, ¥
a (r)y =r A R =1,2,...,
p( ) . P q

r . . . .
Since the A's lie on the same circle in the complex

and b(r) = £\
plane, there exist real constants Bl,BZ,...,Bq,B all lying in the half-

open real interval [-7,7) such that

ap(r) = rm’KfreerP p=1,2,...,qg
and b(r) = r"|A|Texp(irf) , i = V=1 . Thus
q q .
) aa (r)/b(r) = ) «a et EYP
p=1 PP p=1 P
where Yp = Bp -8 The +y's are distinct real numbers (modulo 2m)




because the sequences al,az,...,aq are assumed distinct.
The right member of the last equation represents a so-called almost

periodic function of r when r 1is regavrded as a continuous real var-

iable. To complete the proof we appeal to the following lemma, the proof
of which is given in the Appendix.T

Lemma 2.1.1 Let « aQ be nonzero complex numbers and Yl’YZ""’

ELIRERE

Yq distinct real numbers (modulo 2r). Define the infinite sequence

irey

(2.1.4) x(r) = ae P, r=0,1,2,..

p

Il 1.0

1

Then lim supr%w]x(r)l >0 . [}

An equivalent statement to inequality (2.1.3) is that there exists an

infinite subsequence of the sequence

q
Z aa (r)/b(x) , r=0,1,2,...
os1 PP

which is bounded away from zero. Intuitively, this means that it is
impossible to create a new sequence with qualitatively different asymptotic
behavior merely by forming a linear combination of standard basis solutions
of similar asymptotic behavior. Note, however, that unlike the original
sequences infinitely many zeros may occur in the new sequence. For example,
if 27 and (--2)r are sequences in a standard basis, then every other

r r
term of the sequence 2 + (-2) is zero.

+ . .
'We relegate the proof of Lemma 2.1.1 to the Appendix because the theory
of almost periodic functions is not germane to the rest of this thesis.
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2.2 Separable Operators

In this section we introduce a subclass of the general set of infinite
upper-triangular band matrices DZ introduced in §1.2, and examine in
detail the general structure of the kernel of an operator in this sub-
class. This will prepare the way for the presentation, in the next
section, of a general classification of all sequences in S with respect
to a given linear difference operator. In Theorem 2.1.1 we presented

three properties of the standard basis of a constant-coefficient operator.

These properties suggest the following extension of Definition 1.3.1:

Definition 2.2.1 Let D € DK be such that K(D) has dimension £ .
Then D will be said to be separable if there exists a basis X for D
which can be partitioned into nonempty disjoint subsets Xl’X2""’XG in
such a way that the following three conditions are all satisfied:
i) If x € XS and vy € Xt , where s « t , then limrﬁmx(r)/y(r) = 0;
ii) If x,y € XS for some s , then 0 < lim infrém]x(r)/y(r)j
and lim SuPr_m[X(r)/ﬂr)l < ®

iii) If x is any linear combination of sequences from X , other
s

than x = 0 , and vy € XS , then lim supr+m!x(r)/y(r)i > 0

Let D be a separable operator. A basis X for D which is such

that

o)
(2.2.1) X= U X ,

where the X  satisfy the conditions of Definition 2.2.1 will be said to
]

be optimally ranked. Let

(2.2.2) X = {XS

where the subscript nS is positive (because Xs is nonempty).
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Obviously, we have

(2.2.3) L =

il ~1Q
s}

s=1

In Lemma 2.2.1 below we will show that two distinct optimally ranked bases
for a given separable operator have the same number () of disjoint subsets
and the same number (ns) of sequences in corresponding subsets.

An optimally ranked basis exhibits the full range of possible
asymptotic behavior of solutions to the corresponding homogeneous differ-
ence equation. ~Conditions (i) and (ii) of Definition 2.2.1 establish the
ranking of sequences within the basis. If (2.2.1) is a particular optimally
ranked basis, we shall say that x ¢ X 1is a sequence of type s provided
that x € Xs . More generally, we shall say that x € K(D) 1is a sequence

»

of type s provided that x # 0 and there exist scalars « ¢ F such that

D,

n
S p

L2.4) X = s
(2 ! : pzl qzl ap’qxpaq

where as,q # 0 for some q , 1 =q¢< n_ - Such a representation of x
exists and is unique for every nonzero x ¢ K(D) . Again, in consequence
of Lemma 2.2.1 below, if we change to a different optimally ranked basis,
the type of every sequence in K{(D) remains invariant. Condition (iii)
of Definition 2.2.1 presages this; it requires that no nontrivial linear
combination of basis sequences of the same type may be dominated by a
basis sequence of that type.

Let L(Y) denote the linear subspace of S which is spanned by ¥
where Y ¢ S may be any finite subset of sequences. If (2.2.1) is an
optimally ranked basis for a separable operator D, then we shall say that

s
the subspace L ( U X ) 1is the subdominant subspace of type s for D .

p=1




These subspaces are independent of the basis; again, see Lemma 2.2.1

)]

below. If jS denotes the dimension of L{ U X ) , then
p=1

S
(2.2.5) J = Z n 3

compare (2.2.2) and (2.2.3). In addition, we shall say that {0} , the
linear subspace of dimension zero (whose only sequence is the zero sequence)
is the subdominant subspace of type 0.

Let (I be one of the subdominant subspaces for D . The complementary

subspace of (] im K(D) , i.e., the subspace U of K(D) such that
(2.2.6) KD) =uev,

will be called the corresponding dominant subspace. The symbol @ on the

right side of (2.2.6) means that K(D) 1is the direct sum of the subspaces

{4 and V ; that is, every nonzero sequence x ¢ K(D) is uniquely

expressible in one of the forms x =u , or x =v , or X = utv ,

where u € U and v ¢ V. Clearly, if U is the subdominant subspace
o
of type s, 0 <s< o, then V=1L( U X) 3 and if U is the sub-
p=s+1 P

dominant subspace of type o, then UV = {0} .

Before stating and proving Lemma 2.2.1, we note that

s
L(pElXp) = L(Xl) e L(Xz) & & L(XS)

. . » o _; V .
Thus, an alternative characterization of a sequence of type s in K(D) is

the following: x € K(D) 1is of type s, 1 < s = o , provided thar

compare (2.2.4).



Lemma 2.2.1 Let

o} o)

5, = — |

X U XS U {x 1%, 2 ’Xs,m 1
s=1 s=1 s

and

T T

Y= Uy = | s seens
f s J {ys,l ys,Z ys,n }
s=1 s=1 s

be distinct optimally ranked bases for a separable operator D ¢ DZ .

Then o = 1T and ms = ns for all s . Furthermore,
s s
L(UX)Yy=L(UY)Y, s=1,2,..., o,
s s
p=1 p=1

and the type of every nonzero sequence =z € K(D) is the same with respect
to X as it is with respect to ¥

Proof Let u ¢ XS and v € Xt , so that relative to ¥ the types of u
and v are s and t . Let the types of u and v  relative to Y

be s' and t' . Then there exist unique representations

[=4
[}
[ 0]

u, , u, €L, , u,#0
3 J J

j=1

and

v o=
]

It e~1ct

v, , v, € L)Y, v
1 J J ( J)

Furthermore, by condition (i) of Definition 2.2.1, we have, as r - « ,

G
n
<

(2.2.7) u(r) = u_, (x) + o{y(r)}

6]

and



(2.2.8) v(r) = vt,(r) +of{y(xr)} , vy € Yo

i) First we prove that s' = t' if s =1t , i.e., if u and v are of
the same type with respect to X , then they are also of the same type
with respect to Y

Since s = t , the sequence u(r)/v(r) 1is asymptotically bounded
away from zero; compare part (ii) of Definitiom 2.2.1. Suppose that
s' < t' . We shall obtain a contradiction by showing that, under this
assumption, u(r)/v(r) has an infinite subsequence which converges to
zero, Choose any vy ¢ Yt, . Then we have

lim u(r) _
e y(r)

From (2.2.8), we have

()
v(x) _ Ve
y® - Ty oW

and, using the triangle inequality, an elementary property of the limit

superior, and condition (iii) of Definition 2.2.1, we obtain

lim sup |v(x) lim sup Vt'<r)
— —_— > 0
7500 v(r) T>00 y(r)

Thus there exists an infinite subsequence of v(r)/y(r) that is bounded

away from zero, and therefore also a subsequence of

u(r) _ u(r)/y(x)
v(r) v(r)/y(r)

that converges to zero. This supplies the needed contradiction.



A similar contradiction is obtained if we suppose that s' > t' . Hence

ii) Next we prove that s' < t' if s< t

Since s < t , the sequence u(r)/v(r) converges to zero. Suppose
that s' > t' . We shall derive a contradiction by showing that, under
this assumption, wu(r)/v(r) has a subsequence which does not converge to
zero. Choose any vy ¢ YS, . First, by using (2.2.7) and an argument

similar to that used in part (i) of this proof, we have

lim sup
Fae e

u(r) |
y(r)' >0 .

Thus there exists an infinite subsequence of u(r)/y(xr) that is bounded
away from zero.

Assume now that s' > t' . Then

lim v(xr) _
r+e y(r)

0

In this case it follows that there exists a subsequence of

u(r) _ u(e)/y()
v(r)  v(r)/y()

that diverges to « , which supplies the needed contradiction.

Alternatively, assume that s' = t' . Using (2.2.8), we have for

gufficiently large =

v | T

y(xr)

y (1)

Furthermore, using condition (ii) of Definition 2.2.1, we see that there

exist r >0 and B > O such that

47



L8

vt,(r)

WSB’ r = r

e}

Therefore, for sufficiently large t , we have

and

u(r), - -1 yu(r)
———t 1+8 —
S| = ) D
It follows that wu(r)/v(r) has a subsequence that is bounded away from
zero, which again supplies the needed contradiction.
iii) Next, we prove that ¢ = T and m = ns for all s , and also
s s

that L(UX ) =L(UYY) for all s

=1 S S

p=l p=1

Part (i) of this proof implies that for each s , 1 s =0, the type

relative to Y of every sequence in Xs is the same, say tS . Using

part (ii), we have

(2.2.9) 1<t <t < " <t =7T.

Furthermore, that s = t_ for all s , 1 <s <o , is easily proved by

P

induction. In particular, o = tG and, using (2.2.9), we see that o0 = 7T

Tnverting the roles of X and Y and repeating the argument, we see
that T <o . Thus o =7 , and (2.2.9) implies tS =g for all s

For each s , it follows that

Ue oo U3 ; [+oel)
L(g,Us UK © (Tl )

and by symmetry,
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L(YlU"-UYS) c L(XlU"‘UXS)

Thus
g Ueoe = U..UY
L(KlU UXS) L(YlU U S)
for each s . In particular, L(Xl) = L(Yl) . Since Xl and Yl are
hases of the same linear space, we have my =0 - Apn easy induction

completes the proof of this part.

iv) To complete the proof, let =z € K(D) Dbe a nonzero sequence such that

s
z = z u , u #0, u_ €LE),
p=1 P s P P
and
t
z = Z v , v #0, v_¢€L({)
Assume s < t , and let y € Yt . Then
lim vt(r) ) lim s u (r)-v (r) ) til v (r) .
e y(r) TR a0 y(r) p=s+l y(r)

But this result contradicts condition (iii) of Definition 2.2.1. Hence we
must have s > t . A similar contradiction is obtained if we assume
s>t . Therefore s =1¢ and the proof of Lemma 2.2.1 is complete. []
In general, the actual determination of optimally ranked bases for
variable coefficient difference operators ig a difficult problem. Some
results have been given by Wimp [26]. This reference extends earlier

work by Birkhoff and Trjitzinsky (2 ,3 ] on the analytic theory of singular

difference equations whose coefficients possess asymptotic expansions
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of a prescribed form. All equations with coefficients rational
in r are included, for example. Wimp's analysis provides a

means of constructing a basis, which he calls a canonical set;

see [26, Theorem 3.3 and Definition 3.6]. The canonical set is

analogous to our optimally ranked basis. More specifically, there

exists a basis {yl,yz,...,yg} such that, for each s =1,2,...,2 ,

ys<r> = CSMS(T—'){].'FO(l)} as r - «

where cg # 0 and

Q.(r) ® P
Ms(r) =e® ¢ SUnr) ®
Here es is a complex number and pS is a positive integer. Qs is of

the form

1-1/p 1/¢6
= T + -+ [
Qs(r) Lot £n r wy Tt u,T r

where o 1s an integer, p = 1 , and uo,ul,...,up are complex numbers.
The rich variety of possible separation ratios of sclutions as r - » ,
compared with the algebraic or exponential separation of scolutions in the

constant-coefficient case, described in §2.1 above, is evident.
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2.3 The General Classification

In §2.2 we showed that every nonzero sequence in the kernel of a
separable operator has a unique type with respect to that particular
operator. In this section we extend this classification to every nonzero

sequence in S . The following definition should be compared with

Definition 1.3.2.

Definition2.3.1 Let D € DK be separable with optimally ranked basis

g
X= U XS . Then, for each y ¢ S , we say that type (v) = s , or more
s=1
fully, the type of y with respect to D 1is s , provided that 0 < s < C©

and the fcllowing two conditions are satisfied:

i) If x ¢ X then lim y(r) =0

s+1 e x (1)

thep o > lim.supiy(r)i -0

ii If < |
) ® e K r>o |x(r) |

0 , then (ii) does not apply, and we define

If (i) is satisfied for s

type(y) = 0 . Similarly, if (ii) is satisfied for s = ¢ , (i) does not

apply, and we define type(y) = o .

The classification of sequences introduced in Definition 2.3.1 allows
us to treat both homcgeneous and inhomogeneous difference equations in a
uniform manner when the difference operator is separable. The kernel of
the operator contains every solution of the homogeneous equation, by defini-
tion. But solutions of the inhomogeneous equation with arbitary right-hand
side may lie anywhere in S . This is why a classification of all sequences

in S 1is desirable.

Theorem 2.3.1 Every sequence in § possesses an unambiguous type with

respect to each separable operator in D@

Proof (i) First we show that the type with respect to a fixed optimally



ranked basis is determined uniquely by Definition 2.3.1 for every nonzero

sequence in S

Let 2z € S . Assuming that
lim sup z(r)'
(2.3.1) oo ————Xm’ >0

A

for at least one sequence x € X , let X € X be a sequence of largest

type such that (2.3.1) is satisfied. Let s = type (X) . Then (2.3.1)

is satisfied for every x € Xs , Since

and lim infr*miﬁ(r)/x(r)l > 0 as a consequence of condition (ii) of
Definition 2.2.1.

If s = o, then type(z) = ¢ according to Definition 2.3.1. There-

fore suppose that s < ¢ . By the maximality of X we see that
lim supt+wfz(r)/x(r)] = 0 whenever type (x) > s or, equivalently,
(2.3.2) Lim z(r) _ 0 whenever type (xX) > s

r—oe x(r)

Accordingly, type (z) = s

To conclude the proof of part (i), let us suppose that (2.3.1) is

not satisfied for any x € X . Then (2.3.2) is satisfied for every x € X
and in particular for every x € Xl . Then type (z) = 0 .
o o}
(11) In this part we prove that if X = U XS and X' = U X;
s=1 s=1

are two distinct optimally ranked bases for D then the type of every
sequence in S 1is the same with respect to X and X'.

Choose any s , 1 < s < ¢, and choose x € XS , x' € X; . There



exist x € Xp , 1 <p<=s, such that x' = xl+°--1—xs ; see Lemma 2.2.1.

Furthermore, we have

x (1)

x (1)

= o(l) +

Since X is a linear combination of sequences of type s, a brief computa-

tion and application of condition (ii) of Definition 2.2.1 yields

lim sup ’Xs(r>
< fee)
o0 Pox(r)
It follows that
lim sup |x'(r)
(2.3.3) R e I
lim inf .
and li»in ;%%;% = 0 whenever type (x') = type (x)

Since the roles of x and =x' are interchangeable, we also have

lim sup | _x(r)
(2.3.4) oo £7z;71 <
lim inf |x'(r) o
an oo ()| 0 whenever type (x') = type (X)
Let z € S and suppose type (z) = 0 with respect to X . Thus
z(r)/x(r) - 0 for every x € X . Choose x' € X' . Let s = type (x')
and choose x € XS . Then
z(r). z(x) || x(r)
= 0 - O
SRR EGOHEEO )

by virtue of (2.3.4). This proves type (z) = 0 with respect to X'



Let 2z € S and suppose type (z) = ¢ with respect to X . Thus

1lim suprﬁm|z(r)/x(r)l > 0 for every x ¢ X . Choose x' ¢ X' , Let
s = type (x') and choose x € XS . Then the sequence
z{r) - 1z() x(r)
x'(r) ix(r)||x"(x)

satisfies 1lim suprﬁw!z(r)/x'(r)i > 0 by virtue of (2.3.3). This proves
type (z) = ¢ with respect to X'

Finally, let =z ¢ S and suppose type (z) = s , 0 < s < o . Thus
z(r)/x(r) - 0 for every x € XS+1U"'UXG and lim SUE+lZ(r)/X(T)f >0
for every x € Xs . It can be verified that z(r)/x'(r) - 0 for every
x' € X'S+1U---UX5 and that 1im suprﬁmlz(r)/x'(r)l > 0 for every

x' € Xé using arguments similar to the ones used in the preceding two

paragraphs. Ey
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CHAPTER 3. THE GENERAL ALGORITHM

3.0 Preliminaries and Overview

In this chapter we fix our attention on a particular linear differ-

ence equation

(3.0.1) Dy(r) = g(xr) , r =20,1,2..

assuming that D € Dg is separable and g ¢ S . More specifically, we
are interested in computing an approximation Y, of a particular solution
y of (3.0.1) which is valid over some finite subsequence yl’m . 1 and

m given.

Let o be the number of distinct types in any optimally ranked basis
for D . We assume that v 1s known to be a sequence of type t with
respect to D , where 0 = t = o . We also assume that initial values
y(i),y(i+l),...,y(it+j-1) are known, where j 1is the dimension of the
subdominant subspace of type t for D . The extension of Theorem 1.3.1,
from totally separable to separable operators, is given in §3.1. Accord-
ingly, these initial values (in the presence of one additional condition)
suffice to determine the solution uniquely.

Let k=2 - j ., The approximating sequence Yy is defined as the

solution of (3.0.1) which satisfies the conditions

(3.0.2) yn(i+r) = y(i+tr) , r =0,1,...,5-1
and
(3.0.3) yn(n+r) =0 r =0,1,...,k~1

-

, im | . . im L
Since vy is to be approximated by yq , it is clear that the value
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of n must exceed m . The existence and uniqueness of the approximating
sequences y_, for all sufficiently large n , and the convergence of

n
the sequence of approximate values yn(r) to vy(r) for each value of r

in the range 1 + j = r < » , are proved under appropriate conditions

in §3.2.

The general algorithm, which is valid for any separable operator, re-
duces to the algorithm presented in $1.3 for totally separable operators.
We again assume that the separable operator is (i,j) - factorizable, just
as we did for totally separable operators. The linear system (1.3.5) is
solved by the factorization method by means of a forward elimination
stage followed by a back substitution stage; see §1.3. The expansions
(1.3.19 and (1.3.20), which are used to estimate the optimal value of
n , are unchanged for separable operators. In §3.3 we discuss the stability
of the forward elimination stage, which was omitted in §1.3. We also
extend Theorem 1.3.2 to separable operators, showing that the back substitu-
tion is stable. Finally, we note that our remarks on the stability of
the forward recurrence solution of the adjoint equation, whose solution
enters in the truncation error expansion of §1.3, apply to separable
operators as well as totally separable operators.

We conclude this introductory section by fixing some notation for

later use in this chapter. Let

(3.0.4)

>

I
< QqQ

=<

S

be an optimally ranked basis for D , where

It

(3.0.5) X = {XS X _ ,X o, s 1,2....,0 .

Then the dimension of the subdominant subspace of type t for D 1is



(3.0.6) j= ) n

Define the set

t
(3.0.7) U = {ul,uz,...,uj} = E X

by means of the correspondence

When t = 0 it is understood that j = 0 and U 1is empty.

define the set

(3.0.8) vV = {vl,vz,...vk} = U X

when t = o it is understood that V 1is empty.

Similarly,
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3.1 Existence and Uniqueness

Let y be a solution of (3.0.1) of type <t such that

(3.1.1) y{i+r) = Yr , r=20,1,...,3-1

for some i > 0 , where j 1is given by (3.0.6). Using the noration )U!(i)

for the Casoratian of U at 1 , we also suppose that
(3.1.2) Ul (1) #0 ;

see (3.0.7). DNote that for every i (3.1.2) is satisfied vacuously if
t =0, and also (by virtue of Casorati's theorem [14812.11]) if t =o¢

and D is nonsingular. The following theorem generalizes Theorem 1.3.1.

Theorem 3.1.1 If (3.1.2) is valid then there exists a unique solution of

(3.0.1) of type t such that (3.1.1) is satisfied.

Froof: Suppose t =0 . Then j = 0 and we must prove that without any

specified initial values y is uniquely determined. Let v €S be a

golution of (3.0.1), other than y , such that type (v) = 0 . Since
v -y € K(D) , there exist scalars ap Q € F such that
n
I 1
y - v = a X
p=1 q=1 Psq P>»4d
see (3.0.5). At least one of the « is nonzero; let the largest
b
value of p such that ap . # 0 for some q , 1 =<gqg= np, be p=s

Then

lim z(r)—v(r) -0

00 Xs,l(r)

because type (y) = type (v) = 0 . By part (i) of Definition 2.2.1, we
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have
lim sl ng E g( )
oo E z (r)
p=1 g=1 s

It follows from the above three equations that

=

s a X ()

1im z S$,9 8,9
= 0
e q=1 l(r)

But this result contradicts part (iii) of Definition 2.2.1; therefore we

conclude that y = v .

Alternatively suppose t > O . Let v €S bea sequence of type t
which satisfies (3.0.1) and is coincident with vy(i+r) for r =0,1,...,
j=1 . Then there exist scalars ap q € F such that

2
of np
v =y + Z Z ¢ X
p=1 q=l Psq P»9q

Let the largest value of p 1in this sum such that at least one of the
scalars «a is nonzero be p =s . Then s = t , because s > ¢t
b4

would imply

(since type (v) = type (y) = t) and

n
1im Sil Z E q H! (r>
e p=1l g=1 s l( 2

(by part (1) of Definition 2.2.1). This gives



1 5,9 8,9 "
rii I = S(r) =0
g=1 s,1
which is a contradiction.
Thus, ap q = 0 whenever p > s . The ap q having p = s satisfy

the system of linear equations

) n

;T

p=1 gq=1

(i+r) =0, r 0,1,...,3-1

a X
P49 P,9

This system is nonsingular by the condition !U!(i) # 0 , so we have

aD q =0 for all p and q . Thus v(¥) = y(r) for all r and the

theorem is proved. E]

Theorem 3.1.2 If D is nonsingular then, for each 1 > 0 , |U|(i+r) # 0

for at least one value of v in the range 0 =r = & - j

Proof: Since D 1is nonsingular, Casorati's theorem is valid, i.e.,

|X} (i) # 0 for all i . Theorem 3.1.2 is then an immediate consequence

of Laplace's general theorem on the expansion of determinants [15,§93]. E]
Theorem 3.1.2 implies there is no shortage of points i which satisfy

condition (3.1.2) when the difference operator is nonsingular. Our next

goal is to show that any optimally ranked basis may be used to locate an

admissible value of 1 .

Theorem 3.1.3 If Ui(i) # 0 for some fixed 1 = 0 , then the leading

principal minor of order j of the Casoratian evaluated at 1 of every
optimally ranked basis for D is nonzero.

Proof: If j = 0 then there is nothing to prove, so let us assume j = 0
Also, let us assume temporarily that j < £ . Let X' be an optimally

ranked basis distinct from X , where
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and

compare (3.0.4), (3.0.5). Define the sets

t
U' = {ul,ul,...,ul} = U X'
2 J s=1
and
o
vto= {v!,v!] v'} = Uyooox!
L 3 /7’ 3
12 k s=t+1
There exist scalars ap q ¢ F such that
] y/
w=1la ] p= 12,5,
P oSy Prd @ vy Pad qd
and
] 8
v! .= z a u + Z a v oo, P=j+l,j+2,...,8

The matrix of coefficients (ap q) is nonsingular because both X and X'

3

are bases of the finite-dimensional linear space K(D) . Furthermore,
from the definition of an optimally ranked basis it is easy to show that

(ap q) is block lower triangular with the s-th diagonal block having order

o - Because of the block triangular structure, the determinant of (ap q)

is equal to the product of the determinants of the diagonal blocks. And

because the determinanii of (ap q) is nongero, so is the determinant of

,

every diagonal block. Therefore, the leading principal minor of order j

of the determinant of (ap q) is nonzero. Let Aj denote this minor.
3



Next, consider the Casorati matrix [X]{(i). It can be written in

block form as

where the actual form of the blocks indicated by asterisks is unimportant.

Similarly, we write

(U'1(4) *
[K'7¢4) = | oornntoe i,
: [V'1(i+3)

If
A1 O
@y =] e
p,q :
IRy

is the corresponding block form of (Gp O), we verify readily that

N e Tr Tr

[U](l): % All A21

X' ) m ] ve e s e e e s s e | ] e e a0 s
(X'1(1) e

The leading principal minor of order j of [X'](i) is evidently given by

Ut [(1) = U] (1) dec(a )

Since |U|(i) # 0 , by hypothesis, and det(All) = Aj # 0 we have
lU'[ (i) # 0 . This completes the proof for j < ¢

Finally, we note that the proof in the case j = £ follows by an
argument analogous to that just used for j < £ , except that there is

7y

no partitioning of matrices since V and V' are empty. !ld



3.2 Convergence

Assume’

(3.2.1) ol (i) #0
and let y be a solution of type t of (3.0.1), where 0 =t = o . For

each n > m + 1 such that a solution Yy of (3.0.1) exists satisfying
both (3.0.2) and (3.0.3), there exist scalars al(n),az(n),...,aj(n) and

a s
Pl(n)’52<n)""’8k(n) such that

i k
(3.2.2) y =y + ) a_(nyu_ + ) B (W)
s=1 s=1
In the case t = ¢ , we have
¢
y o=y + 1 a (mu
s=1

Then we prove readily, using (3.0.2) and (3.2.1), that as(n) = 0 for
s =1,2,...,¢4 . Thus for each n , yn(r) = y(r) for r = i,i+l,...
Therefore we restrict the ensuing discussion to the cases in which
0 =t<o
Consider the set C of all subsets of k distinct sequences from
X . We have k > 0 by our assumption that t < o . Obviously,
vV = {v,,v ,...,vk} ¢C . We shall say that the optimally ranked basig X

172

is j-normal provided that iVl(r) # 0 for all sufficiently large r , and
(3.2.3) [V](x) =0 {|V|(x)} as t —» =

for every veC - {V} . When t =0, C = {V} and X 4is automatically

T . c . . .
The reader is referred to §3.0 for notation and underlying assumptions.
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j-normal (O-normal). When ¢t > 0 the sets V <contain at least one

sequence from U = {u,,u ,...,uj} . In this case (3.2.3) expresses the

12

quite reasonable condition that whenever ome or more of the "dominant"

solutions v ,v,,...,v, is replaced in the Casoratian |V| by a "sub-

12 k
dominant'" solution, then the resulting Casoratian is dominated by |V|(x)
as r > »

We now state and prove the convergence theorem. A similar result,
but only for homogeneous linear difference equations, is given by Zahar

[27, Th. 5.1].

Theorem 3.2.1 Assume X 1s a j-normal optimally ranked basis such that

(3.2.1) is satisfied and y(r) d1s a sclution of (3.0.1) of type t. Also

assume
Vo [
lim ’ S - _
(3.2.4) oo o) =0, s=1,2,...,k
where Vs(y) = {vl,...,vs_l,y,vs+l,...,vk} . Then for sufficiently large

n there exists a unique solution y of (3.0.1) which satisfies (3.0.2)
n

and (3.0.3). Furthermore,

(3.2.5) Iy () = v

for each fixed value of r = 1 + j

Proof: From (3.2.2), (3.0.2) and (3.0.3) we derive the linear system

"ul.(i) uj.(i> Vi) (D) 7 EXGE 0 7
o BH3-D). (i+§-1)' v]..(i+j—l). .. vk‘(i+j D[ g (n) 0

Sates .'.'."hj.'('n')""fv'lk'n')"','.'_"'v'k‘(h')"" él.(.n.). - ey
_ul'(n-*'k—l) .. .uj &n+k_l)§ vlin-i-k—l) .. .vkinﬁ-k—l)J _Bk&n)- i —yin—l—k-—l)_i



Although the block structure indicated in this system disappears when’
t =0 , this modification%causes no difficulty in the following proof.

Suppose V were such that the upper right block of the matrix is
zero (again, this is satisfied vacuously if ¢t = 0). Then the linear

system becomes

The determinant of this system is |U|(i)'|V|(n) , and it is nonzero for

all sufficiently large n , in view of our assumptions. Using Cramer's
rule and Laplace's general theorem on the expansion of determinants

[15,§93), we then find that

al(n) = az(n) = ... 0= aj(n) =0
and
[V ) ()
T e e ——————— = 2
Bs(n) [V’(n) , S 1,2,...,k .

Therefore, for all r and for all sufficiently large n , we have

kv (]
(3:2.6) N e S e I
s=1

‘The other case in which the block structure disappears, which is
t = o, was disposed of earlier.

ul(l) u, (1) 0 0 al(n) 0
u1(1+j—l) u, (i+j-1)- 0 0 a,(n) 0
uy () u,(n) v, () vk(n) Bl(n) -y(n)
. _ o -+— : .+- . }+— . .-. .-;
_ul(n+k 1 uj(n k l):vl(n k-1) vk\n k l)- ‘Bk(n) ] i v (ntk l{



Then (3.2.5) follows from (3.2.4).

In order to complete the procf, let us introduce the sequences

(3.2.7) vl =v + u, + e + RSN =1,2,...,k ,
P p - Tp.1M1 5.1 °
where the Yp are to be chosen in such a way that
vé(i+r) =0 , r=20,1,...,j-1

Thus the Yp q have to satisfy the linear systems

ulfi) ces qui) szl —vp(i)

u. (i+j=1)...u, (i+j~-1 ) -v (i+j-1
1 (13 St ) o, p( j=1)

each of which is nonsingular because IU|(i) # 0, by hypothesis. Let
y' o= {vj,vé,...,vé} . Clearly it suffices to show that U Y V' 1is a
4

j-normal optimally ranked basis for D such that

V| (o)
lim ' s - _
(3.2.8) - T 0, s=1.2,....k .

Since v dominates every sequence in U , we have from (3.2.7)

v!(r)
P -1 as 1t >
v (r)
p
for each p, 1 <p < k . Therefore vé has the same type as vp

Furthermore, we may verify the three conditions of Definition 2.2.1,
as follows:

a(r) _ u() | ™

R v;(r)_ v (0 ' v (1) T 0 as v

for every u € U, and
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jﬁ(r) vé(r) vp(r) vq(r)

v () = v () ' v @ ' vé(r)'*o as r > =

whenever type (vé) < type (v');
q

vé(r) ) v;(r) Yp(r) vq(r) J

vp(r)
v (D) = v, () : v : v i v,

as r - =

i1)

whenever type (vé) = type (vé);

'o..., v € V' be all the sequences of one type,
p+l q

' be any fixed onme of these. Let the corresponding unprimed

(iii) Let vé,v

and let v

sequences be v,v ,v ...,y €V . Take & ,8 ,...,8 € F , nect all
d p’ p+l q p’ pt+l T q
zero. For each s = p,p+l,...,q we have
1
b dor e
5svs - 6S(VS+YS,lul +Ys,juj) - 6svs + o(1)
v! v'! v'! -
(since EIRL PRy are of lower type than v' = v{l+o(l)}) . Hence
S videe-+s v' v +e--4+5 v
22 94. 2R 99y )
furthermore
§ vide 46 v! 5 v 4 +8 v
BE 98- B ——Ad 1o} + o)

from which it is clear that

, q
lim sup ' '
o SZP 5w (x) /v ()| >0 .

Thus, U U V' 4is an optimally ranked basis.
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Next we prove that [V'|[(r) # 0 for all sufficiently large r

We recall that a determinant is a multilinear function of its columns.
If we express
{
Vi) = Jviavg, v ()

temporarily denote the successive columns of fV'[(r) R

where v!,v!,...,v/
1’72’ >k

then we derive

j
!Vl'vr _.,vé’(r) + Z Yl’q]uq,vé,...,vil(r)

iv'1<r) = 2."
q=1
j ' v]
= ! ! A ey
vy sVl () + GZI rl,qluq,vz, v | ()
+ % 10 ivl,u ,vé,...,vif(r)
q_=l ’q q
and hence
| ]
' - ' '
]V 1 (r) [Vf(r) + Z Yl,qluq’vz" .,vk!(r)
q=1
J
H 1
+ qzl YZ,q’Vl’uq’v3""’ka(r)
+ »
J
+ PN ,
qzl Yjsqtvl’vf Vk-l‘uqi(r)

If we continue this construction until every reference to a primed v is

|[V'|(r) is equal to the sum of [v] ()

removed, then it is clear that

plus a linear combination of determinants formed from !V!(r) by replace-



ment of at least one v by a u . By our assumption that X 1s j-normal,

we conclude
(3.2.9) V' [ () = V]| (x){1+0(1)} as r = = .

Since |V|(r) # 0 for sufficiently larger, we also have V' (r) # 0
for sufficiently large r.

If one or more of the sclutions v.,v are replaced in

k
|V'](r) by subdominant solutions from U , then a construction like the

one preceding shows that the modified Casoratian ,%"(r) is dominated by
!V!(r) as r = « , gince the original optimally ranked basis is j-normal.

Consequently, using (3.2.9), we conclude U € V' is j-normal. A similar

argument shows that (3.2.8) is satisfied, and the theorem is proved. [EH
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3.3 Stability

Let us consider solutions of (3.0.1) of type t, where 0 =< t < T ,
Let j be the dimension of the subdominant subspace of type t for D

Let i be a point at which |U|(i) # 0 ; see (3.0.7). Suppose D is

(i,j)~factorizable; see Definition 1.2.1. Let A1 = [aé,ai,...a;] be a
i+ s 4 (4
left factor and B- 7 = [b; J,bi J,...,b; J] the corresponding right
, . Ay
factor of D; ., so that D; = A;Bl 1 is an (i,j)~-factorization of D

The next theorem provides a generalization of Theorem 1.3.2, from
totally separable linear difference equations to equations that are merely
separable. The remark following Theorem 1.3.2 applies hereas well. That
is, the back substitution stage of the algorithm is stable, at least for
sufficiently large r.

i it
A,Bl ] , then the differénce

Theorem 3.3.1 If |U[(i) # 0 and D; =
s

operator Bl J is separable and any solution y of (3.0.1) of type t or

less 1s a sequence of type zero with respect to Bl+]

Proof: Suppose j =0, i.e., type (y) = 0 with respect to D. Then

i i i i i i
f ey and we have D = A'B
0 O’bl’ byl

Now let x € X , where X is the optimally ranked basis (3.0.4). Then

AY = [a’] and B' = [b

Dx = 0 ; hence Dlxl = Alle1 = (0 , This last equation is equivalent to

Y/
a.(r) Z b (t)x(r+s) = 0 , v = 1i,i+l,...
0 asp °©

Since ag is free of zeros by the definition of (i,j) ~ factorizability,
we have B x" = 0 . Thus {xlix € X} is an optimally ranked basis for

B* and it follows immediately that type (y) = 0 with respect to B*

'The case t =0 corresponds to a maximal solution of (3.0.1). Since the
general algorithm reduces to pure forward recurrence in this case, it is
stable; see §1.1.



Next suppose
given by (3.0.8).

assume that

compare the proof

It follows that for each n = i + j + max(j,k) the subsequence v

j satisfies 0« j< £ . Let v €V , where V 1is

In view of our assumption that |UI(i) # 0 , we may

v(itr) =0, v =0,1,...,3-1 ;

of Theorem 3.2.1. Since v € K(D) we have Dv = 0
i,n+k-1

satisfies the finite boundary value problem

i,
i

D

compare (1.2.4).

....................

n-j-1 i+j,n-1 _ 0
v n-¢,n-j-1 n,n+k-1
-D v

.
5

For each n, these boundary value problems are nonsingular

and factorizable as shown by Theorem 1.2.1.

Therefore, Theorem 1.2.2 is applicable and we see that

i+j,n-1 i+j,n-1
B A =

0

for each n = i +

the proof of Theor

k

1 b

s=0

i+j,n-1 .
v satisties

n-k.n-1 n,ntk-1
Bk v

j + max(j,k) ; compare (1.2.7) and the remark following

em 1.2.2. The last equation is equivalent to

S(r)V(r+s) =0, r = i+j,i+j+l,....n-1

Since n may be arbitarily large, we have

b
0

i o~ ®

s

or, equivalently,

ranked basis for

S(r)v(r-f-s) =0, rt = i+j,i+i+l,...

i+ i+j
1y J

-
B =0 . Therefore, {v Jiv € V} 1is an optimally

s .
Bl J Since y is dominated by every sequence in V ,
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i+

|

it follows that type (y) = 0 with respect to B
Now let us turn to the forward elimination stage of the algorithm.

This consists of applying a finite number of steps of Gaussian elimina-

tion, without pivoting, to the infinite linear system

i,i+j-1 1,i+j-1

id+ _ i |0 7

(3-3.1) DJy = g -------- b ........ ;

compare (1.3.6). Rounding errors introduced in this process are equivalent

to perturbations in the original problem. Thus, instead of satisfying

i
(3.3.1) the computed solution yl J , say, 1s an exact solution of a
system of the form
i,i+3-1 1i,i+j~-1
i, i~ity 1 | Do y i
(3.3.2) (Dj + Ej)y =gt -] SRR + e

i i .
where the terms Ej and e represent the perturbation.

The effect of introducing a single element of e(r) , say at r = s ,

. , i+ . . .
is to perturb the true solution vy ] by a linear combination of the

solutions of the corresponding homogeneous equation. Because of the

e

boundary conditions we have imposed "at infinity', onlv the solutions

. f i i > 30 ) y
s U uj enter from the optimally ranked basis {%,u2 uJ ViV

27 1

.,vk} ;  compare equation (3.0.3) and Theorem 3.2.1. Subsequently,

"1

we have only to consider what happens when r > s , and here it will be
the multiple of uj that will be the fastest growing.

The effect of E% ,» also, can be allowed for by making a perturbation

of the right side. To terms of the first order, we have

i1 4 it
L ) pl:17J lyl,l j-1
D1§l+] = gl - O ............... - E
] 0 i
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Then the arguments of the preceding paragraph again apply.

Since the wanted solution y dis of type t, we conclude that the
process of forward elimination is stable in the sense that each perturba-
tion subsequently grows at a rate that does not exceed that of the wanted
solution. O0f course, there will be a loss of accuracy when an element of
E; (or ei) is large compared with the rounding error in the stored value
of the corresponding element of D? (or of the right side of (3.3.1)).
This may occur, for example, when there is heavy cancellation in the
formation of an element that is subsequently used as a pivot. However,
the important point is that the effect of each such loss is not magnified
in subsequent steps of the algorithm.

An extension of the foregoing discussion shows that if we select a
value of j (that is, the number of prescribed initial conditions) that is
less than the dimension of the subdominant subspace of the wanted solution,

then the forward elimination remains stable. However, the back-substitution

is now unstable; compare the proof of Theorem 3.3.1. Similarly if j 1is
too large then the forward elimination is unstable, and the back-substitu-
tion is stable. Nevertheless if, in practice, the actual instabilities are
weak owing to weak separation of solutions of consecutive types as 1t —+ = ,
then it may be advantageous to select a value of ] that differs from

the dimension of the subdominant subspace of the wanted solution. This is
because the loss of accuracy caused by the instability is offset by a
substantial reduction in the value of the terminal point n owing to
increased convergence. This modification 1s illustrated by numerical

examples in Chapter 4.
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CHAPTER 4. NUMERICAL EXAMPLES

4.0 Introduction

Several numerical examples will be given to illustrate the general
algorithm. The examples all involve fourth-order linear difference
operators with nonconstant coefficients. Both homogeneous and inhomo-
geneous difference equations are treated.

The fourth-order operators were produced by using the method described
in [14, §12.22], starting with two second-order recurrence relations which
have as solutions Bessel functions, modified Bessel functions or associated
Legendre functions. The inhomogeneous equations have as particular
solutions Anger~Weber functions or Struve functioms. The right sides of
these equations were produced as a by-product of the method used to pro-
duce the fourth-order operators.

The production of the fourth~order difference operators from the
corresponding pairs of second-order operators requires only elementary
algebraic manipulations. These calculations are rather lengthy, however,
and would be extremely difficult (as well as tedious) to complete accurately
by hand. Instead, the MACSYMA symbol manipulation system, described in
[12], was employed+. This procedure had the added advantage of storing
the required formulas for the coefficients directly in the computer, ready
for numerical evaluation, thereby further reducing the possibility of
human error. Similarly, MACSYMA was used to advantage in the production

of the right sides for the inhomogenecus examples.

TDevelopment of which is currently supported, in part, by the United States
Department of Energy under Contract Number DE~AC02-79ER10357 and by the
National Aeronautics and Space Administration under Contract Number NSG1321.
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In the case of the Bessel functions Jr(x) R Yr(x) and modified
Bessel functions Ir(x) . Kr(x) we restrict ourselves to integer order
r > 0 and real argument x > 0 . Relevant properties of these functions
are given in [16, Chapter 9]. For example, for fixed x the functions

Jr(x) and Yr(x) satisfy the linear recurrence relation

2
(4.0.1) y(r-1) - :XE y(r) + y(r+l) = 0
Similarly, Ir(x) and (—)rKr(x) satisfy
2r
(4.0.2) y(r-1) = :;~y(r) - y(r+l) =0 .
The Anger-Weber functions Er(x) satisfy
T
2 ]m( =
(4.0.3) y(e-1) = ZE y(ry + y(re1) = - AR
X K
and the Struve functions Hr(x) satisfy
1
o G x) "
(4.0.4) y(xr-1) - = v{(r) + y{r+l) = T
\/ﬁf(r*— E)

compare (4.0.1) in beth cases. Relevant properties of the Er(x) and
Hr(x) appear in Olver's paper [21] where they were used as examples for
second-order inhomogeneous equations.

The coefficients of the fourth-order homogeneous recurrence relation
obtained from (4.0.1) with x = %1 and (4.0.2) with =x = X, are shown
in Figure 6 in the form of FORTRAN statements produced by MACSYMA. In
addition, Figure 6 shows the right-hand sides corresponding to Er(xl>

and Hr(xl) . We designate the difference operator D defined by these
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coefficients the JYIK operator. Since the functions Jr(xl) s Yr(xl),

Ir(xz) , (~)rKr(x2) are linearly independent, they form a fundamental
set of solutions of Dy = 0

Similarly in the case of the associated Legendre functions Pi(x) R
Qi(x) we restrict consideration to integer degree r = 0 , integer order
& >0, and real argument x > 0 . Relevant properties of these functions

may be found in {16, Chapter 8]. We use the r-wise linear recurrence

relation
(4.0.5) (etu)y(r=1) - (2r+l)xy(r) + (r-u+D)y(r+l) = 0 ,
valid for fixed x and u . The coefficients of the fourth-order differ-

ence operator D, shown in Figure 7, were produced (using MACSYMA) from
(4.0.1) with x = Xl and (4.0.5) with x = x2 . Figure 7 also shows the
right sides corresponding to Er(xl) and Hr(xl) . In this case the

nctd - s 5
functions Jr(xl) s Yr(xl) s Pr(xz) , Qr(xz) form a fundamental set of

solutions of Dy = 0 . Accordingly, we designate D the JYPQ operator.

A FORTRAN program has been written to implement the general algorithm.
The user may select either the JYIK operator or the JYPQ operator. He may
also elect to solve the homogeneous equation, the inhomogeneous equation
having the Anger-Weber function as a solution, or the inhomogeneous
equation having the Struve function as a solution. Alternatively, he may
provide a subroutine which generates the coefficients of an arbitrary
linear difference equation of any order.

The user supplies the program with the starting point i and the terminal
point m of the desired subsequence of the solution to be computed, the
number j of initial values, the subsequence yi’i+j—l of initial values,

and the parameters v and g for use in the convergence test (to be described
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below). The program solves the proposed problem by executing three phases.

In the initial phase the first m+ 1 + v - 1 -~ j rows of the infinite

linear system (1.3.6) are stored. Forward elimination without pivoting
is performed on these rows. This results in the storing of the first
m+ 1+ v -1-3 rows of the left and right factors of the (i,]j)-

1_di+j

. . i i+j,mbhy
factorization Dj = Aj , and also the subsequence z s

of the
solution of (1.3.8). The elimination procedure is carried out by modifica-
tions, described below, of the subroutines DGBFA and DGBSL which are
available in the mathematical software package known as LINPACK; see [8].

The unmodified DGBFA performs forward elimination with partial
pivoting on a finite band matrix, ignoring the right side. It produces
an upper triangular matrix, a lower triangular matrix and a vector of
pivoting information. These results may then be used by the unmodified
DGBSL to solve the corresponding linear system with specified right side.
Alternatively, the user can direct that DGBSL solve a linear system having
as its matrix of coefficients the transpose of the matrix input to DGBFA.
Provision has been made in DGBFA to suppress the partial pivoting. When
this is done the vector of pivoting information is superfluous and (except
for rounding errors) the matrix obtained by premultiplying the upper
triangular matrix by the lower triangular matrix is the original band
matrix, This factorization is therefore of exactly the kind required by
Definition 1.2.1; see equation (1.2.5).

When partial pivoting has been suppressed in DGBFA, DGBSL proceeds,
in effect, by forward elimination without pivoting followed by back
substitution. Provision has been made in DGBSL tc exit after the forward
elimination stage and to re-enter at the start of the back substitution

stage. Thus the user has the option of examining the result of the
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forward elimination stage and perhaps electing to continue it without
having to do any back substitution. All of the above modifications of
DGBFA and DGBSL, to provide just the tools that are needed in our
algorithm, were easily achieved because of the clarity and flexibility of
the coding and documentation of LINPACK.

We return to the description of the initial phase. The next computa-

. . mtl, mty ,
tion is the subsequence w ’ i compare equations (1.3.16) and
m

~k+
(1.3.17) with s = m . Since wz ktl satisfies the adjoint equation, it
is produced using the forward elimination stage of the (modified) sub-

routine DGBSL in which the input matrix to DGBFA is automatically trans-

posed. Finally, the initial phase computes

r-1
(4.0.6) y (m) = ) w (8)z(s)/b_(m)
s=m
for r = mtl,m+2,...,mtv,m+v+1 and
. r+y—-1
(4.0.7) N, @=L v (9)z(s) /b (m)
s=r
for r = m+l . Equation (4.0.6) is the same as (1.3.18) apart from a

change of symbols. Equation (4.0.7) is the approximation to the truncation

error

ﬂr(m) = y(m) - yr(m)

which is obtained when vy(m) 1s replaced by yr+v(m) : compare (1.3.20).
After completion of the initial phase, the program proceeds to the

iteration phase. One additional row of the infinite linear system (1.3.6)

is stored. Since the previously determined part of the (i,j)-factorization

has replaced the corresponding rows of the original matrix in the computer



storage, these rows are no longer available to extend the forward elimina-
tion stage. Therefore, extension of the forward elimination is accomplish-
ed by an alternative procedure that requires the solutions of two triangu-
lar linear systems of orders j and k . This is achieved using DTRSL, a
LINPACK subroutine that solves triangular systems. Next, the formerly

. . i+j m+1
obtained subsequences of the solutions =z and v are extended to

include the next higher term. Then the series (4.0.6) and (4.0.7) are

summed with the new value of r , and the following convergence test is

applied: 1If
(4.0.8) e @ =ely ]

then the program proceeds to the third and final phase; otherwise, the
iteration phase is repeated and the convergence test re-applied.

The final phase of the program is the back substitution stage of the
algorithm. Let n denote the value of r which satisfies (4.0.8). The
back substitution is begun at this point, using the (modified) subroutine

i+i,n-1

DGBSL. This yields the computed solution Y of (1.3.7) and also

the desired approximation of y(r) over the range r = i+j,it+j+l,...,m

In all of the examples presented in this thesis the chosen termination
. . . , -10 .
criterion corresponds to an estimated relative error of 10 in the final
term yn(m) of the requested sequence of values of the function. Thus

10

e = 10 in equation (4.0.8). For the values of x and x selected

1 2
in the examples the solutions are reasonably well-separated as r - « ,
hence we take the "testing parameter" v in equation (4.0.7) to be 1

throughout. Initial values were entered to 10 significant figures in

every case. All computations were performed internally to 18 figures
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and the output printed te 10 figures. For each example we present (i)

the solution =z (i+j),z(i+i+l),...,z(n) of equation (1.3.8) (the forward
elimination stage); (ii) the solution wm(m+l),wm(m+2),...,wm(n) of
(1.3.16), (1.3.17) (the forward recurrence of the adjoint equation for use
in the termination criterion); (iii) the sequence ym+l(m),ym+2(m),.,,,
(m) of approximants to the value y(m) (see equation (4.0.6));

yn+v

(iv) the sequence nm+l,l(m),n (m),...,nn’l(m) of estimates of the

m+2, 1
truncation error incurred in accepting the terminal points of m+l,m+2,...,n

respectively (see equation (4.0.7)); (v) the sequence yh(n—l),yn(n—Z),...,

yn(i+j) derived from equation (1.3.7) (the back substitution stage).

The initial values that were used in the boundary value problem actu-
ally solved in each example are shown in parentheses in the tables; see,
for example, Table 5. The terminal values (which are all zero) are also

. - , id i
shown. Forward recurrence of the j-th order difference equation A7z = g
starting from the given initial values produces a solution of (1.3.8) (the
algorithm produces this solutiom by forward elimination). Similarly, back-

PR o
i ]yl 3o i

ward recurrence of the k-th order difference equation B 0

starting from the terminal values (which are all zero) produces the corre-
sponding solution of the boundary value problem; this is the back substi-
tution stage. Data is given in the tables only for selected values of r
All of the values of r that were used beyond v = m are included, how-
ever. These values illustrate the termination procedure,

It should be noted that when Jj = 4 the method as implemented
by the FORTRAN program is equivalent to, but not identical with,
forward recurrence of the given difference equation. See, for
example, Table 8., This is because DGBFA, the LINPACK mstrix

factorization subroutine, scales the linear system in such a way
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that the principal diagonal of the lower triangular factor is a sequence

of ones. Therefore, the result of the forward elimination stage differs
from the result of the back substitution stage (unless the trailing coeffic-
ients of the original linear difference operator are all equal to one).
Since there is no question of truncation error when J = 4 , the sequences
wm(r) , yr(m) and nr,l(m) , r =mtl,m*+2,..., are not defined,

Tt has been observed that Olver's original second-order method is
likely to cause overflow in most computers. This same likelihood of over-
flow exists for the extended algorithm. The examples to be presented in
this chapter were computed using double precision on a Univac 1108. Double
precision was used not for higher precision but for wider exponent range.

The double precision range extends to 10308 whereas the largest number

generated in the examples was somewhat greater than 10200. Van der Cruyssen
[25] gives a rescaled version of the second-order algorithm, based on LU
decomposition, that greatly reduces the incidence of overflow or underflow.
An equivalent procedure for overcoming this difficulty, based directly on
the use of ratios of consecutive terms in each solution, is described by
Aggarwal and Burgmeier [1}. In the present writer's view, however, it is
preferable (if possible) to avoid mathematical modifications of algorithms
simply to suit arbitrary limitations of existing computers. A software
alternative to rescaling is proposed in [24], in which a full integer

storage location is allocated to the exponent of each floating-point

number. A FORTRAN implementation of this proposal is available; see [11].
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4,1 Examples Involving the Homogeneous JYIK Equation

From the asymptotic forms

(4.1.1) 300~ a—i—)——— <§3‘—>r LY (x) ~ - (—'—)l/
Ty

and

1 ex * r r/
4,1.2) 1 — ————— [ =22 , (=) R (x) ~ (- T
( ) r(x) (2nr)l/2 <2r> - r(X> ) <2r>

which are valid for fixed x and large r, we obtain
, r
(4.1.3) Jr(xl) < Ir(xz) < (=) Kr(XZ) < Yr(xl>

when x., < X and

1 2
T
(4.1.4) Ir(x2> < Jr(xl) < Yr(xl) < (=) Kr(xz)
when X, < Xy where in (4.1.3) and (4.1.4) the symbol < is used to indicate
the order of dominance of the functions as r - « ., Thus when Xy # x2

the JYIK operator is totally separable. As with any totally separable

operator of order 4, there are four distinct types of solution and the dimen-

sion of the subdominant subspace of type s is s . This means that J = s

is the proper number of initial values to specify for a solution of type s .
When all four Bessel functions have the same argument, from (4.1.1)

and (4.1.2) we have

r+l 1

(4.1.5) I ()~ I (0 , (KRG~ () FRT &, T

The first of these relations suggests that we define the further solution
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(4.1.6) Ar(x) = Jr(x) - Ir(x)

Then it may be verified that

(4.1.7) Ar(x) ~ _Lx , T -

where either function in the braces on the right may be chosen. Further-
. . . s . r

more, since there is no nonzero linear combination of (=) Kr(x) and

Yr(x) that reduces to a solution of lower type, we conclude that there

are exactly three distinct types of solution. Symbolically, we have

(%) (=)7K (x)
(4.1.8) Ar(x) < <
Jr(x) Yr(x)

where in each pair of braces either function may be chosen. Thus when
Xy = x2 the JYIK operator is separable but not totally separable. The
dimensions of the subdominant subspaces of types 1,2 and 3 are 1,2 and
4 respectively.

Although Ar(x) has type 1, it is separated only by a relative
factor of 1/r from solutions of type 2. Let yn(r) denote the approxima-
tion to Ar(x) that is obtained from the algorithm with terminal point n.

Then, suppressing the arguments of Ar(x) and all the Bessel functions

and using equation (3.2.6), we have'

7 () ~ A= B (I = BT - By (DK, no e

where

"Since Ir(x) , Yr(x) and Kr(x) are not normalized as required for the

validity of (3.2.6), we have only the weaker statement given here.
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In consequence of (4.1.1), (4.1.2), and (4.1.7) we see that

Ql(n) m--xz(2n)"1 for large n , whereas Bz(n) and BB(n) approach zero
much more rapidly. Thus we expect that the rate of convergence of the
algorithm will be approximately as 1/n . This has been confirmed in
numerical tests. Since the separation of Ar(x) from solutions of type
two is so weak, it is usually advantageous to regard Ar(x) as belonging
to the same type as Jr(x) and Ir(x) ;  this means that we specify two
initial conditions rather thaun one. This modification improves convergence;
in consequence the value of the terminal point n is reduced very consider-
ably. This gain is offset to a minor extent by some loss in accuracy in
the values of Ar(x) for higher values of r ; the extent of this loss is
no more than the cancellation that takes place between the corresponding

values of Ir(x) and Jr(x) in Eq. (4.1.6).
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Example 4.1.1 In this example we compute the solutions Jr(l) , Ir(lO) ,
(~)rKr(lO) and Yr(l> of the homogeneous equation defined in Figure 6,
with X, = 1, x2 =10, for r =0,1,2,...,100 . Since each of these
solutions is monotonic (in magnitude), the algorithm will be numerically
stable provided that the proper number Jj of initial values is used in
each case. This number is j = 1 for Jr(l) , J =2 for Ir(IO) ,
i =3 for (—)rKr(lO) and j =4 for Y (1) ; compare (4.1.3).

Table 1 gives the numerical coefficients of the JYIK operator with
X = 1 and x, =10 for r =20,1,2,...,109. Tables 2, 3 and 4 give the
numerical coefficients of the (0,j)~factorizations of this JYIK operator
for § = 1,2, and 3. (We do not present the (0,4)-factorization.) Since
the (i,j)-factorization Dj = A;Bi+j produced by the test program has

the principal diagonal of A; equal to (1,1,1,...) , we do not include

values of aj(r)

Tables 5 through 8 give the results of the computation of the four
desired solutions Jr(l) , Ir(lO) s (-)rKr(lO) and Yr(l) for selected
values of r ; see $4.0 for a full description of the tables. Initial
values were taken from Tables 9.4 and 9.11 in [16]; they are given in
parentheses. These tables also supply values of the four Bessel functions
for certain other values of v 1in the range 0 = r < 100 . These entries
all agree with our computed results, except for the tenth significant
figure in some instances. This slight discrepancy is explained by the
fact that the starting values that were used inevitably have an error of
several units in the eleventh significant figure. Incidentally, because in
this (and other examples) we have not attempted rigorous control of

individual rounding errors, a guaranteed error bound cannot be given.



Nevertheless, the stability of the algorithm for all solutions in this

example is firmly demonstrated.
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Example 4.1.2 1In this example we compute the solutions Ir(l) , Jr(lO)

Yr(lO) and (—)rKr(l) of the homogeneous equation defined in Figure 6

with Xl = 10 , x2 =1, for r=20,1,2,...,100 . Both Ir(l) and

Kr(l) are monotonic over this range of r . The solurions Jr(lO)

and Yr(lO) are monotonic only for 10 <= r = 100 ; for lower

values they oscillate with approximately the same amplitude. However,
since there is no "crossing over" of growth behavior in the four solutions
in the nonasymptotic region 0 =< r < 10 , we expect the algorithm to be
stable with the following numbers of initial conditions: i =1 for Ir(l),
j=2 for J.(10) , j =3 for Y (10) and j =4 for (~)rKr(l) ;
compare (4.1.4). Tables 9 through 12 give the results of the computation
of each of these solutions for selected values of 7t ; see $4.0 for

a full description of these tables. Again, the stability of the algorithm

for each solution is confirmed by comparison with Tables 9.4 and 9.11 of

[16].
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4

Example 4.1.3 In this example we compute the solutionsTAT(l) , Jr(L) ,

Ir(l) , Yr(l) and (—)rKr(l) of the homogeneous equation defined in
Figure 6, with Xl =1, XZ =1, for r=20,1,2,...,100 . Since each
solution is monotonic (in magnitude) except possibly at the very beginning
of the range of r , the algorithm is expected to be stable provided that
the proper number of initial values is taken in each case. This number
is j =1 for Ar<l) , J = 2 for Jr(l) and Ir(l) , and j = 4 for
Yr(l) and (—)rKr(l) . However, in the case of Ar(l>’ for reasons given
earlier in this section, we take j = 2 instead of j = 1 , thereby
exchanging mild instability for a much improved rate of convergence.
Because of this mild instability, each individual rounding error,
introduced at say r = s, is amplified in direct proportion to the number
of steps taken beyond the point s , since in (4.1.7) Ar/Ir = 0(1/r)
Thus, after 100 steps, approximately two decimal places of precision will
be lost. On the other hand, if we were to take the number of initial
conditions theoretically required (in this case it is j*&-l,nsince‘Ar

is dominated by all of the other homogeneous solutions), then the conver-
. . 8
gence would be extremely slow: A terminal point of the order of 10

would be required to obtain 8 significant figures of accuracy in Aloo(l)

Tables 13 through 17 give the results of these computations for selected
values of r ; see §4.0 for a full description of these tables. Again,
these results agree with the entries in Table 9.4 and 9.11 of [16]. 1In
the case of Ar(l) , the method we have used is equivalent to computing

J (1) and I (1) as type 2 solutions and then forming thelr difference.
T r

TThe function A (1) 1is defined by A_(1) =J (1) - I (1) ; compare
(4.1.6). g t r r
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4.2 Examples Involving the Inhomogeneous JYIK Equation

For fixed x and large r the Anger-Weber function has the

asymptotic forms
2X

(4.2.1) B, (x) ~ —2— B, ()~
2r (4r2—l)n 2r+l

2z .
(2w’

compare [21]. Comparison of (4.2.1) with (4.1.1) and (4.1.2) shows that

r
I_(x,) ()R (x,)
(4-2~2) < ET(X> < s r > o
Iy <X1)/l T
for any given set of values of X X, x . Thus Er(x) is a solution

of type 2 of the first inhomogeneous equation defined in Figure 6 and the
correct number of initial values of E_(x) to be used in every case is

N
i=2.

The asymptotic form of the Struve function, also taken from [217, is

r
(4.2.3) H (%) N”:&_<_%x_)
T N 2r

for fixed x and large r . Comparison of (4.2.3) with (4.1.1) and (4.1.2)

shows that Iv(x)

(4.2.4) H (x)fw-—g— , T = ®
ba —
Ve
Jr(X>

Thus Hr(x) is a soclution of type 1 of the second inhomogeneous equation
defined in Figure 6 when %, = x_. ; compare (4.1.8). However, since

1 2

the separaticun of Hr(x) from solutions of type 2 is even weaker than



that of the solution Ar(x) defined by (4.1.6) it is again advantageous

in most applications to specify the number of initial values appropriate

to solutions of type 2, i.e., j = 2 instead of j =1 ; compare

Example 4.1.3.

Example 4.2.1 For the inhomogeneous fourth-order difference equations

defined in Figure 6, we compute Er(l) with X =¥, = 1 for r = 0,1,2,

..,100 ;3 and Hr(O.l) with x. = x2 =0.1, for v =0,1,2,...,50.

1

The appropriate number of initial values in these cases is j =2 for

Er(l) and ]

actually use j

1 for Hr (0.1) . However, for reasons given above we

2

for Hr(O.l). Initial values for Er(l) and Hr(O.l)

were computed from series expansions given in [21] and checked against values

found in [21] and [23]. Tables 18 and 19 give the results of these com-

putations for selected values of r ; see §4.0 for a full description of

these tables.

L
[

They agree with the 10-figure values of Er(l) and Hr(o.l)

2,3,4,5 , given in [23]; the 7 through 9-figure values of Er(l) ,

r=2,3,...,10 , given in [21]; and the 9-figure values of Hr(O.l) R

r=1,2,...,13 , given in [21]. 1In addition, they agree with series calcu-

lation of the functions to 10 significant figures in the case of Er(l) s

r=2,3,...,100 , and to 9 significant figures in the case of Hr(O.l) s

r=2,3,...,50 .

The loss of precision in the Struve function computa-

tion is due to mild instability which is acceptable in lieu of impossibly

slow convergence.

.

'We restrict the sequence of H _(0.1) to r < 50 in order to avoid under-

flow in the computer. As sugggsted at the end of §$4.0, this difficulty
could be overcome by using the software described in [11].
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4.3 Examples Involving the Homogeneous JYPQ Equation

For large values of r and fixed values of pu and x , the associated

Legendre functions have the asymptotic forms

o

bt -1
4.3.1) e - Dlrtutl) (—é— 1 osin 8) Y 2cos(re + 20 - Iy + %m + oé)

T(r+3/2) 50 -3

and
(4.3.2) Hxy = Lltutl) n M2 fo 1ol 1 1
e £ = Trasn Gam e cosEEFR A m Y00

where x = cos 6 with 0 < 6 < 1w ; see [16, Chapter 8]. Consequently,
for values of x less than 1 1in magnitude, neither associated Legendre
function dominates the other. Comparing (4.3.1) and (4.3.2) with (4.1.1)

we obtain

i
P
r(XZ)
(4.3.3) Jr(xl) < . < Yr(xl) , r - ®
Q. (x,)
for all admissible values of u , xl y Xy o Thus the JYPQ equation has

three distinct types of solution, and the dimensions of the subdominant
subspaces of types 1, 2 and 3 are 1 , 3 and 4 vrespectively; this
contrasts with (4.1.3), (4.1.4), and (4.1.8).

Example 4.3.1 1In this example we compute the solutions Jr(l) , Pr(O.S) ,

Qr(O.S) and Yr(l) of the homogeneous equationI defined in Figure 7,
with w=20, X = 1, x2 =0,5, for r=20,1,2,...,100. Since these

solutions exhibit their characteristic asymptotic separation, described by

(4.3.3), from the very beginning of this range of r , the algorithm

T . i
In accordance with custom, when the order of the associated Legendre
functions is zero we drop the superscript in the notation.



=]

will be stable provided the proper number of initial values is used in
each case. This number is j =1 for Jr(l) , J =3 for Pr(O.S) and
Qr(O.S) ,and j =4 for Yr(l)

Table 20 gives the numerical coefficients of the JYPQ operator with
w =20, Xy = 1 and x2 = 0.5 for r =20,1,2,...,104. Tables 21 and 22

give the numerical coefficients of the (0,l)-factorization and the (0,3)~

. g
factorization. Since the (i,j)-factorization D? = A%Bl J produced by
the test program has the principal diagonal of A; equal to (1,1,1,...),

we do not include values of aj(r)

Tables 23 through 26 give the results of the computation of the four
desired solutions for selected values of r ; see §4.0 for a full descrip-
tion of these tables. 1Initial values were obtained from Table 9.4 of [16]
in the case of the Bessel functions and by hand calculation of the explicit
elementary forms given in [16], Section 8.4 in the case of the Legendre
functions. The computed Bessel function values agree satisfactorily with
the values given in [16]. The Legendre function values were compared with
data available for r < 10 in [16] and (in the case of the Pr(O.S)) [177.
Agreement is satisfactory to the precision available in these references;
this ranges from 6 to 8 significant figures. 1In addition, all of the
computed Legendre function values agree satisfactorily with double-preci-
sion values computed by an unpublished program of Dr. J. M. Smith of the

National Bureau of Standards. This is sufficient to demonstrate stability.
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1
Example 4.3.2 1In this example we compute the solutions Pr(O.S) and

Qi(O.S) of the homogeneous equation defined in Figure 7, with w =1,

Xy =1, x2 =0.5, for r=20,1,2,...,100 . The algorithm will be stable
provided that we take three initial values for each of these functions;
compare (4.3.3). Tables 27 and 28 give the results of these computations
for selected values of r ; see §4.0 for a full description of these
tables. Initial values were obtained by hand calculation of the explicit
elementary forms given in Tables 8.2 and 8.4 of [16]. The computed function
values agreed satisfactorily for r < 10 with the limited data available

in [16] and [17]. 1In addition, satisfactory agreement was obtained with
double-precision values produced by an unpublished program of Dr. J. M.

Smith; compare Example 4.3.1. Consequently, the stability of the method

is confirmed for this example.
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4.4 Examples Involving the Inhomogeneous JYPQ Equation

Using Stirling's formula, we find

F(rtut+l) | u-1/2 e
(4.4.1) T(x+3/2) T sy T
for fixed values of uw = 0,1,2,... . Comparison of (4.2.1) with (4.3.1),

(4.3.2) and (4.4.1) shows that

o
P
¢ (%5)
YA/ =
(4.4.2) Er(xl) < . s T =
Q, (x,)
for fixed u , X1 and X, such that X, > 0 and X, < 1 . Accordingly,

the Anger-Weber function is a solution of type 1 and asymptotically the

correct number of initial values to be used in every case is j = 1 ;

compared (4.3.3). However, the separation of Er(xl) from the solutions

of type 2 is weak when u = 0 (being of relative order r_L/2 at the odd

~-3/2
terms of the sequence and r 3/ at the even terms of the sequence). The

-3/2
r

separation is also weak when u = 1 (being of relative order at

the odd terms of the sequence and r ~5/2 at the even terms of the sequence).
Accordingly, we treat Er(l) as a solution of type 2 in both cases, even
though when W = 1 greater numerical instability is incurred than in any
of the other examples. This is especially true at the even terms of the
sequence, which are separated from the Legendre functions by the relative
order of r—5/2
From (4.2.4) and (4.3.3) it is seen that the type of the Struve
function Hr(xl) with respect to the JYPQ operator is 0 for all
admissible values of X and x2 . But again because of the weakness

of the separation, we regard Hr(xl) as belonging to type 1.




)

Example 4.4.1 For the inhomogeneous fourth-order difference equations

defined in Figure 7, we compute Er(l) with =1, X, = 1 and %, = 0.5

for r =20,1,2,...,100; and Hr(O.l) with u =1, x1 = 0.1 and x2 = 0.5

0,1,2,...,50. (We restrict the sequence of Hr(O.l) to r = 50

for r
for the same reasons that were described in Example 4.2.1.) For reasons

given above, we use 3 initial values (rather than 1) for Er<l) and 1

initial value (rather than 0) for Hr(O.l) . Initial values for Er(l)
and Hr(O.l) were computed from series expansions given in [21] and
checked against values found in [21] and [23].

Tables 29 and 30 give extracts from the results of these computations
for selected values of r ; see §4.0 for a full description of these
tables. Comparison of the function values produced by the algorithm with
values given in [21] and [23] show good agreement over the available
ranges, which, however, do not extend beyond r = 13 . Compariscn of the
values of Er(l) in Table 2.9 with values computed to 10 significant
figures from the series expansion shows a steady deterioration of precision
at the even values of r , culminating in a relative error of 0.5(10)—5
at r = 100 . At the odd values of r the precision also deteriorates
steadily, but at a slower rate, culminating in a relative error of
0.8(10)_7 at r = 99. These rates of loss of precision are consistent

-5/2 -3/2
T

with the separation ratios of «r and which govern the growth

of the error in this example.

That is, an individual relative rounding error of, say, 10 0 in one

of the stored initial values of Er(l) will be amplified by a factor of

5/2 105 at (1) and by 1003/2 = 103 at E99(1).

(As noted in Eq. (4.2.1), the function is in behavior different at even and

approximately 100 ElOO

odd values of r .) These amplifications after 100 steps are greater than

the factor of 100 that was predicted and observed in the computation of

b



Ar(l) in Example 4.1.3 and Table 13, where Ar(l) was computed as if
it were a function of the next higher type than it actually 1is.
Finally, comparison of the values of Hr(O.l) in Table 30 with
values computed to 10 significant figures from the series expansion
shows agreement to 9 or more significant figures at all values of r
The loss of precision in the Struve function computation is slight, due

r—l/2 , but it offsets impossibly slow

to the separatiomn ratio of only
convergence which would be evidenced if the theoretically correct number

of initial values were to be taken.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

This thesis is concerned with the numerical solution of a broad class
of linear difference equations of arbitrary order, and of either homogeneous
or inhomogeneous form. An algorithm is presented for the stable computa-
tion of any sclution of such an equation. The results apply directly to
scalar linear difference equations but could be adapted to similar problems
posed in vector form.

Historically, the algorithm is an outgrowth of algorithms of Miller

and Olver. The underlying idea of Miller's algorithm is the following:
If a solution y(r) has growth behavior, as r - «, that is less than or
equal to the growth behavior of all independent soluticns, then in the
reverse direction its growth behavior is greater than or equal to the
growth behavior of all independent solutions. Consequently, because of
the superposition principle, errors introduced in computing y(r) by
backward recurrence camnot grow faster than y(r) itself, and in this sense
the backward recurrence process is stable. However, this is true only in
a region in which the solutions actually maintain the growth behavior
indicated by their asymptotic forms as r - ®»,. TFor this reason we call
this the asymptotic region; evidently it depends on the asymptotic struc-
ture of the given difference equation for large r.

Miller's algorithm starts the backward recurrence process at a

value of r that is larger than any r for which a valid approximation

of y(r) is wanted. Arbitrary starting values are assumed. The computed



solution is essentially a scalar multiple of y(r) for early values of r
when (i) the difference equation is homogeneous; (ii) y(r) is subdominant
compared to every independent solution of the equation. Under these con-

ditions the algorithm is stable and y(r) is obtained from the computed

solution for early values of r by a normalization procedure, such as
matching the value of the computed solution at r = 0 with y(0) in order
to determine the correct scale factor. Modified normalizacion procedures
are required when the asymptotic behaviors of more than one fundamental
solution are similar.

Miller's algorithm involves no forward recurrence, and i1s stable
only for solutions whose growth behavior is less than or equal to the
growth behavior of all independent solutions. Olver's algorithm was
applied originally to second-order inhomogeneous difference equatiocas,
in cases where a particular solution y(r) has growth hehavicr as r +
that lies between that of a pair of linearly independent solutions of
the homogeneous equation. To construct a stable algorithm,Olver posed
a boundary value problem having one condition st each end. The initial
condition is the wvalue of y(r) at a suitable point r = i, The terminal
condition is zero, it being anticipated that isolated values of y(xr)
for large r will not be easily obtained. The resulting boundary value
problem is a tri~diagonal linear system of algebraic equations. Olver
specified a method for solving this linear system that involves a
forward recurrence stage and a backward recurrence stage. The method

is equivalent to Gaussian elimination without pivoting, scaled in a

~
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particular way. Analysis of the method shows that (i) the forward and
backward recurrence stages are stable, at least in ranges beginning at
a sufficiently large value of r; (ii) the second-order linear difference
operator that corresponds to the difference equation is, in effect,
factored into the product of two first-order operators. Furthermore
Olver derived an infinite series expansion of the truncation error, valid
at any point r, that is incurred by choosing a particular terminal
point for the boundary value problem. This enabled the optimal terminal
point to be calculated automatically, in contrast to Miller's algorithm
in which the terminal point is guessed and subsequently tested.

Extensions of Olver's algorithm to difference equations of higher
order were proposed by Zahar, Oliver and Cash. Criteria for selecting
the correct number of initial conditions (and therefore the correct
number of terminal conditions, since the total number of conditions
must equal the order of the difference equation) were given independently
by Zahar and Oliver. Zahar proved convergence of the algorithm under
assumed conditions on the solutions of the adjoint equation. Oliver
investigated stability by analyzing the factorization of the finite
boundary value problem. Cash provided an extension of the series
expansion of the truncation error. The work of Zahar, Oliver and Cash,
taken together, contains the essential elements of a practicable
generalization of Olver's algorithm.

In this thesis Olver's algorithm has been extended and analyzed

afresh. The view was taken that a linear difference operator is an



infinite upper-triangular band matrix. For a specified initial point 1

and number of initial conditions j, an (i,j)-factorization of a linear

difference operator D is said to exist if Gaussian elimination without

pivoting about the j-th super-diagonal of D, starting at the point i

on this diagonal, can be carried out indefinitely. This process produces

two lower-order difference operators (infinite band matrices). Their

product is, of course, the original operator, and the sum of their

orders is the order of the original operator. TFurthermore, the solution

of any finite boundary-value problem having initial point i, number of

initial points j and terminal point n may be found by forward recursion

with one of these lower-order operators followed backward recursion with

the other (Theorem l:2.2). Procedurally, a finite boundary value problem

is solved by the algebraic method of forward elimination without pivoting

followed by back substitution; this 1s accompanied by an analysis of

the stability of this process in terms of linear difference operators.
Determination of the correct number of initial conditions for

stability requires a knowledge of the relative rates of asymptotic

growth of solutions of the homogeneous equation as r -~ « ., Since the

number of linearly independent hcmogeneous solutions is equal to the

order & of the linear difference operator, there cannot be wmore than

¢ distinct growth rates as r - », Cases in which there are exactly

¢ distinct growth rates are the easiest to treat. In these cases a

basis exists that is linearly ordered by growth rate, and we call the

operator totally separable, However, there exist operators of practical
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interest, including constant-coefficient operators for which one or more
of the distinct characteristic roots are equal in magnitude, that are
not totally separable. Accordingly, a more general class of operators,
called separable operators, is introduced (Definition 2.2.1). The solu-
tions of a homogeneous equation that has a separable, but not totally
separable, operator exhibit less than & distinct rates of growth as r =+ =«.
Separable operators are characterized by the existence of certain bases,
called optimally ranked. An optimally ranked basis includes ¢ < %
disjoint subsets such that (i) neither of two distinct solutioms in
the same subset dominates the other as r = »; {(ii) any two solutions
taken from distinct subsets are such that one dominates the other;
(1ii) no nonzero linear combination of solutions from one subset is
dominated by any solution in the subset. These conditions ensure
that separable operators are unambiguously defined in the sense that
any two distinct optimally ranked bases have similar structure
(Lemma 2.2.1).

The disjoint subsets of an optimally ranked basis are arranged
in linear order by increasing rate of growth. All possible solutions
of an inhomogeneous difference equation with arbitrary right side are
clasgifiable by comparison with the solutions in an optimally ranked
basis of the corresponding homogeneous form. Thus a particular
solution y(r) is said to be of type s if (i) y(r) is not dominated as
r + o by any solution in the first s subsets of an optimally ranked
basis; (ii) y(r) is dominated by every solution in the remaining

g-s subsets. The extreme cases s=0 and s=0 correspond to particular
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solutions for which forward recurrence and backward recurrence of the
given difference equation are stable, respectively. For the inter-
mediate cases 0 < s < g, let j be the number of solutions in the first
s subsets. If in addition to being separable the difference operator is
(i,j)~-factorizable for some initial point i, analysis of the boundary
value problem shows that the equivalent pair of forward and backward
recurrence problems (Theorem 1.2.2) are stable in the sense that rounding
errors are not propagated more rapidly than the solutions, at least in
the asymptotic region belonging to the given problem. Accordingly, the
solution y(r) of the boundary value problem is obtained in a stable
manner by forward elimination without pivoting followed by back sub-
stitution (§3.3 and Theorem 3.3.1). Furthermore, under appropriate
conditions it follows that (i) y(r) is uniquely determined by j initial
values (Theorem 3.1.1); (ii) the algorithm converges pointwise as the
terminal point proceeds to infinity (Theorem 3.2.1).

The numerical examples included in this thesis were chosen so
that known asymptotic results could be used in conjunction with the
new classification theory for separable operators. This enabled the
correct number of initial conditions for any chosen solution to be
ascertained immediately. The examples also show that it is sometimes
desirable to associate a solution with solutions of the next higher
theoretical type. This artificial raising of the type is manifested in
the algorithm by the specification of the number of initial conditions

appropriate for the higher type. This artifice preserves unique determination



of the solution and also convergence of the algorithm, but introduces
instability. It is employed only when the asymptotic separation between
two types is weak, consequently the loss of precision resulting from the
instability is mild. The compensating advantage is that the rate of con-
vergence is increased very substantially, enabling a much smaller terminal
point to be used.

The trade-off between numerical instability and slow convergence can
be regarded heuristically in the following way. First, suppose u(r) ~e T
and v(r) ~ e" are two fundamental solutions of a second-order equation.
Then one initial value of u(r) determines the function uniquely and the
algorithm is both convergent and stable. Furthermore, the rate of convergence

is very rapid. This can be seen from the equation

-n
u (r) = u(x) - = . w(e){l+o(1)} , 0~ = ,
n n

e

where un(r) is the solution of the approximating boundary value problem
having n as its terminal point (compare Eq. 3.2.6). The rapid convergence
of un(r) to u(r) as n - » for fixed r 1is readily apparent. Thus the
algorithm performs very well with regard to both numerical stability and
rapidity of convergence when the separation of solutions is strong as in
this example of exponmential separation.

1/2

Next, suppose that u(r) Nr—l and v(r) ~r Here again, one
initial value of wu(r) determines the function uniquely and the algorithm

is both convergent and stable., But in this case

-1
w (x) = u@) - Sz - v {lo(1)} , 0 > =
n
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and it is apparent that the rate of convergence will be govermed by the very
. . . -1/2 .

slowly decreasing function n . Suppose, however, that we give an

additional initial value of wu(r) . With two initial values our algorithm

is equivalent to forward recurrence of the given difference equation and

all questions of convergence disappear. This forward recurrence is, of

course, unstable for the desired solution wu(r) but the instability is

very weak; any small component of the more dominant solution v(r) can

rl/2 relative to wu(r) . Although this rate of growth

grow no faster than
(or any other positive rate of growth) is ultimately sufficient to obliterate
the desired solution when computed in finite precision arithmetic, subse-
quences of the solution of considerable length can be computed before this
happens. Thus in many practical situations where the separation of soclutions
is weak, a minor modificationT of the algorithm performs acceptably well

with regard to both stability and convergence.

Finally, suppose that the relative separation of wu(r) and v(r) is

r—3/2 or r—S/z

like (compare Example 4.4.1 which presents the computation
. e . -3/2 .
of a function exhibiting both forms of behavior, r on the subsequence
=5/2 , N .
of odd terms and r on the subsequence of even terms). These separa-

tion ratios are too weak to allow rapid convergence of the unmodified
algorithm, and at the same time too strong for the numerical instability in
the modified algorithm to be truly insignificant. Computation of cases such
as this are the most difficult for the algorithm to perform well, and per—

formance can be improved only by recourse to extended-precision computation.

e
'In general the modified algorithm will require a back substitution as well

as a forward elimination stage. Nevertheless, similar considerations govern
the trade-off between numerical instability and slow convergence.
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Perhaps it should be stressed that a complete knowledge of the asymp-
totic behavior of all of the solutions of the homogeneous equation is
essential to determine the correct number of initial conditions. This in-
formation may be developed for a broad class of linear difference equations
using known analytical results (§2.2). An altermative would be to attempt
to construct the essential classification parameters - the number of dis-
tinct types of solution, and the number of linearly independent solutions
of each type - by numerical experimentation. Under this approach, the
algorithm presented in this thesis would be applied with chosen initial con-
ditions appropriate to different possible realizations of the classifica-
tion theory, that is, different possible forms of the optimally ranked basis.
Presumably, incorrect choices would be revealed by discernible numerical
instability. The effectiveness of such an approach has not be assessed,

however.

In conclusion, the results presented in this thesis are distinguished
from the work of earlier authors in the following ways. First, the inter-
play between linear difference operators and infinite band matrices achieves
a fuller blending of analytic and algebraic ideas. This leads to a clearer
understanding of stability, including the tradeoff choices that exist
between slow convergence and mild instability when the asymptotic separa-
tion of adjacent solutions is weak. Secondly, the classification theory
for separable operators is believed to be new. It enables the proper
number of initial conditions that are prescribed by the convergence
theorem to be determined directly from the asymptotic behavior of fundamen-
tal solutions of the given difference equation. In contrast, Zahar employs

fundamental solutions of the adjoint equation and Oliver applies a
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point-by-point growth criterion between pairs of solutions. Finally, the
numerical examples presented here have been chosen in such a way that the
solutions exhibit a much richer variety of growth rates than in any pre-

vious investigation.



APPENDIX

Proof of Lemma 2.1.1

The proof consists of (i) identifying the sequence defined by
equation (2.1.4) as an almost periodic sequence, and (ii) proving that
every nonzero almost periocdic sequence has an infinite subsequence which is
bounded away from zero. We begin by presenting the essential elements of
the theory of almost periodic functions.

First we give the characterization of almost periodic functions that

is taken as the definition by Corduneanu {7 ]. A function of the form

T(X)=zce , T < X< ®

where the Ck are complex numbers, the Kk are real numbers and

i = V-1, is called a complex trigonometric polynomial. A function f(x)

taking complex values and having all real numbers as domain is an almost

periodic function provided that to each ¢ > 0 there corresponds some

trigonometric polynomial T (x) such that
£(x) - Ta(xﬂ < e

uniformly on - o < x <« = ., C(Clearly, every complex trigonometric poly-
nomial is itself an almost periodic functiom.

An alternative characterization is the definition of H. Bohr [4 ]:
A countinuous complex valued function f(x) defined on the real line is

almost periodic if to each e > 0 there corresponds a positive real

number & = £(g) such that every open interval of the real line of length

2 contains at least one point & for which

[E(x+g) - £(x)] < ¢
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uniformly for every x . Any number £ which satisfies this condition
is called a translation number of f corresponding to & , or more brief-

ly, an g-translation number of f

An g-translation number of f is "almost" a period of f . Every
periodic function is almost periodic as well. If p 1is the fundamental
period of a periodic function f , then rp for t = 0,+1,+2,... are
translation numbers of f for each ¢ . Bohr's definition generalizes
the fact that the periods of a periodic function form an arithmetic
progression.

Bohr's definition and Corduneanu's definition define exactly the
same class of functions. This is the “"fundamental theorem” of the theory
of almost periodic functions. See either [4 ] or [7 ] for a full account.

Turning now to sequences, we have the following definition presented
in [7 ,§1.6]: A function f(r) , taking complex values and having the set

of integers as domain, is an almost period sequence provided that to

each ¢ > 0 there corresponds some positive integer N = N{(¢) such that,
within any set of N consecutive integers, there exists an

integer p for which
[f(r+p) - £(r)] < ¢

uniformly over all integers r . Corduneanu proves "A necessary and

sufficient condition for a sequence {ar} to be almost periodic is the

- X <« » , such that

!
8
A

existence of an almost periodic function f(x) ,
a_ = f(r) , r =0,+1,+2,..."; see [ 7, Theorem 1.27].

We are now ready to prove Lemma 2.1.1. If 1t were allowed to assume
all real values, instead of being restricted to r = 0,1,2,..., then
equation (2.1.4) defines a trigonometric polynomial. By Corduneanu's

definition, every trigonometric polynomial is an almost periodic functionm.
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By the theorem quoted above, the sequence x(r) , r = 0,+1,+2,...
defined by equation (2.1.4) is an almost periodic sequence. The only
thing remaining is to prove the following assertion:

If an almost periodic sequence (f(r)} 1is not identically zero,
then there exists an infinite subsequence of {f(¥)} which is bounded

away from zero.

Proof Assume {f(r)} is not identically zero. Let T be such that

0
f(ro) # 0 and put A = ]f(ro)’ . Put g =A/(2¥A) . Then ¢ ¢ (0,1) ,
and by the definition of an almost periodic sequence there exists a
positive integer Nl , say, such that for some integer pl € {l,Z,...,Nl}

the inequality
! v - e

is satisfied. Put rl = r0+pl . Next, there exists a positive integer

N, such that for some integer

9 € {l,Z,...,NZ} the inequality

Py
[f(rl-i—pz) - f(r1)| <&’

is satisfied. Put r2 = rl + p2 . Continuing in this manner, we see that

3,4,5,... we can find an integer > T g such that

I

for each k

. k
,f(rk) ~ r(rk_l)! < g

For each k = 1,2,3,... we have
k
- f < £ - f
(£ -l = 1 8 - £, )
i=1
koo
j_o e _ 1
< Z £ < : < 5 A
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Since A = gf(ro)f , we have

;f(rk)[ jf(ro) + f(r,) - f(ro)[

a-lE@y -t > % A,

v

which finishes the proof of the assertion. &i
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