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A 1989 paper

Gross and Richards, “Total positivity, spherical series,
and hypergeometric functions of matrix argument,”
Journal of Approximation Theory, 59 (1989), 224–246

Google Scholar: 73 citations

Large numbers of citations by papers on wireless
communications
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Multiple-Input Multiple-Output (MIMO) communications system

Source: http://blog.wlanmall.com/wp-content/uploads/2010/07/publicsafety_diag.jpg
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Source: http://www.nari.ee.ethz.ch/wireless/research/projects/figures/MimoMultiHop.jpg
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Early difficulties in wireless transmission: Signal degradation
due to buildings, terrain, etc.

Naturally occurring “noise” also caused signals to fade in
transmission

The use of multiple antennas led to substantial increases in
information transmission
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MIMO system: The use of multiple antennas for transmitting and
receiving wireless communications signals

The advantages:

Increased data throughput
Longer link range
No need for additional bandwith or transmit power
Higher spectral efficiency (more bits/second/hertz of bandwidth)
Reduced fading

A major development in wireless communications systems

http://en.wikipedia.org/wiki/MIMO
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Signal transmission

A signal consists of a phase, θ, and an amplitude, r

Each signal is represented by a complex number, reiθ

nt: The number of transmitting antennas

nr: The number of receiving antennas

x: The nt × 1 vector of signals sent by the transmitting antennas

y: The nr × 1 vector of signals arriving at the receiving antennas

Both x and y are vectors of complex numbers

We assume, w.l.o.g., that nr ≥ nt
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Channel matrix: A nr × nt complex random matrix, G, relating x

and y

ε: System noise, a nr × 1 complex random vector

A simple model for a MIMO system:

y = Gx + ε

The entries of G, x, and ε are mutually independent, identically
distributed random variables, each having a complex Gaussian
distribution, CN(0, 1)

Each entry has probability density function,

f(u) = π−1e−|u|2, u ∈ C
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Shannon: Information theory

Channel capacity: “The tightest upper bound on the amount of
information that can be transmitted reliably over a
communications channel.”

Channel capacity is measured in “nats” (natural units for
information entropy): 1 nat = 1/ log 2 ≃ 1.44 bits

For MIMO models, the channel capacity is

I(x, ε|G) = log det(I + G∗G)

where G∗ = G
′
is the adjoint of G

Tulino and Verdú, “Random Matrix Theory and Wireless
Communications,” 2004
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Average channel capacity: The average amount of information
that can be transmitted by the channel.

Engineers wish to calculate the average channel capacity

We need to calculate EI(x, ε|G) with respect to the probability
distribution of G, x, and ε

Calculate the moment-generating function of I(x, ε|G):

E(ez I(x,ε|G)), z ∈ C

and then compute the first moment in the usual way:

EI(x, ε|G) =
∂

∂z
E(ez I(x,ε|G))

∣

∣

∣

z=0
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Recall: I(x, ε|G) = log det(I + G∗G)

E(ez I(x,ε|G)) = E det(I + G∗G)z

G has i.i.d. CN(0, 1)-distributed components, so

E det(I + G∗G)z ∝

∫

Cnr×nt

det(I + G∗G)z e−tr G
∗
G dG

G∗G has a complex Wishart distribution, so we can transform
the integral into a Selberg integral over the eigenvalues of G∗G

E det(I +G∗G)z ∝

∫

R
nt
+

∏

j<k

(λj −λk)
2

nt
∏

k=1

(1+λk)
z λnt−nr

k e−λk dλk
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Or, by changing variables to a Hermitian positive definite matrix
H = G∗G, we obtain

E det(I + G∗G)z ∝

∫

H>0

det(I + H)z det(H)nt−nr e−tr H dH

This integral is a confluent hypergeometric function (of the
second kind) of matrix argument:

E det(I + G∗G)z ∝ Ψ(nt; z + nt; I)
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J. Approx. Theory 1989 paper: The hypergeometric functions of
Hermitian matrix argument expressed as ratios of determinants
of classical hypergeometric functions.

The ratios-of-determinant formulas had been derived earlier by
C. G. Khatri.

Using these results, the wireless communications community
finally were able to obtain exact formulas for average channel
capacity.

Let us now consider channels with more general probability
distributions
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Semi-correlated channels: Non-zero correlation among the
transmitting antennas

The channel matrix G has probability density function

f(G) ∝ e−trΣ−1
G

∗
G,

where Σ is a fixed Hermitian positive definite matrix.

G∗G has a Wishart distribution with covariance matrix Σ

The normalizing constant for f(G) is det(Σ)−nt/Γnr
(nt), where

Γnr
(nt) is a product of classical Gamma functions.

The moment-generating function of channel capacity:

E det(I + G∗G)z ∝ Ψ(nt; z + nt;Σ)
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Fully correlated channels: Non-zero correlation among the
transmitting and the receiving antennas

The channel matrix G has the probability density function

f(G) ∝ e−trΣ−1
G

∗
Λ

−1
G,

where Σ and Λ are fixed Hermitian positive definite matrices.

The LDU decomposition of G leads to integrals over unitary
groups

The moment-generating function of I(G) is obtained in terms of
a hypergeometric function of two matrix arguments

The formulas in the 1989 J.A.T. paper again lead to exact
calculation of the average channel capacity
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Non-centered channels

In this case, E(G) = G0, a non-zero matrix

The channel matrix G has probability density function

f(G) ∝ e−tr (G−G0)∗(G−G0)

G∗G has a non-central Wishart distribution, and the normalizing
constant involves a Bessel function of matrix argument

Herz (1955)
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U(n): The group of unitary n × n matrices

U : A generic element of U(n)

dU : Haar measure on U(n), normalized to have total volume 1

All of the matrix integrals that arise here stem from the integral
∫

U(n)
etr SUTU

∗

dU

where S and T are Hermitian n × n matrices

How do we calculate this integral?
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Partition: µ = (µ1, . . . , µn), integers, where µ1 ≥ · · · ≥ µn ≥ 0

Length of µ: The number of non-zero µj

Weight of µ: |µ| = µ1 + · · · + µn

Schur function: For t1, . . . , tn ∈ C,

χµ(t1, . . . , tn) =
det(ti

µj+n−j)

V (t1, . . . , tn)

where

V (t1, . . . , tn) =
∏

1≤i<j≤n

(ti − tj)

{χµ(t1, . . . , tn) : |µ| = j} is a basis for the space of polynomials
in t1, . . . , tn which are symmetric and homogeneous of degree j
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χµ satisfies a remarkable number of properties:

Characters of irreducible representations of U(n)

Spherical functions on the cone of Hermitian p.d. matrices

dµ := χµ(1, . . . , 1) = lim
t1,...,tn→1

det(ti
µj+n−j)

V (t1, . . . , tn)

dµ = β−1
n

∏

1≤i<j≤n

(µi − µj − i + j)

where βn = 0!1!2! · · · (n − 1)!
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Extend χµ to the space of Hermitian matrices

χµ(T ) = χµ(t1, . . . , tn)

where t1, . . . , tn are the eigenvalues of T

χµ(T ) is homogeneous and unitarily invariant:

χµ(UTU∗) = χµ(T )

for all unitary n × n matrices U
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There are constants ωµ such that

(tr T )j =
∑

|µ|=j

ωµχµ(T )

ωµ = |µ|!

∏

1≤i<j≤n

(µi − µj − i + j)

n
∏

j=1
(µj + n − j)!

Define Zµ(T ) = ωµχµ(T ): The (complex) zonal polynomial

(tr T )j =
∑

|µ|=j

Zµ(T )

etr T =
∞

∑

j=0

1

j!

∑

|µ|=j

Zµ(T )
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etr SUTU
∗

=
∞

∑

j=0

1

j!

∑

|µ|=j

Zµ(SUTU ∗)

Because χµ is a spherical function,

∫

U(n)
Zµ(SUTU ∗) dU =

Zµ(S)Zµ(T )

Zµ(I)

∫

U(n)
etr SUTU

∗

dU =

∞
∑

j=0

1

j!

∑

|µ|=j

Zµ(S)Zµ(T )

Zµ(I)

Apply the explicit formulas for Zµ, ωµ, and dµ
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∫

U(n)
etr SUTU

∗

dU

= β−1
n

∑

µ

det(s
µj+n−j
i )

V (S)

det(t
µj+n−j
i )

V (T )

n
∏

j=1

1

(µj + n − j)!

Set kj = µj + n − j, j = 1, . . . , n

Then k1 > k2 > · · · > kn ≥ 0, so the sum over µ reduces to

∑

k1>···>kn≥0

det(s
kj

i ) det(t
kj

i )
n

∏

j=1

1

kj !

A weighted sum of the product of determinants
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The Binet-Cauchy formula

det
(

∫

fi(x)gj(x) dν(x)
)

=

∫

· · ·

∫

x1>···>xn

det(fi(xj)) det(gi(xj))

n
∏

j=1

dν(xj)

Apply the Binet-Cauchy formula with ν as a discrete measure on
the nonnegative integers to obtain the explicit formula

∫

U(n)
etr SUTU

∗

dU = β−1
n

det
(

esitj

)

V (S)V (T )

Remarks on the representation theory of U(n) and related
explicit formulas for all hypergeometric functions of matrix
argument
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