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A random variable X is said to be infinitely divisible if for every
n € N it can be written (in distribution) as

XL Xp1 4+ X,

where X, 1,..., Xy » are independent and identically distributed
random variables. Infinite divisibility is a property of the probability
measure (distribution) induced by X. It follows that a probability
measure p on R is infinitely divisible if and only if, for every n € N,
there is a probability measure i, such that pu is equal to the n-fold
convolution of .

Reference: F.W. Steutel and K. Van Harn, Infinite divisibility of
probability distributions on the real line, Marcel-Dekker, New York,
2004.
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In this talk we are interested in infinite divisibility of probability
measures on [0, c0) which are given by a probability density
function (pdf) f(x) with f(x) =0 for x < 0.

For r > 0 and A > 0 consider the gamma(r, \) distribution with
density function

A r—1_—Xx
f(x;r,A) = x""e for x > 0.

r(r)

Then f(x; r, A) is the n-fold convolution of f(x; -, \) so the
gamma(r, A) distribution is infinitely divisible.
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Student’s t distribution

The student t distribution with r > 0 degrees of freedom is given
by the pdf

oy I'(%(r—i—l)) Xj —3(r+1)
s ="y ()

It is known that this distribution is infinitely divisible.
We are interested in the infinite divisibility of the half-student t
distribution with density

2g(x;r) ifx>0
0 if x<0
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An integral equation

Suppose that p is a probability measure on [0, c0) with density
function f(x). Suppose that f is continuously differentiable on
[0,00) and f(0) > 0. Then the Volterra integral equation of the
first kind

X
X = [ Fx- k) dy, x =0,
0
has a unique continuous solution k : [0,00) — R. It is known that

f(x) is infinitely divisible if and only if k(x) > 0 for all x > 0; see
Steutel and van Harn.
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Equivalent integral equation

By differentiating both sides of the integral equation, we obtain
the Volterra integral equation of the second kind

f(x) + xf'(x) = F(0)k(x) + /OX f'(y — x)k(y)dy, x>0,

or, equivalently,
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Numerical approach

We solve the integral equation of the second kind numerically on
x € [0, b] by using the trapezoidal rule. Let N € N and set § = 2.
Let

and set
gi = g(xi), hi=h(x;), i=0,1,...,N.

Then we define kg = gp and recursively compute k; from the
equations

i—1
ki =g+ 30hiko + 8 Y hi_jkj + 36hoki, i=1,2,...,N.
j=1

We require N to be so large that %5ho < 1. We then consider k; as
an approximation of k(x;).
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k(x) for r =14
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k(x) for r =16
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Let f(x; r) be the pdf of the half student t distribution with r
degrees of freedom. As r — oo, f(x; r) converges to the
half-normal pdf. It follows that there is rp > 0 such that k(x; r)
becomes negative for some x > 0. Very likely, there is rp > 0 such
that f(x; r) is infinitely divisible for 0 < r < ry but not for r > ry.
Numerical calculations suggest that 14 < rp < 16.
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Partial proof of conjecture

If r > 16 then the half-student t distribution with r degrees of
freedom is not infinitely divisible.

We will show that the solution k(x) of the integral equation

XF(x) = /O " Fx— y)k(y) dy

attains negative values when

2\ 49
1
f(x)z(l—i—X) , qz;.

q
We start with the Taylor expansion
oo
1 (q)
_ 2 _ n
f(x) = ;(—1)"fnx " = p

which converges for x| < |/q.

Hans Volkmer Infinite divisibility



The solution k(x) is also analytic in x| < /g with Taylor

expansion
o

k(x) = (=1)"knx*".
n=0
Substituting the Taylor expansions in the integral equation and
using the convolution

xM X" Xm+n+1

m! >|<m:(n—}—m—i—l)!’

we obtain, for every n=0,1,...,

(2n —2m)!1(2m)!
(2n)! )

2n+1)fa =" fomkm

m=0

This formula allows us to compute k, recursively.
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The first coefficients are given by

k = 1
ki = 2
5 _
ky = 3120 !
37 14
ks = —+ —qgt4+29?
3 a5 + 5 qg  +2q
353 193 249
k — =70 -1 “rr =2 2 -3
4 1260 1057 T 709 T4
583 145 1763 517
ks = + T+ g P+ g P+ 2q7 !

8100 ' 189 630 126

1

In general, k, is a polynomial in g~* with rational coefficients.
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By induction on n, we are able to show that

n+1(q)n Skn§2n+1(q)".
nl q" nl q"

Based on this inequality we show the following. Let x > 0 and
0 < 2x% < q. If we choose an even integer N > 2 so large that

(N +1)%g > (2N +3)(g + N)x?

then
—1 N

(—1)"knx?" < k(x Z

=

3
Il
o
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Using a computer we calculate the partial sum
20
h(x) = (—1)"knx"
n=0

of the Taylor series for k(x), and then h(xg), where x3 = 2. Now
q'?h(xp) is a polynomial in g of degree 19 with rational
coefficients. If we substitute g = 177 + p then all coefficients of
q'?h(xp) when written in powers of p are negative. Therefore,
h(xo) < 0 for g > i and so

17
k(x0) < h(xp) <0 for g > >

This completes the proof of the theorem.
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Solution by Laplace transform

Consider f(x) = (14 x2)79. We want to solve the integral
equation

<) = [ " Fx— y)k(y) dy

by Laplace transform. Let F(s), K(s) denote the Laplace
transforms of f, k, respectively. Then

—F'(s) = F(s)K(s).

Letyz%—q. If g ¢ N then
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The function K,, is the solution of the inhomogeneous form of
Bessel's equation

W'(s) + ~w'(s) + <1 - 2> w(s) = G
s 52 r
which vanishes at s = +00. We have
Ku(s) = Hu(s) — Y. (s),

where H,(s) is Struve's function; see F. Olver, Asymptotics and
Special Functions.
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Thecase g=1

In 1987 L. Bondesson showed that the half-student t distribution is
infinitely divisible when r = g = 1. We will give another proof.
The Laplace transform of f(x) = ﬁlxz is

F(s) = Ci(s)sins — (Si(s) - g) cos s,

where

Scosx —1

Si(s):/ Slnde, Ci(s):’y—Hns—l—/ —— dx
0

X 0 X

and v =0.5772... is Euler's constant.
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The zeros of F(s) in the upper half-plane are simple and they form
a sequence {cp}5° ; such that

—2nm < Rep < —(2n— L) forne N

The first three zeros of F are (rounded to ten digits)

ca = —5.830190833 + 3.0560229441,
o = —12.27934811 4 3.706041345/,
3 = —18.63527112 4 4.098284913,.

The equation —F'(s) = F(s)K(s) shows that K(s) is analytic in
—m < args < w except for simple poles at the points ¢, and ¢,.
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We compute the inverse Laplace transform k(x) of K(s) by
applying the residue theorem to the contour

Ss

€l
_(2n + 1)7'(' € §Rs

Then we let n — oo.
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Theorem

For x > 0 we have

oo o
k(x) = / g(u)e "™ du—2 E e cos(bmx),
0

m=1
where Cp = —am + ibm, (2m — 1) < am < 2mm, by, > 0, denote
the zeros of F(s), and
1 .
g(u) = =SK(—u-—i0)
7r
Si(u) + 5

(F(u) — mcosu)? + m2sin® u’
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The graph of g(u) looks like this
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Using that g(u) > % for all u > 0, we obtain

For x > 0 there holds the inequality

3
1 2e 2™
Kx)> — — 2 2
(>) > bx 1 — e2mx

We have k(x) > 0 for all x > 0.

The asymptotics of k(x) as x — oo is given by

21 4 1-2]|
k(x)= 22+ 22720 o(x3In2 x).

Tx W X2
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We may use our formula to compute k(x) numerically:

0.8
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