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Polynomials of one variable but indexed by a multi-index

~n = (n1, n2, . . . , nr) ∈ N
r (r ≥ 1) satisfying orthogonality

conditions with respect to r positive measure µ1, . . . , µr on the

real line.

They appear naturally in Hermite-Padé approximation to r
functions

fj(z) =

∫

dµj(x)

z − x
, 1 ≤ j ≤ r.

There are two types: type I and type II
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P~n is a monic polynomial of degree |~n| = n1 + n2 + · · ·+ nr
for which

∫

P~n(x)x
k dµ1(x) = 0, k = 0, 1, . . . , n1 − 1

...
∫

P~n(x)x
k dµr(x) = 0, k = 0, 1, . . . , nr − 1

|~n| linear conditions for |~n| unknowns.

Solution exists and unique: ~n is a normal index for type II.
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(A~n,1, . . . , A~n,r) is a vector of r polynomials, with A~n,j of

degree nj − 1, for which

∫

xk
r

∑

j=1

A~n,j dµj(x) = 0, k = 0, 1, . . . , |~n| − 2

∫

x|~n|−1
r

∑

j=1

A~n,j dµj(x) = 1.

|~n| linear conditions for |~n| unknowns.

Solution exists and unique: ~n is a normal index for type I ( ⇔ for

type II).

Notation:

Q~n(x) =
r

∑

j=1

A~n,j(x)wj(x), wj(x) =
dµj(x)

dµ(x)
.
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Surveys

■ A. Borodin: Determinantal point processes, arXiv:0911.1153 [math.PR]

■ T. Tao: http://terrytao.worldpress.com/2009/08/23/determinantal-processes

■ A. Soshnikov: Determinantal random point fields, Russian Math. Surveys 55
(2000)

■ R. Lyons: Determinantal probability measures, Publ. Math. Inst. Hautes

Etudes Sci. 98 (2003)

■ K. Johansson: Random matrices and determinantal processes,

arXiv:math-ph/0510038
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A point process on R is determinantal if there exists a kernel

K : R× R → R such that

Pr{∃ particle in each (xi, xi + dxi), 1 ≤ i ≤ n}
= det

(

K(xi, xj)
)n

i,j=1
dx1 dx2 . . . dxn.

(provided these probabilities are positive, of course).
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If (φi)i=1,2,...,n and (ψi)i=1,2,...,n are functions on R and

Zn =

∫

Rn

det
(

φi(xj)
)n

i,j=1
det

(

ψi(xj)
)n

i,j=1
dx1 . . . dxn,

then the point process with

P (x1, . . . , xn) = Z−1
n det

(

φi(xj)
)n

i,j=1
det

(

ψi(xj)
)n

i,j=1

is determinantal with

K(x, y) =

n
∑

i=1

n
∑

j=1

(G−1)i,jφi(x)ψj(y),

and

Gi,j =

∫

R

φi(x)ψj(x) dx
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For the Gaussian Unitary Ensemble (GUE) of Hermitian n× n
matrices M with probability distribution

Z−1
n e−2TrV (M) dM

the eigenvalues are a determinantal point process with

K(x, y) =
n−1
∑

i=0

pi(x)pi(y)e
−V (x)−V (y)

where p0(x), p1(x), p2(x), . . . are the orthonormal polynomials

for the weight e−2V (x):

∫

pi(x)pj(x)e
−2V (x) dx = δm,n
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If A is a given Hermitian n× n matrix and the probability

distribution is

Z−1
n e−Tr(V (M)+AM) dM,

then the eigenvalues are a determinantal process with

K(x, y) =

|~n|−1
∑

i=0

P~ni
(x)Q~ni+1

(x)

where P~n and Q~n are multiple orthogonal polynomials for the

measures e−V (x)−ajx (1 ≤ j ≤ r), with a1, . . . , ar the

eigenvalues of A and nj the multiplicity of the eigenvalues aj .

The multi-indices (~n0, . . . , ~nn) are a path in N
r from ~n0 = ~0 to

~n|~n| = ~n such that ~ni+1 − ~ni = ~ej for some j ∈ {1, . . . , r}
and ~e1, . . . , ~er are the unit vectors in N

r .
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Walter Van Assche
Stempel
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Y (t) = X2
1 (t) +X2

2 (t) + · · ·+X2
d(t)

where (X1(t), X2(t), . . . , Xd(t)) is a d-dimensional Brownian

motion starting from (a1, . . . , ad) and ending at (0, 0, . . . , 0).
This is a biorthogonal ensemble which uses modified Bessel

functions Iα with d = 2(α+ 1).

Walter Van Assche
Stempel



Recurrence relations

Multiple orthogonal
polynomials

Determinantal point
processes

Recurrence relations
nearest neighbor

recurrence relations

compatibility relation

Christoffel-Darboux
formula

Various examples

15 / 27



nearest neighbor recurrence relations

Multiple orthogonal
polynomials

Determinantal point
processes

Recurrence relations
nearest neighbor

recurrence relations

compatibility relation

Christoffel-Darboux
formula

Various examples

16 / 27

Orthogonal polynomials on the real line always satisfy a

three-term recurrence relation.

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).

Multiple orthogonal polynomials (with all multi-indices normal)

satisfy a system of r recurrence relations

xP~n(x) = P~n+~ek(x)+b~n,kP~n(x)+
r

∑

j=1

a~n,jP~n−~ej (x), 1 ≤ k ≤ r.

xQ~n(x) = Q~n−~ek(x)+b~n−~ek,kQ~n(x)+
r

∑

j=1

a~n,jQ~n+~ej (x), 1 ≤ k ≤ r.
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The recurrence coefficients satisfy some partial difference

equations (Van Assche, 2011).

Suppose 1 ≤ i 6= j ≤ r, then

b~n+~ei,j − b~n,j = b~n+~ej ,i − b~n,i
r

∑

j=1

a~n+~ej ,k −
r

∑

k=1

a~n+~ei,k = det

(

b~n+~ej ,i b~n,i
b~n+~ei,j b~n,j

)

a~n,i
a~n+~ej ,i

=
b~n−~ei,j − b~n−~ei,i

b~n,j − b~n,i

Reason: P~n+~ei+~ej (x) can be computed in two ways from the

recurrence relations:

■ first compute P~n+~ei(x) and from there P~n+~ei+~ej (x)
■ first compute P~n+~ej (x) and from there P~n+~ej+~ei(x)
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For orthogonal polynomials there is the Christoffel-Darboux

relation

n−1
∑

i=0

pi(x)pi(y) = an
pn(x)pn−1(y)− pn−1(x)pn(y)

x− y

For multiple orthogonal polynomials there is a similar formula

|~n|−1
∑

i=0

P~ni
(x)Q~ni+1

(y) =
P~n(x)Q~n(y)−

∑r
j=1 a~n,jP~n−~ej (x)Q~n+~ej (y)

x− y
.

where (~ni)i=0,1,...,|~n| is a path in N
r from ~n0 = ~0 to ~n|~n| = ~n

such that for each i ∈ {0, 1, . . . , |~n| − 1} one has

~ni+1 − ~ni = ~ej for some j ∈ {1, 2, . . . , r} (Kuijlaars &

Daems).
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∫ ∞

−∞
xkH~n(x)e

−x2+cjx dx = 0, k = 0, 1, . . . , nj − 1

where ci ≤ cj whenever i 6= j.

random matrices with external source (Kuijlaars & Bleher),

non-intersection Brownian motions (Kuijlaars, Daems, Delvaux,

Bleher)

Rodrigues formula

e−x2

H~n(x) = (−1)|~n|2−|~n|





r
∏

j=1

e−cjx
dnj

dxnj
ecjx



 e−x2

.

Recurrence relations: for 1 ≤ k ≤ r

xH~n(x) = H~n+~ek(x) +
ck
2
H~n(x) +

1

2

r
∑

j=1

njH~n−~ej (x).
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∫ ∞

0
xkL~n(x)x

αje−x dx = 0, k = 0, 1, . . . , nj − 1

where α1, . . . , αr > −1 and αi − αj /∈ Z.

(−1)|~n|e−xL~n(x) =
r
∏

j=1

(

x−αj
dnj

dxnj
xnj+αj

)

e−x

xL~n(x) = L~n+~ek(x) + b~n,kL~n(x) +
r

∑

j=1

a~n,jL~n−~ej (x)

a~n,j = nj(nj + αj)

r
∏

i=1,i 6=j

nj + αj − αi

nj − ni + αj − αi

b~n,j = |~n|+ nj + αj + 1.
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∫ ∞

0
xkL~n(x)x

αe−cjx dx = 0, k = 0, 1, . . . , nj − 1

with c1, . . . , cr > 0 and ci 6= cj whenever i 6= j.

Wishart ensembles in random matrix theory.

(−1)|~n|





r
∏

j=1

c
nj

j



xαL~n(x) =
r
∏

j=1

(

ecjx
dnj

dxnj
e−cjx

)

x|~n|+α

xL~n(x) = L~n+~ek(x) + b~n,kL~n(x) +
r

∑

j=1

a~n,jL~n−~ej (x)

a~n,j =
|~n|+ α)nj

c2j
, b~n,j =

|~n|+ α+ 1

cj
+

r
∑

i=1

ni
ci
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∫ 1

0
xkP~n(x)x

αj(1− x)β dx = 0, k = 0, 1, . . . , nj − 1

with α1, . . . , αr, β > −1 and αi − αj /∈ Z.

(−1)|~n|
r
∏

j=1

(|~n|+ αj + β + 1)nj
(1− x)βP~n(x)

=

r
∏

j=1

(

x−αj
dnj

dxnj
xnj+αj

)

(1− x)|~n|+β
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xP~n(x) = P~n+~ek(x) + b~n,kP~n(x) +
r

∑

j=1

a~n,jP~n−~ej (x)

Let qr(x) =
∏r

j=1(x− αj) and Qr,~n(x) =
∏r

j=1(x− nj − αj), then

a~n,j =
qr(−|~n| − β)qr(nj + αj)

Qr,~n(−|~n| − β)Q′
r,~n(nj + αj)

(nj + αj)(|~n|+ β)

(|~n|+ nj + αj + β + 1)(|~n|+ nj + αj + β)(|~n|+ nj + αj + β − 1)

b~n,j = δ~n − δ~n+~ej , δ~n = −(|~n|+ β)
qr(−|~n| − β)

Qr,~n(−|~n| − β)
.
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∫ ∞

0
xkPn,m(x)xν/2Iν(2

√
x)e−cx dx = 0, k = 0, 1, . . . , n− 1

∫ ∞

0
xkPn,m(x)x(ν+1)/2Iν+1(2

√
x)e−cx dx = 0, k = 0, 1, . . . ,m− 1

with ν > −1 and c > 0. If p2n(x) = Pn,n(x) and p2n+1(x) = Pn+1,n(x),
then

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) + dnpn−2(x)

with

bn =
c(2n+ ν + 1)) + 1

c2
, cn =

n(2 + c(n+ ν))

c3
, dn =

n(n− 1)

c4

and y = pn(x) satisfies

xy′′′ + (−2cx+ ν + 2)y′′ + (c2x+ c(n− ν − 2)− 1)y′ − c2ny = 0.



multiple orthogonal polynomials and modified Bessel
functions K

26 / 27

∫ ∞

0
xkPn,m(x)xα+ν/2Kν(2

√
x) dx = 0, k = 0, 1, . . . , n− 1

∫ ∞

0
xkPn,m(x)xα+(ν+1)/2Kν+1(2

√
x) dx = 0, k = 0, 1, . . . ,m− 1

with α > −1 and ν ≥ 0. Let p2n(x) = Pn,n(x) and p2n+1(x) = Pn+1,n(x)

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) + dnpn−2(x)

bn = (n+ α+ 1)(3n+ α+ 2ν)− (α+ 1)(ν − 1),

cn = n(n+ α)(n+ α+ ν)(3n+ 2α+ ν),

dn = n(n− 1)(n+ α− 1)(n+ α)(n+ α+ ν − 1)(n+ α+ ν)

and y = pn(x) satisfies

x2y′′′ + x(2α+ ν + 3)y′′ + [(α+ 1)(α+ ν + 1)− x]y′ + ny = 0.
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