

Multiple orthogonal polynomials as special functions

Walter Van Assche

April 7, 2011

Multiple orthogonal polynomials

definition type II multiple orthogonal polynomials type I multiple orthogonal polynomials

Determinantal point processes

Recurrence relations

Various examples

Multiple orthogonal polynomials

definition

Polynomials of one variable but indexed by a multi-index $\vec{n} = (n_1, n_2, \dots, n_r) \in \mathbb{N}^r \ (r \ge 1)$ satisfying orthogonality conditions with respect to r positive measure μ_1, \dots, μ_r on the real line.

They appear naturally in Hermite-Padé approximation to \boldsymbol{r} functions

$$f_j(z) = \int \frac{d\mu_j(x)}{z - x}, \qquad 1 \le j \le r.$$

There are two types: type I and type II

Multiple orthogonal polynomials

definition type II multiple orthogonal polynomials type I multiple orthogonal polynomials

Determinantal point processes

Recurrence relations

 $P_{\vec{n}}$ is a **monic** polynomial of degree $|\vec{n}| = n_1 + n_2 + \dots + n_r$ for which

$$\int P_{\vec{n}}(x)x^k \, d\mu_1(x) = 0, \qquad k = 0, 1, \dots, n_1 - 1$$

 $\int P_{\vec{n}}(x)x^k \, d\mu_r(x) = 0, \qquad k = 0, 1, \dots, n_r - 1$

Multiple orthogonal polynomials definition type II multiple orthogonal polynomials type I multiple orthogonal polynomials Determinantal point processes

Recurrence relations

Various examples

 $|\vec{n}|$ linear conditions for $|\vec{n}|$ unknowns.

Solution exists and unique: \vec{n} is a *normal index* for type II.

LEUVEN LEUVEN

 $(A_{\vec{n},1},\ldots,A_{\vec{n},r})$ is a vector of r polynomials, with $A_{\vec{n},j}$ of degree n_j-1 , for which

$$\int x^k \sum_{j=1}^r A_{\vec{n},j} d\mu_j(x) = 0, \qquad k = 0, 1, \dots, |\vec{n}| - 2$$
$$\int x^{|\vec{n}|-1} \sum_{j=1}^r A_{\vec{n},j} d\mu_j(x) = 1.$$

polynomials definition type II multiple orthogonal polynomials type I multiple orthogonal polynomials

Multiple orthogonal

Determinantal point processes

Recurrence relations

Various examples

 $|\vec{n}|$ linear conditions for $|\vec{n}|$ unknowns.

Solution exists and unique: \vec{n} is a *normal index* for type I (\Leftrightarrow for type II).

Notation:

$$Q_{\vec{n}}(x) = \sum_{j=1}^{r} A_{\vec{n},j}(x) w_j(x), \qquad w_j(x) = \frac{d\mu_j(x)}{d\mu(x)}.$$

Multiple orthogonal polynomials

Determinantal point processes

what?

definition

biorthogonal ensembles

random matrices

random matrices with

external source

non-intersecting

Brownian motions

non-intersecting

Brownian motions

squared Bessel paths

Recurrence relations

Various examples

Determinantal point processes

Surveys

- A. Borodin: *Determinantal point processes*, arXiv:0911.1153 [math.PR]
- T. Tao: http://terrytao.worldpress.com/2009/08/23/determinantal-processes
- A. Soshnikov: *Determinantal random point fields*, Russian Math. Surveys **55** (2000)
- R. Lyons: *Determinantal probability measures*, Publ. Math. Inst. Hautes
 Etudes Sci. **98** (2003)
- K. Johansson: *Random matrices and determinantal processes*, arXiv:math-ph/0510038

definition

A point process on \mathbb{R} is determinantal if there exists a kernel $K: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

 $\mathsf{Pr}\{\exists \text{ particle in each } (x_i, x_i + dx_i), 1 \le i \le n\} \\ = \det (K(x_i, x_j))_{i,j=1}^n dx_1 dx_2 \dots dx_n.$

(provided these probabilities are positive, of course).

Multiple orthogonal polynomials

Determinantal point

processes

what?

definition

biorthogonal ensembles

random matrices random matrices with external source non-intersecting Brownian motions non-intersecting Brownian motions

squared Bessel paths

Recurrence relations

biorthogonal ensembles

$$Z_n = \int_{\mathbb{R}^n} \det\left(\phi_i(x_j)\right)_{i,j=1}^n \det\left(\psi_i(x_j)\right)_{i,j=1}^n dx_1 \dots dx_n,$$

then the point process with

$$P(x_1, \dots, x_n) = Z_n^{-1} \det(\phi_i(x_j))_{i,j=1}^n \det(\psi_i(x_j))_{i,j=1}^n$$

is determinantal with

^

$$K(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} (G^{-1})_{i,j} \phi_i(x) \psi_j(y),$$

and

$$G_{i,j} = \int_{\mathbb{R}} \phi_i(x) \psi_j(x) \, dx$$

LEUVERSITEIT

Multiple orthogonal polynomials

Determinantal point

processes

what?

definition

biorthogonal ensembles

random matrices random matrices with external source non-intersecting Brownian motions non-intersecting Brownian motions squared Bessel paths

Recurrence relations

10 / 27

random matrices

For the Gaussian Unitary Ensemble (GUE) of Hermitian $n\times n$ matrices M with probability distribution

 $Z_n^{-1} \ e^{-2\mathrm{Tr} V(M)} \ dM$

the eigenvalues are a determinantal point process with

$$K(x,y) = \sum_{i=0}^{n-1} p_i(x) p_i(y) e^{-V(x) - V(y)}$$

where $p_0(x), p_1(x), p_2(x), \ldots$ are the orthonormal polynomials for the weight $e^{-2V(x)}$:

 $\int p_i(x)p_j(x)e^{-2V(x)}\,dx = \delta_{m,n}$

Multiple orthogonal polynomials

Determinantal point

processes

what?

definition

biorthogonal ensembles

random matrices

random matrices with external source non-intersecting Brownian motions non-intersecting Brownian motions squared Bessel paths Recurrence relations

If A is a given Hermitian $n\times n$ matrix and the probability distribution is

$$Z_n^{-1} e^{-\operatorname{Tr}(V(M) + AM)} dM$$

then the eigenvalues are a determinantal process with

$$K(x,y) = \sum_{i=0}^{|\vec{n}|-1} P_{\vec{n}_i}(x) Q_{\vec{n}_{i+1}}(x)$$

where $P_{\vec{n}}$ and $Q_{\vec{n}}$ are multiple orthogonal polynomials for the measures $e^{-V(x)-a_jx}$ $(1 \le j \le r)$, with a_1, \ldots, a_r the eigenvalues of A and n_j the multiplicity of the eigenvalues a_j . The multi-indices $(\vec{n}_0, \ldots, \vec{n}_n)$ are a path in \mathbb{N}^r from $\vec{n}_0 = \vec{0}$ to $\vec{n}_{|\vec{n}|} = \vec{n}$ such that $\vec{n}_{i+1} - \vec{n}_i = \vec{e}_j$ for some $j \in \{1, \ldots, r\}$ and $\vec{e}_1, \ldots, \vec{e}_r$ are the unit vectors in \mathbb{N}^r .

non-intersecting Brownian motions

polynomials Determinantal point processes what? definition

Multiple orthogonal

biorthogonal ensembles

random matrices random matrices with

external source

non-intersecting

Brownian motions

non-intersecting

Brownian motions

squared Bessel paths

Recurrence relations

non-intersecting Brownian motions

Multiple orthogonal polynomials **Determinantal point** processes what? definition biorthogonal ensembles random matrices random matrices with external source non-intersecting **Brownian motions** non-intersecting Brownian motions squared Bessel paths **Recurrence relations**

squared Bessel paths

Recurrence relations Various examples

Multiple orthogonal

Determinantal point

random matrices

external source non-intersecting **Brownian motions** non-intersecting

Brownian motions

polynomials

processes

what? definition

 $Y(t) = X_1^2(t) + X_2^2(t) + \dots + X_d^2(t)$

where $(X_1(t), X_2(t), \ldots, X_d(t))$ is a d-dimensional Brownian motion starting from (a_1, \ldots, a_d) and ending at $(0, 0, \ldots, 0)$. This is a biorthogonal ensemble which uses modified Bessel functions I_{α} with $d = 2(\alpha + 1)$.

Multiple orthogonal polynomials

Determinantal point processes

Recurrence relations nearest neighbor recurrence relations compatibility relation Christoffel-Darboux formula

Various examples

Recurrence relations

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation.

$$xp_n(x) = a_{n+1}p_{n+1}(x) + b_n p_n(x) + a_n p_{n-1}(x).$$

Multiple orthogonal polynomials (with all multi-indices normal) satisfy a system of r recurrence relations

$$xP_{\vec{n}}(x) = P_{\vec{n}+\vec{e}_k}(x) + b_{\vec{n},k}P_{\vec{n}}(x) + \sum_{j=1}^{\prime} a_{\vec{n},j}P_{\vec{n}-\vec{e}_j}(x), \qquad 1 \le k \le r.$$

$$xQ_{\vec{n}}(x) = Q_{\vec{n}-\vec{e}_k}(x) + b_{\vec{n}-\vec{e}_k,k}Q_{\vec{n}}(x) + \sum_{j=1}^r a_{\vec{n},j}Q_{\vec{n}+\vec{e}_j}(x), \qquad 1 \le k \le r.$$

polynomials Determinantal point processes

Multiple orthogonal

Recurrence relations nearest neighbor recurrence relations

compatibility relation Christoffel-Darboux formula

The recurrence coefficients satisfy some partial difference equations (Van Assche, 2011). Suppose $1 \le i \ne j \le r$, then

$$\begin{aligned} b_{\vec{n}+\vec{e}_{i},j} - b_{\vec{n},j} &= b_{\vec{n}+\vec{e}_{j},i} - b_{\vec{n},i} \\ \sum_{j=1}^{r} a_{\vec{n}+\vec{e}_{j},k} - \sum_{k=1}^{r} a_{\vec{n}+\vec{e}_{i},k} &= \det \begin{pmatrix} b_{\vec{n}+\vec{e}_{j},i} & b_{\vec{n},i} \\ b_{\vec{n}+\vec{e}_{i},j} & b_{\vec{n},j} \end{pmatrix} \\ \frac{a_{\vec{n},i}}{a_{\vec{n}+\vec{e}_{j},i}} &= \frac{b_{\vec{n}-\vec{e}_{i},j} - b_{\vec{n}-\vec{e}_{i},i}}{b_{\vec{n},j} - b_{\vec{n},i}} \end{aligned}$$

Reason: $P_{\vec{n}+\vec{e_i}+\vec{e_j}}(x)$ can be computed in two ways from the recurrence relations:

first compute $P_{\vec{n}+\vec{e}_i}(x)$ and from there $P_{\vec{n}+\vec{e}_i+\vec{e}_j}(x)$ first compute $P_{\vec{n}+\vec{e}_j}(x)$ and from there $P_{\vec{n}+\vec{e}_j+\vec{e}_i}(x)$

Multiple orthogonal polynomials

Determinantal point processes

Recurrence relations nearest neighbor recurrence relations

compatibility relation Christoffel-Darboux formula

Multiple orthogonal polynomials Determinantal point processes Recurrence relations

nearest neighbor recurrence relations

compatibility relation

Christoffel-Darboux formula

Various examples

For orthogonal polynomials there is the Christoffel-Darboux relation

$$\sum_{i=0}^{n-1} p_i(x)p_i(y) = a_n \frac{p_n(x)p_{n-1}(y) - p_{n-1}(x)p_n(y)}{x - y}$$

For multiple orthogonal polynomials there is a similar formula

$$\sum_{i=0}^{|\vec{n}|-1} P_{\vec{n}_i}(x)Q_{\vec{n}_{i+1}}(y) = \frac{P_{\vec{n}}(x)Q_{\vec{n}}(y) - \sum_{j=1}^r a_{\vec{n},j}P_{\vec{n}-\vec{e}_j}(x)Q_{\vec{n}+\vec{e}_j}(y)}{x-y}.$$

where $(\vec{n}_i)_{i=0,1,\ldots,|\vec{n}|}$ is a path in \mathbb{N}^r from $\vec{n}_0 = \vec{0}$ to $\vec{n}_{|\vec{n}|} = \vec{n}$ such that for each $i \in \{0, 1, \ldots, |\vec{n}| - 1\}$ one has $\vec{n}_{i+1} - \vec{n}_i = \vec{e}_j$ for some $j \in \{1, 2, \ldots, r\}$ (Kuijlaars & Daems).

Multiple orthogonal polynomials

Determinantal point processes

Recurrence relations

Various examples

multiple Hermite polynomials multiple Laguerre polynomials, first kind multiple Laguerre polynomials, second kind multiple Jacobi polynomials multiple Jacobi polynomials multiple orthogonal polynomials and modified Bessel functions Imultiple orthogonal polynomials and modified Bessel functions Kreferences

multiple Hermite polynomials

$$\int_{-\infty}^{\infty} x^k H_{\vec{n}}(x) e^{-x^2 + c_j x} \, dx = 0, \qquad k = 0, 1, \dots, n_j - 1$$

where $c_i \leq c_j$ whenever $i \neq j$.

random matrices with external source (Kuijlaars & Bleher), non-intersection Brownian motions (Kuijlaars, Daems, Delvaux, Bleher)

Rodrigues formula

$$e^{-x^2}H_{\vec{n}}(x) = (-1)^{|\vec{n}|} 2^{-|\vec{n}|} \left(\prod_{j=1}^r e^{-c_j x} \frac{d^{n_j}}{dx^{n_j}} e^{c_j x}\right) e^{-x^2}.$$

Recurrence relations: for $1 \leq k \leq r$

$$xH_{\vec{n}}(x) = H_{\vec{n}+\vec{e}_k}(x) + \frac{c_k}{2}H_{\vec{n}}(x) + \frac{1}{2}\sum_{j=1}^r n_j H_{\vec{n}-\vec{e}_j}(x).$$

Multiple orthogonal

Determinantal point

Recurrence relations

polynomials, first kind multiple Laguerre

polynomials, second

multiple orthogonal polynomials and modified Bessel functions *I*

multiple orthogonal polynomials and modified Bessel

functions *K* references

multiple Jacobi polynomials multiple Jacobi polynomials

Various examples

multiple Hermite

polynomials multiple Laguerre

kind

polynomials

processes

multiple Laguerre polynomials, first kind

	Multiple orthogonal
	polynomials
~ 1	Determinantal point
$\ldots, n_j - 1$	processes
	Recurrence relations
	Various examples
	multiple Hermite
	polynomials
\mathbf{X}	multiple Laguerre
-r	polynomials, first kind
e^{ω}	multiple Laguerre
	polynomials, second
	kind
	multiple Jacobi
	polynomials
	multiple Jacobi
$L_{\vec{n}} = \vec{n} \cdot (x)$	polynomials
$-n-e_j(\infty)$	multiple orthogonal
	polynomials and
	multiple orthogonal
$lpha_i$	polynomials and
	modified Bessel
$- \alpha_i$	functions K
	references

$$\int_0^\infty x^k L_{\vec{n}}(x) x^{\alpha_j} e^{-x} \, dx = 0, \qquad k = 0, 1, \dots, n_j - 1$$

where
$$\alpha_1, \ldots, \alpha_r > -1$$
 and $\alpha_i - \alpha_j \notin \mathbb{Z}$.

$$(-1)^{|\vec{n}|} e^{-x} L_{\vec{n}}(x) = \prod_{j=1}^{r} \left(x^{-\alpha_j} \frac{d^{n_j}}{dx^{n_j}} x^{n_j + \alpha_j} \right) e^{-x}$$

$$xL_{\vec{n}}(x) = L_{\vec{n}+\vec{e}_k}(x) + b_{\vec{n},k}L_{\vec{n}}(x) + \sum_{j=1}^r a_{\vec{n},j}L_{\vec{n}-\vec{e}_j}(x)$$

$$a_{\vec{n},j} = n_j(n_j + \alpha_j) \prod_{i=1, i \neq j}^r \frac{n_j + \alpha_j - \alpha_i}{n_j - n_i + \alpha_j - \alpha_i}$$

$$b_{\vec{n},j} = |\vec{n}| + n_j + \alpha_j + 1.$$

	Multiple orthogonal
$\int_0^\infty x^k L_{\vec{n}}(x) x^\alpha e^{-c_j x} dx = 0, \qquad k = 0, 1, \dots, n_j - 1$	Determinantal point processes Recurrence relations
with c_1 $c_2 > 0$ and $c_2 \neq c_2$ whenever $i \neq i$	Various examples
with $c_1, \ldots, c_r > 0$ and $c_i \neq c_j$ whenever $i \neq j$.	multiple Hermite
Wishart ensembles in random matrix theory	polynomials
Wienart eneemblee in random matrix theory.	multiple Laguerre
	polynomials, first kind
	multiple Laguerre
$(\cdot \cdot \cdot \cdot \cdot \cdot \vec{n} \cdot $	polynomials, second
$(-1)^{[n]} \left(\prod_{j=1}^{n} c_{j}^{[n]}\right) x^{\alpha} L_{\vec{n}}(x) = \prod_{j=1}^{n} \left(e^{c_{j}x} \frac{1}{dx^{n_{j}}} e^{-c_{j}x}\right) x^{[n]+\alpha}$	kind multiple Jacobi polynomials
$\begin{pmatrix} j-1 \end{pmatrix}$ $j-1$	multiple Jacobi
	polynomials
r	multiple orthogonal
\mathbf{T} () \mathbf{T} () \mathbf{T} () \mathbf{T} () \mathbf{T} ()	polynomials and
$xL_{\vec{n}}(x) = L_{\vec{n}+\vec{e}_{k}}(x) + b_{\vec{n},k}L_{\vec{n}}(x) + \sum a_{\vec{n},j}L_{\vec{n}-\vec{e}_{j}}(x)$	modified Bessel
	functions I
j=1	multiple orthogonal
	polynomials and
$ \vec{n} + \alpha$)n: $ \vec{n} + \alpha + 1 = \frac{r}{2}$ n:	functions K
$a \rightarrow \cdot = n \cdot n \cdot$	
$c_{n,j}^2 = c_j^2$, $c_{n,j}^2 = c_j$, c_i	reierences

multiple Jacobi polynomials

-1	Multiple orthogonal polynomials
$\int_{0}^{1} x^{k} P_{\vec{n}}(x) x^{\alpha_{j}} (1-x)^{\beta} dx = 0, \qquad k = 0, 1, \dots, n_{j} - 1$	Determinantal point processes
$J \cup$	Recurrence relations
with $\alpha_1, \ldots, \alpha_r, \beta > -1$ and $\alpha_i - \alpha_j \notin \mathbb{Z}$.	Various examples multiple Hermite polynomials
	multiple Laguerre
1°	multiple Laguerre
$(-1)^{ \vec{n} } \prod_{j=1}^{\prime} (\vec{n} + \alpha_j + \beta + 1)_{n_j} (1-x)^{\beta} P_{\vec{n}}(x)$	polynomials, second kind multiple Jacobi polynomials
r (Jn_i)	polynomials
$-\prod \left(\frac{1}{r^{-\alpha_j}} \frac{a^{-\alpha_j}}{r^{n_j+\alpha_j}} \right) (1-r)^{ \vec{n} +\beta}$	multiple orthogonal
$-11 \begin{pmatrix} x & dx^{n_j} & dx^{n_j} \end{pmatrix} \begin{pmatrix} 1 & x^{j} \end{pmatrix}$	polynomials and
j=1	functions I
	multiple orthogonal
	polynomials and

references

modified Bessel functions K

multiple Jacobi polynomials

$$xP_{\vec{n}}(x) = P_{\vec{n}+\vec{e}_k}(x) + b_{\vec{n},k}P_{\vec{n}}(x) + \sum_{j=1}^r a_{\vec{n},j}P_{\vec{n}-\vec{e}_j}(x)$$

Let $q_r(x) = \prod_{j=1}^r (x - \alpha_j)$ and $Q_{r,\vec{n}}(x) = \prod_{j=1}^r (x - n_j - \alpha_j)$, then

$$a_{\vec{n},j} = \frac{q_r(-|\vec{n}| - \beta)q_r(n_j + \alpha_j)}{Q_{r,\vec{n}}(-|\vec{n}| - \beta)Q'_{r,\vec{n}}(n_j + \alpha_j)}$$
$$\frac{(n_j + \alpha_j)(|\vec{n}| + \beta)}{(|\vec{n}| + n_j + \alpha_j + \beta + 1)(|\vec{n}| + n_j + \alpha_j + \beta)(|\vec{n}| + n_j + \alpha_j + \beta - 1)}$$

$$b_{\vec{n},j} = \delta_{\vec{n}} - \delta_{\vec{n}+\vec{e}_j}, \qquad \delta_{\vec{n}} = -(|\vec{n}| + \beta) \frac{q_r(-|\vec{n}| - \beta)}{Q_{r,\vec{n}}(-|\vec{n}| - \beta)}$$

multiple orthogonal polynomials and modified Bessel functions I

$$\int_{0}^{\infty} x^{k} P_{n,m}(x) x^{\nu/2} I_{\nu}(2\sqrt{x}) e^{-cx} dx = 0, \qquad k = 0, 1, \dots, n-1$$
$$\int_{0}^{\infty} x^{k} P_{n,m}(x) x^{(\nu+1)/2} I_{\nu+1}(2\sqrt{x}) e^{-cx} dx = 0, \qquad k = 0, 1, \dots, m-1$$

with $\nu > -1$ and c > 0. If $p_{2n}(x) = P_{n,n}(x)$ and $p_{2n+1}(x) = P_{n+1,n}(x)$, then

$$xp_n(x) = p_{n+1}(x) + b_n p_n(x) + c_n p_{n-1}(x) + d_n p_{n-2}(x)$$

with

$$b_n = \frac{c(2n+\nu+1))+1}{c^2}, \quad c_n = \frac{n(2+c(n+\nu))}{c^3}, \quad d_n = \frac{n(n-1)}{c^4}$$

and $y = p_n(x)$ satisfies

$$xy''' + (-2cx + \nu + 2)y'' + (c^2x + c(n - \nu - 2) - 1)y' - c^2ny = 0.$$

multiple orthogonal polynomials and modified Bessel functions \boldsymbol{K}

KATHOLIEKE UNIVERSITEIT

$$\int_{0}^{\infty} x^{k} P_{n,m}(x) x^{\alpha+\nu/2} K_{\nu}(2\sqrt{x}) dx = 0, \quad k = 0, 1, \dots, n-1$$

$$\int_{0}^{\infty} x^{k} P_{n,m}(x) x^{\alpha+(\nu+1)/2} K_{\nu+1}(2\sqrt{x}) dx = 0, \quad k = 0, 1, \dots, m-1$$
with $\alpha > -1$ and $\nu \ge 0$. Let $p_{2n}(x) = P_{n,n}(x)$ and $p_{2n+1}(x) = P_{n+1,n}(x)$

$$x p_{n}(x) = p_{n+1}(x) + b_{n} p_{n}(x) + c_{n} p_{n-1}(x) + d_{n} p_{n-2}(x)$$

$$b_n = (n + \alpha + 1)(3n + \alpha + 2\nu) - (\alpha + 1)(\nu - 1),$$

$$c_n = n(n + \alpha)(n + \alpha + \nu)(3n + 2\alpha + \nu),$$

$$d_n = n(n - 1)(n + \alpha - 1)(n + \alpha)(n + \alpha + \nu - 1)(n + \alpha + \nu)$$

and $y = p_n(x)$ satisfies

$$x^{2}y''' + x(2\alpha + \nu + 3)y'' + [(\alpha + 1)(\alpha + \nu + 1) - x]y' + ny = 0.$$

references

- Chapter 23: *Multiple Orthogonal Polynomials* in "Classical and Quantum Orthogonal Polynomials of one Variable" (M.E.H. Ismail), Cambridge University Press, 2005.
- A.I. Aptekarev, A. Branquinho, W. Van Assche, *Multiple orthogonal polynomials for classical weights*, Trans. Amer. Math. Soc. **355** ((2003)
- E. Coussement, W. Van Assche, *Multiple orthogonal polynomials associated* with the modified Bessel functions of the first kind, Constr. Approx. **19** (2003)
- J. Coussement, W. Van Assche, Differential equations for multiple orthogonal polynomials with respect to classical weights: raising and lowering operators,
 J. Phys. A: Math. Gen. **39** (2006)
- W. Van Assche, *Nearest neighbor recurrence relations for multiple orthogonal polynomials*, manuscript
- A.B.J. Kuijlaars, *Multiple orthogonal polynomial ensembles*, Contemporary Mathematics **507** (2010)