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Leonard Maximon (NIST; 27/5/2010):
“Suppose that I have a second order (three-term) homogeneous
difference equation, with coefficients that are either linear or quadratic
functions of the index, n. The equation for the Legendre polynomials is a
good example. I assume further that I have specified the value of the
solution for n = 0 and n = 1, so that in principal I can determine the
solution for all n. The question is then, can one, knowing only the
homogeneous equation and the first two values, determine (write down)
the analytic expression for the asymptotic expansion (the first term in
that expansion will do) for n very large.”

My answer (31/5/2010):
“A simple answer to your question is that we don’t know how to write
down even the 1st term in the asymptotic expansion of the solution to a
difference equation with given initial data. Even in the simple case of
Legendre polynomials, it is not known how to tackle this problem.”
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J. Wimp and D. Zeilberger, Resurrecting the Asymptotics of linear
Recurrences, J. Math. Anal. Appl. 111(1985), 162-176
“Once on the forefront of mathematical research in America, the
asymptotics of the solutions of linear recurrence equations is now almost
forgotten, especially by the people who need it most, namely
combinatorists and computer scientists.”

J. Wimp, Book Review, Math. Comp., 56 January, 1991, 388-396
“There are still vital matter to be resolved in asymptotic analysis. At
least one widely quoted theory, the asymptotic theory of irregular
difference equations expounded by G. D. Birkhoff and W. R. Trjitzinsky
[5, 6] in the early 1930’s, is vast in scope; but there is now substantial
doubt that theory is correct in all its particulars. The computations
involved in the algebraic theory alone (that is, the theory that purports to
show there are a sufficient number of solutions which formally satisfy the
difference equation in question) are truly mindboggling.”
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A. Iserles, SIAM Rev. 42(2002), pp.739-768
“An important observation, which I associate with Nick Trefethen, is that
every hard mathematical construct becomes, subject to discretization, an
even harder mathematical construct. Thus, for example, difference
equations might be a handy and practical means to compute differential
equations, but they are considerably more complicated to analyze.”
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Legendre Polynomials Pn(x)

1. Recurrence relation

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

2. Differential equation

(1− x2)P ′′n (x)− 2xP ′n(x) + n(n + 1)Pn(x) = 0

un(θ) , (sin θ)
1
2 Pn(cos θ)

u′′n (θ) +

[
(n +

1

2
)2 +

1

4 sin2 θ

]
un(θ) = 0

3. Integral representation

Pn(x) =
1

π

∫ π

0

{x + (x2 − 1)
1
2 cos θ}ndθ, x > 1.
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Asymptotic Formulas (as n→∞)

Pn(x) ∼ 1√
2nπ

{
x + (x2 − 1)

1
2

}n+ 1
2

(x2 − 1)
1
4

, x > 1;

Pn(cos θ) =

√
2

πn sin θ
cos

{(
n +

1

2

)
θ − π

4

}
+ O(n−3/2), 0 < θ < π

Question: Are there derivations of these asymptotic formulas, based on
the recurrence relation for Pn(x) ?
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Difference equations:

y(n + 2) + a(n)y(n + 1) + b(n)y(n) = 0

a(n) =
∞∑
s=0

as
ns
, B(n) =

∞∑
s=0

bs

ns

ρ2 + a0ρ+ b0 = 0 characteristic equation

ρ1, ρ2 =
−a0 ±

√
a20 − 4b0

2

Case (i) ρ1 6= ρ2 (Birkhoff, 1911)

yj(n) ∼ ρnj nαj

∞∑
s=0

cs,j
ns
, j = 1, 2 ,
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αj = − a1ρj + b1

2ρ2j + ρa0
=

a1ρj + b1

a0ρj + 2b0

Case (ii) ρ1 = ρ2 = − 1
2a0 but 2b1 6= a0a1 (Adam, 1928)

y±(n) ∼ ρne±γ
√
nnα

∞∑
s=0

(±1)s
cs

ns/2

α =
1

4
+

b1

2b0
, γ = 2

√
a0a1 − 2b1

2b0
.
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Exceptional case: ρ1 = ρ2 = ρ = − 1
2a0, 2b1 = a0a1

indicial polynomial

q(α) = α(α− 1)ρ2 + (a1α + a2)ρ+ b2

q(αi ) = 0, i = 1, 2.

Subcase (i) α2 − α1 > 0 and 6= 1, 2, · · ·

yj(n) = ρnnαj

∞∑
s=0

as,j
ns
, a0,j = 1 j = 1, 2

Subcase (ii) α2 − α1 = 0, 1, 2, · · ·.

y1(n) = ρnnα1

∞∑
s=0

as,1
ns
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y2(n) = ρnnα2

∞∑
s=0

′ bs

ns
+ Cy1(n)In n,

where the prime on
∑

denotes that the term for s = α2 −α1 is absent,
and

C = 1 when α2−α1 = 0; b0 = 1 when α2−α1 = 1, 2, ···

More General Equations

y(n + 2) + npa(n)y(n + 1) + nqb(n)y(n) = 0.

p, q are integers.
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R. Wong:“ Their (B&T) papers have been considered for too
complicated and even impenetrable.”

Frank Olver: “the work of B&T set back all research into the asymptotic
solution of difference equations for most of the 20th Century.”
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Legendre Polynomials (Cont’d.)

Pn+2(x)− 2n + 3

n + 2
xPn+1(x) +

n + 1

n + 2
Pn(x) = 0

a(n) ∼ −2x(1− 1

2n
+

1

n2
+ · · ·)

b(n) ∼ 1− 1

n
+

2

n2
+ · · ·

ρ1, ρ2 =
2x ±

√
4x2 − 4

2
= x ±

√
x2 − 1

α1 = α2 = −1

2
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Case(i) x 6∈ [-1,1]:

y1(n; x) ∼ (x +
√

x2 − 1)nn−
1
2

∞∑
s=0

cs,1
ns

,

y2(n; x) ∼ (x −
√

x2 − 1)nn−
1
2

∞∑
s=0

cs,2
ns

.

Case(ii) x ∈ (−1, 1) : x = cos θ, 0 < θ < π.

y±(n; x) ∼ (cos θ ± i sin θ)nn−
1
2

∞∑
s=0

cs,±
ns
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y1(n; x) ∼ (cos nθ)n−
1
2

∞∑
s=0

cs,1
ns

,

y2(n; x) ∼ (sin nθ)n−
1
2

∞∑
s=0

cs,2
ns

.

Pn(x) = C (x)y1(n; x) + D(x)y2(n; x)

How do you determine the coefficients C (x) and D(x)?
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An alternative derivation:

monic (Legendre) polynomials

πn(x) :=
2nn!

(n + 1)n
Pn(x)

πn+1(x) = xπn(x)− n2

4n2 − 1
πn−1(x), n ≥ 1

π0(x) = 1, π1(x) = x

Set

πn(x) :=
n∏

k=1

wk(x)

wk+1(x) = x − k2

4k2 − 1

1

wk(x)
, k ≥ 1,

w1(x) = x .
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Outside the interval [−1, 1], we have

wk(x) ∼ x +
√

x2 − 1

2
as k →∞.

Put

w(x) :=
x +
√

x2 − 1

2

and

uk(x) :=
wk(x)

w(x)
.

uk+1(x) =
x

w(x)
− k2

4k2 − 1

1

w2(x)uk(x)
, k ≥ 1,

u1(x) =
x

w(x)
.
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Make the change of variable

t = t(x) := (x −
√

x2 − 1)2.

Then

w2(x) =
1

4t
,

x

w(x)
= 1 + t.

uk+1(x) = 1 + t − 4k2t

4k2 − 1

1

uk(x)
, k ≥ 1,

u1(x) = 1 + t.

Define Q0(t) := 1 and

Qn(t) :=
n∏

k=1

uk(x), n ≥ 1.
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We have
Q1(t) = 1 + t

Qn+1(t) = (1 + t)Qn(t)− 4n2t

4n2 − 1
Qn−1(t).

Qn(t) =
n∑

j=0

( 1
2 )j(n − j + 1)j

j!(n − j + 1
2 )j

t j

Qn(t)→ (1− t)−1/2 as n→∞.

πn(x) = w(x)nQn(t) ∼ w(x)n(1− t)−1/2

For x 6∈ [−1, 1],

πn(x) ∼

(
x +
√

x2 − 1

2

)n (
x +
√

x2 − 1

2
√

x2 − 1

)1/2

, n→∞.
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Inside the interval (−1, 1), we have already shown

Pn(x) ∼ [C (x) cos nθ + D(x) sin nθ]
1√
n
, x = cos θ.

πn(x) =
2nn!

(n + 1)n
Pn(x) ∼

√
πn

2n
Pn(x) ∼

√
π

2n
(C (x) cos nθ + D(x) sin nθ)

(1)

This, in fact, holds for x in a neighborhood of [−δ, δ], 0 < δ < 1 in the
complex plane. For x ∈ C\[−1, 1],

πn(x) ∼

(
x +
√

x2 − 1

2

)n (
x +
√

x2 − 1

2
√

x2 − 1

)1/2

. (2)

20 / 42



Note that θ = arccos x and 0 < Re θ < π implies Im θ < 0 for Im x > 0.

Equation (1) gives

πn(x) ∼
√
π

2n

(
C (x)

2
+

D(x)

2i

)
e inθ.

Equation (2) gives

πn(x) ∼ 1

2
e inθ

[
e i(θ−π/2)

2 sin θ

]1/2
.

Therefore
√
π

(
C (x)

2
+

D(x)

2i

)
=

e i(θ/2−π/4)

(2 sin θ)1/2
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Similarly, by matching (1) and (2) in the region Im x < 0, we obtain

√
π

(
C (x)

2
− D(x)

2i

)
=

e−i(θ/2−π/4)

(2 sin θ)1/2
.

Solving these two equations, we have

√
πC (x) =

(
1 + sin θ

sin θ

)1/2

,
√
πD(x) =

(
1− sin θ

sin θ

)1/2

.

πn(x) ∼ 1

2n

[
cos nθ

(
1 + sin θ

sin θ

)1/2

+ sin nθ

(
1− sin θ

sin θ

)1/2
]

θ = arccos x with 0 < Re θ < π.
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Hermite polynomials

2xHn(x) = Hn+1(x) + 2nHn−1(x)

πn(x) =
1

2n
Hn(x)

πn+1(x) = xπn(x)− n

2
πn−1(x), n ≥ 1

π0(x) = 1, π1(x) = x .

πn(x) =
n∏

k=1

ωk(x)

ω1(x) = x , ωk+1(x) = x − k

2ωk(x)
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x = xn :=
√

2n y with y ∈ C\[−1, 1],

ωk(xn) =
xn +

√
xn − 2k

2

[
1 +

1

2(x2
n − k)

+ O (n−2)

]
↑

uniform in k = 1, · · · , n

πn(
√

2ny) ∼
( n

2e

)n/2
exp

{
n
[
y2 − y

√
y2 − 1 + log

(
y +

√
y2 − 1

)]}
×

(
y +

√
y2 − 1

2
√

y2 − 1

)1/2

, y ∈ C\[−1, 1].

24 / 42



pn(x) :=
1

Γ
(
1
2n + 1

2

)πn(x)

Γ
(
1
2n + 1

2

)
Γ
(
1
2n + 1

) ypn(
√

2n y) = pn+1(
√

2ny) + pn−1(
√

2ny)

Assume

pn(
√

2ny) ∼ nα[ρ(y)]n {f (y) cos[nϕ(y)] + g(y) sin[nϕ(y)]} .

From the 3-term recurrence relation, one finds

ρ(y) = ecy2

for some c ∈ C, ϕ(y) = arccos y − y
√

y2 − 1

θ := arccos y
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f (y) =
y2α

(1− y2)1/4

(
C1 cos

θ

2
+ C2 sin

θ

2

)

g(y) =
y2α

(1− y2)1/4

(
−C1 sin

θ

2
+ C2 cos

θ

2

)
(I)

pn(
√

2ny) ∼ nαency2

y2α(1− y2)−1/4
[

C1 cos

(
nϕ+

θ

2

)
+ C2 sin

(
nϕ+

θ

2

)]
,

y in a small neighborhood of [−1 + δ, 1− δ], δ > 0.

(II)

pn(
√

2ny) ∼ 1√
2π

exp
{

n
[
y2 − y

√
y2 − 1 + log

(
y +

√
y2 − 1

)]}
×

(
y +

√
y2 − 1

2
√

y2 − 1

)1/2

, y ∈ C\[−1, 1].

26 / 42



Im y > 0⇒ α = 0, c = 1 and

C1

2
+

C2

2i
=

e−iπ/4

2
√
π
.

Im y < 0⇒ α = 0, c = 1 and

C1

2
− C2

2i
=

e iπ/4

2
√
π
.

∴ C1 = C2 =
1√
2π

α = 0, c = 1, C1 = C2 =
1√
2π
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Uniform Asymptotic Expansions

pn+1(x) = (anx + bn)pn(x)− cnpn−1(x)

Pn+1(x)− (Anx + Bn)Pn(x) + Pn−1(x) = 0

Questions:

1. What is a turning point for a second-order linear difference
equation?

2. How does Airy’s function arise from a 3-term recurrence
relation, when the function itself does not satisfy any
differnece equation.

3. How the function ζ in Ai(λ2/3ζ) is obtained, when there is
no corresponding transformation such as Langer’s
transformation for differnetial equations or the cubic
transformation for integrals.
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Pn+1(x)− (Anx + Bn)Pn(x) + Pn−1(x) = 0

An ∼ n−θ
∞∑
s=0

αs

ns
, Bn ∼

∞∑
s=0

βs
ns

θ ∈ R, α0 6= 0.

ν := n + τ0

↑
to be determined
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An ∼ ν−θ
∞∑
s=0

α′s
νs
, Bn ∼

∞∑
s=0

β′s
νs

x := νθt

Try Pn = λn,

and let n→∞.

λ2 − (α′0t + β′0)λ+ 1 = 0 characteristic

equation
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Roots:

λ± =
1

2

[
(α′0t + β′0)±

√
(α′0t + β′0)2 − 4

]
Transition points:

α′0t± + β′0 = ±2,

i.e. when the characteristic roots coincide!

Note: t+ & t− distinct.
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Three cases:

(i) θ 6= 0 & t+ 6= 0 (turning point)

(ii) θ 6= 0 and t+ = 0

(iii) θ = 0. (transition point)

Case (i): Formal solution

Pn(νθt) =Ai

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

As(ζ)

νs

+Ai′
(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

Bs(ζ)

νs+
1
3

ζ(t+) = 0
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x = νθt is fixed!

n→ n + 1 (or ν → ν + 1) t → t ′ =

(
1 +

1

ν

)−θ
t

n→ n − 1 (or ν → ν − 1) t → t ′′ =

(
1− 1

ν

)−θ
t

x = νθt = (ν + 1)θt ′ x = νθt = (ν − 1)θt ′′
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Ai

(
ν

1
3 ζ +

Φ(ζ)

ν
1
3

)
→Ai

(ν + 1)
2
3 ζ

((
1 +

1

ν

)−θ
t

)
+

Φ
(
ζ
((

1 + 1
ν

)−θ
t
))

(ν + 1)
1
3


ζ = ζ(t), Φ = Φ(ζ).

Lemma:

Ai

(ν + 1)
2
3 ζ

((
1 +

1

ν

)−θ
t

)
+

Φ
(
ζ
((

1 + 1
ν

)−θ
t
))

(ν + 1)
1
3


∼Ai

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

Gs(ζ,Φ)

νs

+
1

ν
1
3

Ai′
(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

Hs(ζ,Φ)

νs
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(∗) Pn+1(x)− (Anx + Bn)Pn(x) + Pn−1(x) = 0

An ∼ n−θ
∞∑
s=0

αs

ns
, Bs ∼

∞∑
s=0

βs
ns
,

α0t± + β0 = ±2, turning points
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If θ 6= 0 and |β0| < 2 (i.e., t− < 0 < t+), choose

τ0 = −α1t+ + β1
(2− β0)θ

so that

α′1t+ + β′1 = 0,

where α′1 and β′1 are the coefficients in

An ∼ ν−θ
∞∑
s=0

α′s
νs
, Bn ∼

∞∑
s=0

β′s
νs
,

and

ν = n + τ0.
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THEOREM A. (Wang and , Numer. Math., 2003)
If θ 6= 0 and |β0| < 2 (i.e., t− < 0 < t+), then (∗) has a pair of linearly
independent solutions

Pn(x) = Pn(νθt) ∼
(

4ζ

(α0t + β0)2 − 4

) 1
4

×

{
ν

1
6 Ai

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

As(ζ)

νs

−ν− 1
6 Ai′

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

Bs(ζ)

νs

}
,
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Qn(x) = Qn(νθt) ∼
(

4ζ

(α0t + β0)2 − 4

) 1
4

×

{
ν

1
6 Bi

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

Ãs(ζ)

νs

+ν−
1
6 Bi′

(
ν

2
3 ζ +

Φ

ν
1
3

) ∞∑
s=0

B̃s(ζ)

νs

}
,

where ζ(t) and Φ(ζ) are explicitly given analytic functions. These
expansions hold uniformly for 0 < t <∞.
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2

3
[ζ(t)]

3
2 =α0t1/θ

∫ t

t+

s−1/θ√
(α0s + β0)2 − 4

ds

− log
α0t + β0 +

√
(α0t + β0)2 − 4

2
, t ≥ t+,

2

3
[−ζ(t)]

3
2 = cos−1

α0t + β0
2

− α0t1/θ
∫ t+

t

s−1/θ√
4− (α0s + β0)2

ds, t < t+.
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Φ(ζ) := − 1

ζ
1
2

∫ t

t+

α′1τ + β′1

2θτζ
1
2 H0(ζ)

dτ,

α′1 = α1 + θτ0α0, β′1 = β1

H0(ζ) = −

√
(α0t + β0)2 − 4

4ζ
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Case (iii): θ = 0 (transition point)

The characteristic roots again coincide when x = x±, where

α0x± + β0 = ±2.

Assume α1 = β1 = 0 so that α1x+ + β1 = 0

τ0 = − (α3x+ + β3)

2(α2x+ + β2)
, N = n + τ0.

ν = (α′2x+ + β′2 +
1

4
)1/2.

ζ
1
2 (x) = cosh−1(

α0x + β0
2

)
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THEOREM B. (Wang and , Math. Comp., 2005)

If θ = 0, then (∗) has a pair of linearly independent solutions

Pn(x) ∼
(

4ζ

(α0x + β0)2 − 4

) 1
4

×

[
N

1
2 Iν(Nζ1/2)

∞∑
s=0

As(ζ)

Ns
+ N

1
2 ζ

1
2 Iν−1(Nζ

1
2 )
∞∑
s=0

Bs(ζ)

Ns

]

and

Qn(x) ∼
(

4ζ

(α0x + β0)2 − 4

) 1
4

×

[
N

1
2 Kν(Nζ1/2)

∞∑
s=0

As(ζ)

Ns
− N

1
2 ζ

1
2 Kν−1(Nζ

1
2 )
∞∑
s=0

Bs(ζ)

Ns

]
.

There expansions hold uniformly for x + δ ≤ x <∞.
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