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Abstract. Some new properties of kernels of modified Kontorovitch–Lebedev integral transforms — modified
Bessel functions of the second kind with complex orderK 1

2+iβ(x) are presented. Inequalities giving estimations for
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as a solutions of linear differential equations with polynomial coefficients and their systems are proposed.
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1. Some properties of the functionsReK 1
2+iβ(x) and ImK 1

2+iβ(x). In this section
new properties of the kernels of modified Kontorovitch–Lebedev integral transforms are de-
duced, and some of their known properties are collected, which are necessary later on.

It is possible to write the kernels of these transforms in the form

ReK 1
2+iβ(x) =

K 1
2+iβ(x) +K 1

2−iβ(x)

2
and ImK 1

2+iβ(x) =
K 1

2+iβ(x)−K 1
2−iβ(x)

2i
,

whereKν(x) is the modified Bessel function of the second kind (also called MacDonald
function).

The functionsReK 1
2+iβ(x) andImK 1

2+iβ(x) have integral representations [1]

(1.1) ReK 1
2+iβ(x) =

∫ ∞

0

e−x cosh t cosh
t

2
cos(βt)dt,

(1.2) ImK 1
2+iβ(x) =

∫ ∞

0

e−x cosh t sinh
t

2
sin(βt)dt.

The vector-function(y1(x), y2(x)) with the componentsy1(x) = ReK 1
2+iβ(x),

y2(x) = ImK 1
2+iβ(x) is the solution of the system of differential equations

d2y1
dx2

+
1
x

dy1
dx

−
(

1 +
1
4 − β2

x2

)
y1 +

β

x2
y2 = 0,

d2y2
dx2

+
1
x

dy2
dx

− β

x2
y1 −

(
1 +

1
4 − β2

x2

)
y2 = 0.

The functionsReK 1
2+iβ(x) andImK 1

2+iβ(x) are even and odd functions, respectively
of the variableβ,

ReK 1
2+iβ(x) = ReK 1

2−iβ(x),

ImK 1
2+iβ(x) = −ImK 1

2−iβ(x).
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2 J. M. RAPPOPORT

The functionsReK 1
2+iβ(x) andImK 1

2+iβ(x) are related to the modified Bessel func-
tions of the first kindIν(x) as follows,

(1.3) ReK 1
2+iβ(x) =

π

cosh(πβ)

ReI− 1
2−iβ(x)−ReI 1

2+iβ(x)

2
,

(1.4) ImK 1
2+iβ(x) =

π

cosh(πβ)

ImI− 1
2−iβ(x)− ImI 1

2+iβ(x)

2
.

The expansion ofI 1
2+iβ(x) in ascending powers ofx has the form

I 1
2+iβ(x) =

(x
2

) 1
2
(
cos
(
β ln

x

2

)
+ i sin

(
β ln

x

2

))
×

∞∑
k=0

(
x2

4

)k

k!Γ
(
k + 3

2 + iβ
) =

∞∑
k=0

(ak + ibk),(1.5)

whereak andbk satisfy the following recurrence relations:

a0 + ib0 =
(x

2

) 1
2 cos

(
β ln x

2

)
+ i sin

(
β ln x

2

)
Γ
(

3
2 + iβ

) ,

mk = x2 k + 1
2

4k
((
k + 1

2

)2 + β2
) , nk = x2 β

4k
((
k + 1

2

)2 + β2
) ,

ak = ak−1mk + bk−1nk, bk = bk−1mk − ak−1nk.

The expansion ofI− 1
2−iβ(x) in ascending powers ofx has the form

I− 1
2−iβ(x) =

(x
2

)− 1
2
(
cos
(
β ln

x

2

)
− i sin

(
β ln

x

2

))
×

∞∑
k=0

(
x2

4

)k

k!Γ
(
k + 1

2 − iβ
) =

∞∑
k=0

(ck + idk),(1.6)

whereck anddk satisfy the following recurrence relations:

c0 + id0 =
(x

2

)−1/2 cos
(
β ln x

2

)
− i sin

(
β ln x

2

)
Γ
(

1
2 − iβ

) ,

pk = x2 k − 1
2

4k
((
k − 1

2

)2 + β2
) , qk = x2 β

4k
((
k − 1

2

)2 + β2
) ,

ck = ck−1pk − dk−1qk, dk = dk−1pk + ck−1qk.

The expansions (1.5) and (1.6) converge for all0 < x <∞ and0 ≤ β <∞.
It follows from (1.1)–(1.2) that it is possible to writeReK 1

2+iβ(x) in the form of the
Fourier cosinus-transform

(1.7) ReK 1
2+iβ(x) =

(π
2

) 1
2
FC

[
e−x cosh t cosh

t

2
; t→ β

]
,
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andImK 1
2+iβ(x) in the form of the Fourier sinus-transform

(1.8) ImK 1
2+iβ(x) =

(π
2

) 1
2
FS

[
e−x cosh t sinh

t

2
; t→ β

]
.

The inversion formulas have the respective forms

FC

[
ReK 1

2+iβ(x);β → t
]

=
(π

2

) 1
2
e−x cosh t cosh

t

2
,

FS

[
ImK 1

2+iβ(x);β → t
]

=
(π

2

) 1
2
e−x cosh t sinh

t

2

or, in integral form,∫ ∞

0

ReK 1
2+iβ(x) cos(tβ)dβ =

π

2
e−x cosh t cosh

t

2
,(1.9) ∫ ∞

0

ImK 1
2+iβ(x) sin(tβ)dβ =

π

2
e−x cosh t sinh

t

2
.(1.10)

Differentiating equations (1.9) and (1.10) with respect tot, we obtain∫ ∞

0

βReK 1
2+iβ(x) sin(tβ)dβ =

π

2

(
x sinh t cosh

t

2
− sinh

t

2

)
e−x cosh t,∫ ∞

0

βImK 1
2+iβ(x) cos(tβ)dβ =

π

2

(
cosh

t

2
− x sinh t sinh

t

2

)
e−x cosh t.(1.11)

It follows from (1.9) that ∫ ∞

0

ReK 1
2+iβ(x)dβ =

π

2
e−x,

and from (1.11) that ∫ ∞

0

βImK 1
2+iβ(x)dβ =

π

2
e−x.

Differentiating (1.9) and (1.10) 2n times with respect tot, we obtain∫ ∞

0

β2nReK 1
2+iβ(x) cos(tβ)dβ =

π

2
(−1)nD2n

t

(
e−x cosh t cosh

t

2

)
,∫ ∞

0

β2nImK 1
2+iβ(x) sin(tβ)dβ =

π

2
(−1)nD2n

t

(
e−x cosh t sinh

t

2

)
,

from which there follows, fort = 0,∫ ∞

0

β2nReK 1
2+iβ(x)dβ =

π

2
(−1)nD2n

t

(
e−x cosh t cosh

t

2

)
t=0

.

Differentiating (1.9) and (1.10) 2n+ 1 times with respect tot, we obtain∫ ∞

0

β2n+1ReK1/2+iβ(x) sin(tβ)dβ =
π

2
(−1)n+1D2n+1

t

(
e−x cosh t cosh

t

2

)
,∫ ∞

0

β2n+1ImK1/2+iβ(x) cos(tβ)dβ =
π

2
(−1)nD2n+1

t

(
e−x cosh t sinh

t

2

)
.
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whence, fort = 0,∫ ∞

0

β2n+1ImK1/2+iβ(x)dβ =
π

2
(−1)nD2n+1

t

(
e−x cosh t sinh

t

2

)
t=0

.

For the computation of certain integrals of the functionsReK 1
2+iβ(x) and ImK 1

2+iβ(x),
integral identities are useful. They reduce this problem to the computation of some other
integrals of elementary functions.

PROPOSITION1.1. If f is absolutely integrable on[0,∞), then the following identities
hold, ∫ ∞

0

ReK 1
2+iβ(x)f(β)dβ =

(π
2

) 1
2
∫ ∞

0

e−x cosh t cosh
t

2
FC(t)dt,(1.12) ∫ ∞

0

ImK 1
2+iβ(x)f(β)dβ =

(π
2

) 1
2
∫ ∞

0

e−x cosh t sinh
t

2
FS(t)dt,(1.13)

whereFC(t) is the Fourier cosinus-transform off(β), andFS(t) the Fourier sinus-transform
of f(β).

Proof. Multiplying both sides of the equalities (1.7) and (1.8) by f(β), integrating with
respect toβ from 0 to∞, and applying Fubini’s theorem for singular integrals with parameter
[2], we obtain (1.12) and (1.13).

PROPOSITION1.2. If f is absolutely integrable on[0,∞), then the following identities
hold ∫ ∞

0

ReK 1
2+iβ(x)FC(β)dβ =

(π
2

) 1
2
∫ ∞

0

e−x cosh t cosh
t

2
f(t)dt,(1.14) ∫ ∞

0

ImK 1
2+iβ(x)FS(β)dβ =

(π
2

) 1
2
∫ ∞

0

e−x cosh t sinh
t

2
f(t)dt.(1.15)

Proof. This follows from (1.9)–(1.10) and from Fubini’s theorem [2].
The equations (1.12)–(1.15) are useful for the simplification and the calculation of dif-

ferent integrals containingReK1/2+iβ(x) andImK1/2+iβ(x).

For example, letf(β) = e−αβ , thenFC(t) =
√

2
π

α
α2+t2 , FS(t) =

√
2
π

t
α2+t2 and∫ ∞

0

ReK 1
2+iβ(x)e−αβdβ = α

∫ ∞

0

(α2 + t2)−1e−x cosh t cosh
t

2
dt,∫ ∞

0

ReK 1
2+iβ(x)

1
α2 + β2

dβ =
π

2α

∫ ∞

0

e−αt−x cosh t cosh
t

2
dt,∫ ∞

0

ImK 1
2+iβ(x)e−αβdβ =

∫ ∞

0

t(α2 + t2)−1e−x cosh t sinh
t

2
dt,∫ ∞

0

ImK 1
2+iβ(x)

β

α2 + β2
dβ =

π

2

∫ ∞

0

e−αt−x cosh t sinh
t

2
dt.

If f(β) = Γ( 1
4 + iβ

2 )Γ( 1
4 −

iβ
2 ), thenFC(t) = 2π√

cosh t
and∫ ∞

0

ReK 1
2+iβ(x)Γ(

1
4

+
iβ

2
)Γ(

1
4
− iβ

2
)dβ =

=
√

2ππ
∫ ∞

0

e−x cosh t cosh t
2√

cosh t
dt = π

√
πe−

x
2K0(

x

2
).
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If f(β) = sinh(2πβ)
cosh(2πβ)+cos(2πα) , |Reα| < 1

2 , thenFS(t) = cosh(αt)√
2π sinh t

2
and

∫ ∞

0

ImK 1
2+iβ(x) sinh(2πβ)

cosh(2πβ) + cos(2πα)
dβ =

1
2

∫ ∞

0

e−x cosh t cosh(αt)dt =
1
2
Kα(x).

REMARK 1.3. All formulas of the present paragraph remain valid ifx is changed toz
lying in the right-hand half-plane.

1.1. The Laplace transform ofReK 1
2+iβ(x) and ImK 1

2+iβ(x).
The Laplace transform ofKiβ(x) is computed in [3]. We use the representation (1.1) for the
evaluation of the Laplace transformation ofReK 1

2+iβ(x). We have

L
[
ReK 1

2+iβ(x);β
]

=
∫ ∞

0

cos(βt) cosh
t

2

∫ ∞

0

e−(p+cosh t)x dx dt

=
∫ ∞

0

cos(βt) cosh t
2

cosh t+ coshα
dt (p = coshα)

=
√
π

2
FC

(
cosh t

2

cosh t+ coshα

)
=
π

2
cos(αβ)

cosh α
2 cosh(πβ)

.

Equivalently, we can write

L−1

cos(β cosh−1 p)√
p+1
2

 =
(π

2

)−1

cosh(πβ)ReK 1
2+iβ(x).

For the evaluation of the Laplace transform ofImK 1
2+iβ(x) we utilize the representation

(1.2). We have

L
[
ImK 1

2+iβ(x); p
]

=
√
π

2
FS

(
sinh t

2

cosh t+ coshα

)
=
π

2
sin(αβ)

cosh(πβ) sinh α
2

,

or, equivalently,

L−1

 sin(β cosh−1 p)√
p−1
2

 =
√
π

2
cosh(πβ)ImK 1

2+iβ(x).

We note that these equations can also be obtained directly from the formula for the Laplace
transforms ofKν(x) by separating real and imaginary parts.

1.2. The asymptotic behavior ofReK 1
2+iβ(x) and ImK 1

2+iβ(x) for x → 0, x → ∞
and β → ∞. ForReK 1

2+iβ(x) andImK 1
2+iβ(x) the following asymptotic formulas for

β →∞ are valid [1],

ReK 1
2+iβ(x) ∼

(π
x

) 1
2
e−

πβ
2 cos

(
β lnβ − β − β ln

x

2

)
,

ImK 1
2+iβ(x) ∼

(π
x

) 1
2
e−

πβ
2 sin

(
β lnβ − β − β ln

x

2

)
,

wherex is a fixed positive number.
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It follows immediately from (1.3)–(1.6) that forx→ 0 we have

K 1
2+iβ(x) ∼ 1

2

(x
2

)− 1
2 cos

(
β ln x

2

)
− i sin

(
β ln x

2

)
Γ
(

1
2 − iβ

) ,

whence

ReK 1
2+iβ(x) ∼ 1

2

(x
2

)− 1
2

(
ReΓ

(
1
2

+ iβ

)
cos
(
β ln

x

2

)
+ImΓ

(
1
2

+ iβ

)
sin
(
β ln

x

2

))
,

ImK 1
2+iβ(x) ∼ 1

2

(x
2

)− 1
2

(
ImΓ

(
1
2

+ iβ

)
cos
(
β ln

x

2

)
−ReΓ

(
1
2

+ iβ

)
sin
(
β ln

x

2

))
,

For large valuesx the following asymptotic expansion is valid [4]

K 1
2+iβ(x) ∼

( π
2x

) 1
2
e−x

∞∑
k=0

(
1
2

+ iβ, k

)
(2x)−k,

where

(ν, k) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

22kk!
.

In particular, therefore,

ReK 1
2+iβ(x) ∼

( π
2x

) 1
2
e−x

(
1− β2

2x
+ · · ·

)
,

ImK 1
2+iβ(x) ∼

( π
2x

) 1
2
e−x

(
β

2x
+ · · ·

)
=

β

2x

( π
2x

) 1
2
e−x(1 + · · · ).

1.3. The series expansions in powers ofβ. The solutions of problems in mathemat-
ical physics connected with the use of the Kontorovitch–Lebedev integral transforms are
often expressed as integrals with respect toβ of the functionsKiβ(x), ReK 1

2+iβ(x) and
ImK 1

2+iβ(x). Both the asymptotic expansions of these integrals for large valuesβ, and the
expansions of these functions in powers ofβ, are of interest for the analysis of the behavior
of these integrals.

The expansions of these functions in powers ofβ are deduced from their integral repre-
sentations (1.1)–(1.2). Substituting in themcos(βt) andsin(βt) by their series expansions
and interchanging the order of the summation and integration, we obtain

Kiβ(x) =
∞∑

k=0

β2k

(2k)!

∫ ∞

0

t2ke−x cosh tdt =

= K0(x)−
β2

2!

∫ ∞

0

t2e−x cosh tdt+
β4

4!

∫ ∞

0

t4e−x cosh tdt+ · · · ,(1.16)
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ReK 1
2+iβ(x) =

∞∑
k=0

β2k

(2k)!

∫ ∞

0

t2ke−x cosh t cosh
t

2
dt =

= K 1
2
(x)− β2

2!

∫ ∞

0

t2e−x cosh t cosh
t

2
dt

+
β4

4!

∫ ∞

0

t4e−x cosh t cosh
t

2
dt+ · · · ,(1.17)

ImK 1
2+iβ(x) =

∞∑
k=0

β2k+1

(2k + 1)!

∫ ∞

0

t2k+1e−x cosh t sinh
t

2
dt =

= β

∫ ∞

0

te−x cosh t sinh
t

2
dt− β3

3!

∫ ∞

0

t3e−x cosh t sinh
t

2
dt+ · · · .(1.18)

These functions are entire functions in the variableβ, and therefore the series converge
for all real values ofβ. From these expansions it is possible to obtain the series for the
derivatives and for the integrals of these functions with respect to the variableβ, which will
converge for all realβ also. Similar integrals for the spherical functions are stated in [5].

It’s possible to rewrite the expansions (1.16)–(1.18) in terms of Laplace transforms as
follows,

Kiβ(x) = e−x
∞∑

k=0

(−1)kL

[
arccosh2k(y + 1)√

(y + 1)2 − 1
; y → x

]
β2k

(2k)!
,(1.19)

ReK 1
2+iβ(x) = e−x

∞∑
k=0

(−1)kL

[
arccosh2k(y + 1)√

2y
; y → x

]
β2k

(2k)!
,(1.20)

ImK 1
2+iβ(x) = e−x

∞∑
k=0

(−1)kL

[
arccosh2k+1(y + 1)√

2(y + 2)
; y → x

]
β2k+1

(2k + 1)!
,(1.21)

This form of writing may be more convenient since it is possible to use numerical methods
for evaluating Laplace transforms.

The expansions (1.19)–(1.21) are convenient for the calculation of the kernels of Konto-
rovitch-Lebedev integral transforms for small valuesβ.

2. Inequalities for the MacDonald functionsKiβ(x),ReK 1
2+iβ(x) and ImK 1

2+iβ(x).
It follows from (1.1) that for allβ ∈ [0,∞)

|ReK 1
2+iβ(x)| ≤ K 1

2
(x) =

( π
2x

) 1
2
e−x,

and it follows from (1.2) that for allβ ∈ [0,∞)

|ImK 1
2+iβ(x)| ≤

∫ ∞

0

e−x cosh t sinh
t

2
dt =

( π
2x

) 1
2
ex
[
1− φ((2x)

1
2 )
]
≤ B

e−x

x
,

whereB is some positive constant [6],[7].
In [8], for arbitraryν = σ + iβ, σ ≥ 0, the following inequality is derived

|Iν(x)| ≤ e
π|β|

2 Iσ(x).

Taking advantage of the formula [8]

|Kν(x)| ≤
(
C1(x, σ) + C2(x, σ)|β|σ− 1

2

)
e−

π|β|
2 ,
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we obtain that beginning with someT, |β| > T ,

|K 1
2+iβ(x)| ≤ C(x)e−

π|β|
2 .

But this inequality is too rough and may be insufficient for conducting various proofs. To
obtain more refined inequalities, we use [9]

(2.1) |Kiβ(x)| ≤ Ax−
1
4 e−

π|β|
2 ,

whereA is some positive constant, and the representations [1]

ReK 1
2+iβ(x) =

( π
2x

) 1
2 e−x

cosh(πβ)

+
β tanh(πβ)

(2π)
1
2

∫ x

0

[
e−(x−y)

√
x− y

− e−(x+y)

x
1
2

]
Kiβ(y)dy(2.2)

−β tanh(πβ)
(2π)

1
2

∫ ∞

x

e−(x+y)

x
1
2

Kiβ(y)
y

dy,

ImK 1
2+iβ(x) =

βex

(2π)
1
2

∫ ∞

x

e−yKiβ(y)
y(y − x)

1
2
dy.

LEMMA 2.1. The following inequalities hold forx > 0

|ReK 1
2+iβ(x)| ≤ c|β|e−

π|β|
2 x−

3
4 +

(
2π
x

) 1
2

e−xe−π|β|,

|ImK 1
2+iβ(x)| ≤ c0|β|e−

π|β|
2 x−

3
4 ,

wherec0 andc are some positive constants.
Proof. We estimate the second additive term in (2.2), using the inequality (2.1),

|β tanh(πβ)
(2π)

1
2

∫ x

0

[
e−(x−y)

(x− y)
1
2
− e−(x+y)

x
1
2

]
Kiβ(y)
y

dy|

≤ A|β|e−
π|β|

2
e−x

√
x

∫ x

0

ey√
1− y

x

− ey

y
y−

1
4 dy ≤ A|β|e−

π|β|
2 x−

3
4 .(2.3)

We next estimate the third additive term,

|β tanh(πβ)√
2π

∫ ∞

x

e−(x+y)

√
x

Kiβ(y)
y

dy| ≤ B|β|e−
π|β|

2
e−x

√
x

∫ ∞

x

e−yy−
5
4 dy

≤ B|β|e−
π|β|

2 e−2xx−
3
4 .(2.4)

Combining the first term and estimates (2.3) and (2.4), we obtain the required inequality.
Furthermore, we obtain

|ImK 1
2+iβ(x)| ≤ | βe

x

√
2π

∫ ∞

0

e−yKiβ(y)
y
√
y − x

dy|

≤ c0|β|e−
π|β|

2 ex

∫ infty

x

e−yy−
5
4

√
y − x

dy ≤ c0|β|e−
π|β|

2 x−
3
4 .
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For future use, an analysis of the behavior of the modified Bessel functionKσ+iβ(x) for large
values ofβ is necessary.

LEMMA 2.2. For 0 ≤ σ ≤ 1
2 , |β| ≥ β0 ≥ 1, x ≥ x0 ≥ 1, the following inequality holds,

|Kσ+iβ(x)| ≤
(
c1x

σ− 1
2 + c2x

1
2−σ|β|σ− 1

2

)
ex−π|β|

2 ,

wherec1 > 0, c2 > 0, c1, c2, β0, x0 are some constants.
Proof. We use the formula [10]

Kµ(x) =
π

2 sin(πµ)
(I−µ(x)− Iµ(x)), µ = σ + iβ.

1. We first estimatesin(πµ). It is possible to show that for|β| ≥ β
(1)
0 > 0, β(1)

0 some
constant, the following inequality is valid

(2.5) a1e
π|β| ≤ | sin(πµ)| ≤ a2e

π|β|,

wherea1 > 0, a2 > 0, a1, a2 are some constants.
2. We next estimateIµ(x), µ = σ + iβ, σ ≥ 0. The following inequality is derived for

σ ≥ 0 in [8]

|Iµ(x)| ≤ I0(x)
(x
2 )σe

π|β|
2

Γ(σ + 1)
.

It follows from the asymptotics ofI0(x) [10] for largex that forx ≥ x
(1)
0 > 0, x(1)

0 some
constant,

(2.6) |Iµ(x)| ≤ a3x
σ− 1

2 ex+
π |β|

2 ,

wherea3 > 0, a3 some constant.
3. We finally estimateI−µ(x), µ = σ + iβ, σ ≥ 0. Proceeding analogously [8], we can

rewriteI−µ(x) in the form

I−µ(x) =
(x
2 )−µ

Γ(1− µ)
ψ(x, µ),

where

ψ(x, µ) = 1 +
∞∑

s=1

(x
2 )2s

s!
∏k=s

k=1(−µ+ k)
.

Then|k − µ| =
√

(k − σ)2 + β2 ≥ k − 1 for 0 ≤ σ ≤ 1
2 , k = 2, 3, . . . , and√

(1− σ)2 + β2 ≥ 1
2 , β arbitrary. Therefore,

∏k=s
k=1

√
(k − σ)2 + β2 ≥ (s−1)!

2 . We obtain,
after some calculations, that

ψ(x, µ) ≤ 1 + 2
∞∑

s=1

(x
2 )2s

s!(s− 1)!
≤ 2

(
1 +

x

2
I1(x)

)
.

Using for |β| ≥ β
(2)
0 ≥ 1, 0 ≤ σ ≤ 1

2 , the expansion of the gamma-function from [9]

and the asymptotics [10] for I1(x) we obtain that beginning with somex(2)
0 , x ≥ x

(2)
0 ≥ 1,

the following estimation holds,

(2.7) |I−µ(x)| ≤ a4x
1
2−σ|β|σ− 1

2 ex+
π|β|

2 ,
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a4 > 0, a4 some constant.
Combining the estimations (2.5)–(2.7), we obtain that for0 ≤ σ ≤ 1

2 , |β| ≥ β0 ≥ 1,

x ≥ x0 ≥ 1, β0 = max(β(1)
0 , β

(2)
0 ), x0 = max(x(1)

0 , x
(2)
0 ) the following inequality is valid,

|Kµ(x) ≤ π

2a1
e−π|β||I−µ(x)− Iµ(x)| ≤ π

2a1

(
a3x

σ− 1
2 + a4x

1
2−σ|β|σ− 1

2

)
ex−π|β|

2 .

Denotingc1 = π
2a1

a3, c2 = π
2a1

a4, we obtain the statement of the lemma.
The properties of the modified Kontorovitch–Lebedev integral transforms are considered

in [11]–[14].

3. Tau method approximation for modified Bessel function of imaginary order.
Several approaches for the evaluation of the modified Bessel functions are elaborated in [15]–
[19]. The Tau method [20] realization, with minimal residue choice for the determination of
the polynomial approximations of the solutions of the second order differential equations with
polynomial coefficients [16] of the following form

(a0y
2 + a5y)v′′(y) + (a1y + a2)v′(y) + a3v(y) = 0, v(0) = a4, y ∈ [0, 1],

is supposed. Ann-th approximation of the solution is sought in the form of then-th degree
polynomialvn(y), which is the solution of the equation

(b0y2 + b5y)v(y) =
∫ y

0

(b1x+ b2y + b3)v(x)dx+ b4y + τn+2T
∗
n+2[(1− αn+2)y + αn+2],

where the coefficientsai, i = 0, . . . , 5, may be expressed by coefficientsbi, i = 0, . . . , 5,
αn+2 = sin2 π

4(n+2) — the leftmost root of the shifted Chebyshev polynomial of then+2-th
degreeT ∗n+2(y) in the interval[0, 1], τn+2 — undefined coefficient.

The problem about determination of the polynomialPn(y) =
∑n

k=0 pky
k, which is the

least deviated from zero on the interval[0, 1] among alln-th degree polynomials, satisfying
the pair of linear correlations on the coefficientsp0 = 0,

∑n
i=1 c

(n)
i pi = 1 was considered.

The following theorem is proved [16]:

THEOREM 3.1. If the sequence of numbersc(n)
i , i = 1, . . . , n, is alternating, then the

polynomialτnT ∗n [(1−αn)y+αn] is the polynomial least deviating from zero in the uniform
metric on[0, 1] among all polynomials of degreen, satisfying the indicated pair of linear
relations.

On the basis of this theorem it’s shown (as suggested by us) in the Tau method residue, in
a number of significant cases, is a minimal in the uniform metric on[0, 1], among all possible
polynomial residues permitting the Volterra integral equations solution.

We have the following differential equation with polynomial coefficients for the approx-
imation and computing of the second kind modified Bessel functionKiβ(x):

y2v′′(y) + 2(y + 1)v′(y) + (1/4 + β2)v(y) = 0,

v(0) = 1,

and the Volterra integral equation

y2v(y) =
∫ y

0

[(
9
4

+ β2

)
x−

(
1
4

+ β2

)
y − 2

]
v(x)dx+ 2y.
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We obtain the following recurrence formulas for the coefficients of canonical polynomials
Qm(y) =

∑m
k=0 qkmy

k in this case:

q00 =
2

1
4 + β2

, q0k = − 2(k + 2)
k2 + k + 1

4 + β2
q0k−1, k = 1, . . .

The minimality of the residue suggested by us follows from the Theorem3.1 as q0m

|q0m| =
(−1)m,m = 0, 1, . . .

The advantages of this modification, as compared with usual and other tau-methods, is
shown.

4. Tau method approximation for modified Bessel function of complex order.A
new numerical scheme of the Tau method application is proposed for the solution of the sec-
ond order linear differential equations systems, with the second order polynomial coefficients
of the following kind:

(a(j)
0 y2 + a

(j)
1 y)v′′j (y) +

k∑
i=1

[(a(j)
3i−1y − a

(j)
3i )v′i(y) + a

(j)
3i+1vi(y)] = 0,

vj(0) = a
(j)
3k+2, j = 1, . . . , k, y ∈ [0, 1],

in the unknown vector-functionv(y) = (v1(y), . . . , vk(y)). It is assumed to have only one
solution. Integrating twice and carrying an addition in the right part in the kind of the vector-
polynomialPn(y), we derive for the determination of then-th approximation of the solution
v(y) = (v1(y), . . . , vk(y)) the system of Volterra integral equations with polynomial kernels

(b(j)0 y2 + b
(j)
1 y)vj(y) =

∫ y

0

[
k∑

i=1

(b(j)3i−1x+ b
(j)
3i y + b

(j)
3i+1)vi(x)]dx+ Pjn+2(y),

j = 1, . . . , k,

where the coefficientsb(j)i anda(j)
i , i = 0, . . . , 3k + 2 andj = 1, . . . , k, are connected in

a definite way andPjn+2(y), j = 1, . . . , k, aren + 2-th degree polynomials. The different
variables of the vector residue choice and its minimization are analyzed. The recurrence
formulas for the canonical vector-polynomials coefficients convenient for the calculations are
given.

Consider the system of two second order differential equations(k = 2) in more detail.
This case is of particular interest for differential equations with complex coefficients.

The scheme of the integral form of the Tau Method described in this paper can be used for
deriving polynomial approximations of hypergeometric and confluent hypergeometric func-
tions of the first kind with complex parameters.

The modified Kontorovich–Lebedev integral transforms [11] with kernels

ReK 1
2+iβ(x) =

K 1
2 +iβ

(x)+K 1
2−iβ

(x)

2 andImK 1
2+iβ(x) =

K 1
2 +iβ

(x)−K 1
2−iβ

(x)

2i , whereKs(x)
is MacDonald’s function, is of great importance in solving some problems of mathematical
physics, in particular mixed boundary value problems for the HELMHOLTZ equation in wedge
and cone domains. We find it necessary to compute
ReK 1

2+iβ(x) andImK 1
2+iβ(x) to use this transform in practice [21]. These functions also

occur in solving some classes of dual integral equations with kernels which contain MacDon-
ald’s function of imaginary indexKiβ(x) [11]. Therefore, now we consider the second kind
modified Bessel functionK 1

2+iβ(x) in more detail.
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We have a system of two second order differential equations

y2v′′1 + 2(y + 1)v′1 + β2v1 + βv2 = 0,

y2v′′2 + 2(y + 1)v′2 − βv1 + β2v2 = 0,

v1(0) = 1, v2(0) = 0,

or the system of Volterra integral equations

y2v1(y) =
∫ y

0

((2 + β2)x− (2 + β2y))v1(x)dx+ β

∫ y

0

(x− y)v2(x)dx+ 2y,

y2v2(y) = β

∫ y

0

(y − x)v1(x)dx+
∫ y

0

((2 + β2)x− (2 + β2y))v2(x)dx,

K 1
2+iβ(x) = (

π

2x
)

1
2 e−x(v1(

1
x

) + iv2(
1
x

), x ≥ 1.

The following formulas for the coefficients of canonical vector-polynomials are derived [16]

q
(1)
1m =

(β2 +m(m+ 1))(m+ 1)(m+ 2)
(β2 +m(m+ 1))2 + β2

, q
(1)
2m =

β(m+ 2)(m+ 1)
(β2 +m(m+ 1))2 + β2

,

q
(2)
1m = −q(1)2m, q

(2)
2m = q

(1)
1m,

q
(j)
1i = −

2(i+ 1)((β2 + i(i+ 1))q(j)1i+1 − βq
(j)
2i+1)

(β2 + i(i+ 1))2 + β2
,

q
(j)
2i = −

2(i+ 1)(βq(j)1i+1 + (β2 + i(i+ 1))q(j)2i+1)
(β2 + i(i+ 1))2 + β2

,

i = m− 1, . . . , 0, j = 1, 2.

By means of computations is shown that the choice of the residue in the formPjn+2(y) =
τjn+2Tn+2[(1−αn+2)y+αn+2], j = 1, 2, is optimal as compared with other known variants
in this case too.

The applications for the numerical solution of boundary value problems in wedge do-
mains are given in [22],[23].
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Abstract

The new realization of the Lanczos Tau Method with minimal residue is
proposed for the numerical solution of the second order differential equa-
tions with polynomial coefficients. The computational scheme of Tau
method [1] is extended for the systems of hypergeometric type differen-
tial equations. The programs of evaluation are prepared and tables of
the modified Bessel functions K1/2+iβ(x) are published. A Tau Method
computational scheme is applied to the approximate solution of a system
of differential equations related to the differential equation of hypergeo-
metric type. Various vector perturbations are discussed. Our choice of
the perturbation term is a shifted Chebyshev polynomial with a special
form of selected transition and normalization. The minimality condi-
tions for the perturbation term are found for one equation. They are
sufficiently simple for the verification in number of important cases.
The new applications of modified integral Kontorovitch–Lebedev
transforms [2] for the solution of some problems of mathematical physics
are given. The algorithm of numerical solution of some mixed boundary
value problems for the Helmholtz equation in wedge domains is devel-
oped.
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equation
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1 Tau method

The questions of the approximation of the solutions of the linear differential
equations with polynomial coefficients by means of polynomials coefficients
and construction approximations of the Kontorovitch–Lebedev integral
transforms kernels are considered. The Tau method realization with minimal
residue choice for the determination of the polynomial approximations of the
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solutions of the second order differential equations with polynomial coefficients
[3] of the following form

(a0y
2 + a5y)v′′(y) + (a1y + a2)v′(y) + a3v(y) = 0, v(0) = a4, y ∈ [0, 1],

is supposed. By its using n-th approximation of the solution is seeked in the
form of the n-th degree polynomial vn(y), which is the solution of the equation

(b0y2+b5y)v(y) =
∫ y

0
(b1x+b2y+b3)v(x)dx+b4y+τn+2T

∗
n+2[(1−αn+2)y+αn+2],

where coefficients ai, i=0,...,5, may be expressed by coefficients bi, i=0,...,5,
αn+2 = sin2(π/(4(n + 2)))- the most left root of the shifted Chebyshev poly-
nomial of the n + 2 -th degree T ∗n+2(y) in the interval [0, 1], τn+2 - undefined
coefficient.

The problem about determination of the polynomial Pn(y) =
∑n

k=0 pky
k,

which is the least deviated from zero on the interval [0, 1] among all n-th
degree polynomials, satisfying the pair of linear correlations on the coefficients
p0 = 0,

∑n
i=1 c

(n)
i pi = 1 was considered. The following theorem is proved:

Theorem 1. If the sequence of numbers c(n)
i , i = 1, . . . , n, is alternating

then the polynomial τnT ∗n [(1 − αn)y + αn] is the polynomial least deviating
from zero in the uniform metric on [0, 1] among all polynomials of degree n,
satisfying the indicated pair of linear relations.

On the basis of this theorem it’s shown that suggested by us in the Tau
method residue, in the number of significant cases, is the minimal in the
uniform metric on [0, 1] among all possible polynomial residues permitting the
Volterra integral equations solution in the kind of polynomial also.

On the example of computing the second kind modified Bessel function
Kiβ(x) this modification’s advantages are shown as compared with usual and
other tau-method and approximation method’s variants.

The new numerical scheme of the Tau method application is proposed for
the solution of the second order linear differential equations systems with the
second order polynomial coefficients of the following kind:

(a(j)
0 y2 + a

(j)
1 y)v′′j (y) +

k∑
i=1

[(a(j)
3i−1y − a

(j)
3i )v′i(y) + a

(j)
3i+1vi(y)] = 0,

vj(0) = a
(j)
3k+2, j = 1, . . . , k, y ∈ [0, 1],
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in the unknown vector-function v(y) = (v1(y), . . ., vk(y)). It is assumed to have
only one solution. Integrating twice and carrying an addition in the right part
in the kind of the vector-polynomial Pn(y), we derive for the determination of
the n-th approximation of the solution v(y) = (v1(y), . . ., vk(y)) the system of
Volterra integral equations with polynomial kernels

(b(j)0 y2 + b
(j)
1 y)vj(y) =

∫ y

0
[

k∑
i=1

(b(j)3i−1x+ b
(j)
3i y + b

(j)
3i+1)vi(x)]dx+ Pjn+2(y),

j = 1, . . . , k,

where coefficients b(j)i and a(j)
i , i = 0, . . . , 3k+2 and j = 1, . . . , k, are connected

in definite way and Pjn+2(y), j = 1, . . . , k, – n+2-th degree polynomials. The
different variables of the vector residue choice and its minimization are ana-
lyzed. The recurrent formulas for the canonical vector-polynomials coefficients
convenient for the calculations are given.

Consider the system of two second order differential equations (k = 2) in
more detail. This case is of particular interest for differential equations with
complex coefficients.

The scheme of the integral form of the Tau Method described in this paper
can be used for deriving polynomial approximations of hypergeometric and
confluent hypergeometric functions of the first kind with complex parameters.

The modified Kontorovitch - Lebedev integral transforms [2] with
kernels ReK1/2+iβ(x) = (K1/2+iβ(x) + K1/2−iβ(x))/2 and ImK1/2+iβ(x) =
(K1/2+iβ(x) − K1/2−iβ(x))/2i, where Ks(x) is MacDonald’s function, is
of great importance in solving some problems of mathematical physics, in
particular mixed boundary value problems for the Helmholtz equation in
wedge and cone domains. We find it necessary to compute ReK1/2+iβ(x) and
ImK1/2+iβ(x) to use this transform in practice. These functions also occur in
solving some classes of dual integral equations with kernels which contain Mac-
Donald’s function of imaginary index Kiβ(x) [4]. Therefore, now we consider
the second kind modified Bessel function K1/2+iβ(x) in more detail.

We have a system of two second order differential equations

y2v′′1 + 2(y + 1)v′1 + β2v1 + βv2 = 0,

y2v′′2 + 2(y + 1)v′2 − βv1 + β2v2 = 0,

v1(0) = 1, v2(0) = 0,

or the system of Volterra integral equations

y2v1(y) =
∫ y

0
((2 + β2)x− (2 + β2y))v1(x)dx+ β

∫ y

0
(x− y)v2(x)dx+ 2y,
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y2v2(y) = β

∫ y

0
(y − x)v1(x)dx+

∫ y

0
((2 + β2)x− (2 + β2y))v2(x)dx,

K1/2+iβ(x) = (π/(2x))1/2e−x(v1(1/x) + iv2(1/x)), x ≥ 1.

By means of computations is shown that the choice of the residue in
the form Pjn+2(y) = τjn+2Tn+2[(1 − αn+2)y + αn+2], j = 1, 2, is optimal as
compared with other known variants in this case too.

2 Mixed boundary value problems

The definition of two pairs of direct and inverse modified Kontorovitch–
Lebedev integral transforms [2] are cited

F+(τ) =
∫ ∞

0
f(x)ReK1/2+iτ (x)dx, 0 ≤ τ ≤ ∞,

f(x) = (4/π2)
∫ ∞

0
ch(πτ)F+(τ)ReK1/2+iτ (x)dτ, 0 < x <∞,

and
F−(τ) =

∫ ∞

0
f(x)ImK1/2+iτ (x)dx, 0 ≤ τ ≤ ∞,

f(x) = (4/π2)
∫ ∞

0
ch(πτ)F−(τ)ImK1/2+iτ (x)dτ, 0 < x <∞.

The sufficient conditions of the existence of these transforms and the va-
lidity of the inversion formulas are given.

It’s shown that the inversion formulas of the modified Kontorovitch–
Lebedev integral transforms can be deduced from the inversion formulas of
the ”usual” Kontorovitch–Lebedev transforms and the corresponding the-
orem is proven.

For the case of nonnegative finite functions with restricted variation the
conditions of present theorem are reduced to one condition, which is necessary
and sufficient then.

The verification of the solution of singular integral equations of the form

φ(x) = f(x) + λ

∫ ∞

0
(K1(x+ y)+−K0(x+ y))φ(y)dy, 0 < x <∞,

where f(x) - given function, λ - parameter, complying with the condition λ <
1/π, is given by means of the modified Kontorovitch–Lebedev transforms.
The proof of the Parseval equalities for these transforms is conducted.

The problem of the evaluation of the modified Kontorovitch–Lebedev
transforms is greatly simplified by means of their decomposition into the form
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of compositions of more simple integral transforms, in particular Fourier
and Laplace transforms. The expression of the modified Kontorovitch–
Lebedev integral transforms over the general Meyer integral transforms of
special index and argument is given.

The dual integral equations with Macdonald’s function of the imaginary
order Kiτ (x) in the kernel of the following form were introduced by Lebedev
and Skalskaya [2]∫ ∞

0
M(τ)τ tanh(ατ)Kiτ (kr)dτ = rg(r), 0 < r < a,

∫ ∞

0
M(τ)Kiτ (kr)dτ = f(r), r > a,

where g(r) and f(r) - given functions. They showed [2] that solutions of this
equations may be determined in the form of single quadratures from solutions
of second kind Fredholm integral equations with symmetric kernel containing
MacDonald’s function of the complex order K1/2+iτ (x).

M(τ) =
2sqrt(2) sinh(πτ)
πsqrt(π) sinh(ατ)

∫ ∞

0
ψ(t)ReK1/2+iτ (kt)dt,

ψ(t) = h(t)−
∫ ∞

0
K(s, t)ψ(s)ds, a ≤ t <∞,

where ReK1/2+iτ (z) - real part of MacDonald’s function of complex order
1/2 + iτ . In the case g(r) = 0

h(t) = −sqrt(k) exp(kt)
π

d

dt

∫ ∞

0

exp(−kr)f(r)
sqrt(r − t)

dr

K(s, t) =
4
π

∫ ∞

0

sinh[(π − α)τ ]
sinh(ατ)

ReK1/2+iτ (ks)ReK1/2+iτ (kt)dτ.

The numerical solution is conducted. The economical methods of the
evaluation of kernels of the integral equations based on Gauss quadrature
formulas on Lagerre polynomial’s knots are proposed. The procedures of
the preliminary transformation of integrals and extraction of the singularity
in the integrand are used for the increase of accuracy and speed of algorithms.
The cases of dual integral equations admitting complete analytical solution are
considered. Observed examples demonstrate the efficiency of this approach in
the numerical solution of the mixed boundary value problems of elasticity and
combustion in the wedge domains.

The application of the integral Kontorovitch–Lebedev transforms and
dual integral equations to the solution of the mixed boundary value problems
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are considered. The diffusion and elastic problems reduced to the solution of
the proper mixed boundary value problem for the Helmholtz equation

∆u− k2u = 0,
∂u

∂η
|ϕ=±α,0<r<a(r) = g(r), u|ϕ=±α,r>a(r) = f(r),

u|r⇒0— restricted, u|r⇒∞— restricted.

The solution of the problem as derived by Lebedev is determined by the
next way in the form of the integral Kontorovitch–Lebedev transform

u(r, ϕ) =
∫ ∞

0
M(τ)

coshϕτ
coshατ

Kiτ (kr)dτ,

where M(τ) is the solution of dual integral equation.
It is shown that the above-mentioned problems solution for the Helm-

holtz equation are present in the form of single quadrature from Helmholtz
equation are present in the form of single quadrature from Fredholm inte-
gral equation type. The dimension of the problem is lowered on unit by this,
what is the essential advantage of this method. The examples permitting the
complete analitical solution of the problem are given.

The numerical solution of the mixed boundary value problems and re-
ceived dual integral equations is carried out. It consists of numerical solution
of the second kind Fredholm integral equation with symmetric kernels and
the followed taking of quadratures from their solution. The estimation of error
is given. The control calculations results give the precision for the solution in
6-7 digits after comma. The considered examples demonstrate the efficiency of
the dual integral method in the solution of the mixed boundary value problems
for the Helmholtz equation in the wedge domains.
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Abstract The new applications of modified Kontorovitch–Lebedev integral
transforms for the solution of some problems of mathematical physics
are given. The algorithm of numerical solution of some mixed boundary
value problems for the Helmholtz equation in wedge domains by means
of dual integral equations method is developed.

Keywords: Dual integral equations, boundary value problems, Kontorovitch–
Lebedev integral transform, modified Bessel function

1. Introduction
The method of dual integral equations [1,4,10] is one of the effective

approaches for the solution of boundary value problems of the mathe-
matical physics. The dual integral equations may be reduced to Fred-
holm integral equations or infinite systems of linear algebraic equations.
The special emphasis is done in this paper on dual integral equations
with modified Bessel function of imaginary index Kiτ (x) in the kernel.
The problems of computation of this function are considered in [2,3,7].
But the theory and applications of this type of dual integral equations
are elaborated quite unsufficiently till this time. The paper presents
important results for the numerical solution of these types of problems.

∗Partial funding provided by CRDF grant RM1-361.
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2. The Application of Dual Integral Equations
Method for Some Mixed Boundary Value
Problems

The modified Kontorovitch–Lebedev integral transforms [5,8] with
kernels ReK1/2+iβ(x) = (K1/2+iβ(x)+K1/2−iβ(x))/2 and ImK1/2+iβ(x)
= (K1/2+iβ(x) − K1/2−iβ(x))/2i, where Ks(x) is MacDonald’s func-
tion, are of great importance in solving some problems of mathematical
physics, in particular mixed boundary value problems for the Helmholtz
equation in wedge and cone domains. It’s necessary to compute
ReK1/2+iβ(x) and ImK1/2+iβ(x) [6,7,9] to use this transforms in prac-
tice. These functions also occur in solving some classes of dual inte-
gral equations with kernels which contain MacDonald’s function of
imaginary index Kiβ(x). Therefore the computation of the second kind
modified Bessel function K1/2+iβ(x) is considered in more detail [6,7,9].

The definition of two pairs of direct and inverse modified Kon-
torovitch–Lebedev integral transforms [5] are cited

F+(τ) =
∫ ∞

0
f(x)ReK1/2+iτ (x)dx, 0 ≤ τ ≤ ∞,

f(x) = (4/π2)
∫ ∞

0
ch(πτ)F+(τ)ReK1/2+iτ (x)dτ, 0 < x <∞,

and
F−(τ) =

∫ ∞

0
f(x)ImK1/2+iτ (x)dx, 0 ≤ τ ≤ ∞,

f(x) = (4/π2)
∫ ∞

0
ch(πτ)F−(τ)ImK1/2+iτ (x)dτ, 0 < x <∞.

The sufficient conditions of the existence of these transforms and
the validity of the inversion formulas are given.

It’s shown that the inversion formulas of the modified Kontoro-
vitch–Lebedev integral transforms can be deduced from the inversion
formulas of the ”usual” Kontorovitch–Lebedev transforms and the
corresponding theorem is proven. For the case of nonnegative finite
functions with restricted variation the conditions of present theorem are
reduced to one condition, which is necessary and sufficient then.

The verification of the solution of singular integral equations of
the form

φ(x) = f(x) + λ

∫ ∞

0
(K1(x+ y)+−K0(x+ y))φ(y)dy, 0 < x <∞,

where f(x) - given function, λ - parameter, complying with the condition
λ < 1/π, is given by means of the modified Kontorovitch–Lebedev
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transforms. The proof of the Parseval equalities for these transforms
is conducted.

The problem of the evaluation of the modified Kontorovitch–
Lebedev transforms is greatly simplified by means of their decomposi-
tion into the form of compositions of more simple integral transforms,
in particular Fourier and Laplace transforms. The expression of the
modified Kontorovitch–Lebedev integral transforms over the gen-
eral Meyer integral transforms of special index and argument is given.

The dual integral equations with Macdonald’s function of the
imaginary order Kiτ (x) in the kernel of the following form were intro-
duced by Lebedev and Skalskaya [4]∫ ∞

0
M(τ)τ tanh(ατ)Kiτ (kr)dτ = rg(r), 0 < r < a,

∫ ∞

0
M(τ)Kiτ (kr)dτ = f(r), r > a,

where g(r) and f(r) - given functions. They showed [4] that solutions
of these equations may be determined in the form of single quadratures
from solutions of second kind Fredholm integral equations with sym-
metric kernel containing MacDonald’s function of the complex order
K1/2+iτ (x)

M(τ) =
2
√

2 sinh(πτ)
π
√
π sinh(ατ)

∫ ∞

0
ψ(t)ReK1/2+iτ (kt)dt,

ψ(t) = h(t)−
∫ ∞

0
K(s, t)ψ(s)ds, a ≤ t <∞,

where ReK1/2+iτ (z) - real part of MacDonald’s function of complex
order 1/2 + iτ . In the case g(r) = 0

h(t) = −
√
kekt

π

d

dt

∫ ∞

0

e−krf(r)√
r − t

dr,

K(s, t) =
4
π

∫ ∞

0

sinh[(π − α)τ ]
sinh(ατ)

ReK1/2+iτ (ks)ReK1/2+iτ (kt)dτ.

The numerical solution is conducted. The economical methods
of the evaluation of kernels of the integral equations based on Gauss
quadrature formulas on Laguerre polynomial’s knots are proposed.
The procedures of the preliminary transformation of integrals and ex-
traction of the singularity in the integrand are used for the increase of
accuracy and speed of algorithms. The cases of dual integral equations
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admitting complete analytical solution are considered. Observed exam-
ples demonstrate the efficiency of this approach in the numerical solution
of the mixed boundary value problems of elasticity and combustion in
the wedge domains [1].

The application of the Kontorovitch–Lebedev integral trans-
forms and dual integral equations to the solution of the mixed boundary
value problems are considered. The diffusion and elastic problems re-
duced to the solution of the proper mixed boundary value problems for
the Helmholtz equation.

The mixed boundary value problems for the Helmholtz equation
[4]

∆u− k2u = 0 (1)

are arised in some fields of mathematical physics.
The solution of this type of problems in the wedge domains is de-

termined by the next way in the form of the Kontorovitch–Lebedev
integral transform [4]

u(r, ϕ) =
∫ ∞

0
M(τ)

coshϕτ
coshατ

Kiτ (kr)dτ,

where M(τ) is the solution of dual integral equation.
It is shown that the above-mentioned problems solution for the

Helmholtz equation are present in the form of single quadrature from
the solution of Fredholm integral equation type. The dimension of the
problem is lowered on unit by this, what is the essential advantage of
this method. The examples permitting the complete analitical solution
of the problem are given.

The numerical solution of the mixed boundary value problems and
received dual integral equations is carried out. It consists of numerical
solution of the second kind Fredholm integral equation with symmet-
ric kernels and the followed taking of quadratures from their solution.
The estimation of error is given. The control calculations results give
the precision for the solution in 6-7 digits after comma. The consid-
ered examples demonstrate the efficiency of the dual integral method in
the solution of the mixed boundary value problems for the Helmholtz
equation in the wedge domains.

Let’s use the following notations here and further: r, ϕ - polar
coordinates of the point; α - angle of the sectorial domain; u - desired
function; η - normal to the boundary.

The numerical solution of some boundary value problems for the
equation of the form (1) in arbitrary sectorial domains is considered in
our work under the assumption that the function u|Γ is known on the
part of the boundary and the normal derivative ∂u

∂η |Γ is known on the
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other part of the boundary. The Kontorovitch–Lebedev integral
transforms [4] and dual integral equations method [4,10] are used for the
searching of the solution.

Let’s consider the symmetric case for the simplicity of the calcu-
lations 

∆u− k2u = 0,
∂u

∂η
|ϕ=±α(r) = g(r), 0 < r < a,

u|ϕ=±α(r) = f(r), r > a,
u|r→0 - restricted,
u|r→∞ - restricted.

(2)

The solution of (2) is determined by the following way in the form
of Kontorovitch-Lebedev integral transforms [4]

u(r, ϕ) =
∫ ∞

0
M(τ)

coshϕτ
coshατ

Kiτ (kr)dτ, (3)

where M(τ) is the solution of dual integral equation∫∞
0 M(τ)τ tanh(ατ)Kiτ (kr)dτ = rg(r), 0 < r < a,∫∞

0 M(τ)Kiτ (kr)dτ = f(r), r > a,
(4)

where g(r) and f(r) - given functions and Kν(z) - modified Bessel
function (Macdonald function) of imaginary order.

The dimension of the problem is lowered on unit by this approach
as it can be seen easily.

The dual integral equations of this type were considered in [4]. It
was shown in [4] that the solutions of these equations may be determined
in the form of single quadratures from auxiliary functions satisfying to
the second kind Fredholm integral equations with symmetric kernel
containing MacDonald’s function of the complex order K1/2+iτ (x).

The general case is reduced to the case g(r) = 0 as it follows from
[4]. Let’s consider this case for the simplicity further in this paper.

Let’s denote

h(t) = −
√
kekt

π

d

dt

∫ ∞

0

e−krf(r)√
r − t

dr,

K(s, t) =
4
π

∫ ∞

0

sinh[(π − α)τ ]
sinh(ατ)

ReK1/2+iτ (ks)ReK1/2+iτ (kt)dτ,

(5)

where ReK1/2+iτ (z) - real part of MacDonald’s function of complex
order 1/2 + iτ .
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Then we obtain the following procedure for the determination of
M(τ) on the basis of [4]

M(τ) =
2
√

2 sinh(πτ) cosh(ατ)
π
√
π sinh(ατ)

∫ ∞

a
ψ(t)ReK1/2+iτ (kt)dt, (6)

where ψ(t) - solution of the integral Fredholm equation of the second
kind

ψ(t) = h(t)− k

π

∫ ∞

a
K(s, t)ψ(s)ds, a ≤ t <∞. (7)

It’s useful under the decision of boundary value problems to find
the solution u on the boundary of sectorial domain

u|Γ(r) =
∫ ∞

0
M(τ)Kiτ (kr)dτ. (8)

Substituting expression (6) for M(τ) in (8) and transposing the
order of the integration we obtain

u|Γ(r) =
2
√

2
π
√
π

∫ ∞

a
ψ(t)Gr(t)dt, (9)

where

Gr(t) =
∫ ∞

0

sinh(πτ) cosh(ατ)
sinh(ατ)

Kiτ (kr)ReK1/2+iτ (kt)dτ. (10)

So the numerical solution of the boundary value problem (2) con-
sists from the numerical solution of integral Fredholm equation of the
second kind with symmetric kernel and from the consequent taking of
the quadratures from its solution.

Let’s truncate the integral equation (7) by the following way

ψ(t) = h(t)− k

π

∫ b

a
K(s, t)ψ(s)ds, a ≤ t ≤ b. (11)

The conducted estimations show that we don’t obtain any loss of
accuracy in the bounds 10−7−10−8 under the truncation of the integral
equation (7) for b ≥ 10 in view of fast decrease of the kernels K(s, t) for
s, t→∞.

The method of mechanical quadratures with the use of combined
Simpson formula with instant integration step is one of the most con-
venient methods of numerical solution of Fredholm integral equation
of the second kind.

The application of combined Simpson formula possible in the case
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of fixed step ∆t and odd number of steps leads to the linear inhomoge-
neous system of algebraic equations

ψi +
∆t
3
k

π

N∑
j=1

AjKijψj = hi, i = 1, ..., N, (12)

where
N =

b− a
∆t

+ 1,

tj = a+ (j − 1)∆t, j = 1, ..., N,

Kij = K(si, tj), hi = h(ti), i, j = 1, ..., N,

ψi - approximate values ψ(ti), i = 1, ..., N,

Aj =


1 for j = 1, j = N ,
4 for j = 2, 4, 6, ..., N − 1,
2 for j = 3, 5, 7, ..., N − 2.

It’s convenient to use the Gauss elimination method for the solu-
tion (12). The speed and operating memory of the mainframe computer
BESM-6 made possible to use under the calculations up to N ≈ 150
knots.

The solution of the system (12) gives values ψ1, ..., ψn. The approx-
imate solution of the integral equation (7) upon the whole of interval
[a, b] is found by means of interpolation over this values ψi, i = 1, ..., N.
For the analytical expression of the approximate solution we take the
following magnitude

ψn(t) = h(t)− ∆t
3
k

π

n∑
j=1

AjK(t, tj)ψj , (13)

having the values ψ1, ..., ψN in the points of interpolation. We obtain
more biggest accuracy in this case with respect to the comparison with
linear or quadratic interpolation.

Further the solution of dual equation was computed by the formu-
las (6) with the use of codes and routines for the computation
ReK1/2+iτ (x) [6,7,9].

The error estimation of the numerical solution scheme (12) - (13)
may be carried on.

Integrals (5), (10) may be expressed through known functions for
special values of the angle α, in particular for α = π

n , n = 1, 2, ...
We compute the truncated integrals in fact under the computa-

tions of integrals (5), (10) on the computer: the integration is carried
on over the some interval [0, B]. In view of this fact it’s important to
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choose by the correct way the truncation interval [0, B], ensuring the
computation of stated integrals with necesssary precision without the
expenditure of unnecessary computer time. The estimations of the error

KB(s, t) =
4
π

∫ ∞

B

sinh[(π − α)τ ]
sinh(ατ)

ReK1/2+iτ (ks)ReK1/2+iτ (kt)dτ,

GB
r (t) =

∫ ∞

B

sinh(πτ) cosh(ατ)
sinh(ατ)

Kiτ (kr)ReK1/2+iτ (kt)dτ,

arising from the truncation are useful for this purpose. On the basis of
inequalities from [4,8] for functions Kiτ (x) and ReK1/2+iτ (x) we obtain

KB(s, t) ≤ c2k−3/2(st)−3/4 e
−2αB

2α
(B2 +

B

α
+

1
2α2

), (14)

GB
r (t) ≤ Ac

α
k−1r−1/4t−3/4e−2αB, (15)

where A and c - some positive constants having the multiplicity of a
unit. As it can be seen from (14) and (15) it’s necessary to take the
extending interval [0, B] for the decreasing values of angle α.

Let’s consider the example admitting the complete analytical so-
lution of the problem (2)

f(r) =
√
π

k
√

2
(e−kr + ekr[1− Φ(

√
2k(r + a))]),

g(r) = 0, α =
π

4
.

Then we obtain on the basis of relevant calculations [4] that

h(t) = e−kt +
1
π
e−kaK0(k(t+ a)),

K(s, t) = K0(k(s+ t)) +K1(k(s+ t)), (16)

and ψ(t) = e−kt.
Substituting (16) in (9) and performing some calculations we ob-

tain for r < a

u|Γ(r) =
√
π

k
√

2
(e−kr(1− φ(

√
2k(a− r))) + ekr(1− φ(

√
2k(a+ r))))

and for r > a

u|Γ(r) =
√
π

k
√

2
(e−kr + ekr(1− φ(

√
2k(a+ r))))
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(verification of the conditions of the problem).
We obtained the precision in 7-8 significant digits under the solu-

tion of dual integral equation (computation of the values (cosh πτ
2 )−1M(τ)

) so for a = 1.0, k = 1 (cosh 3π
2 )−1M(3) = .928825310 − 01.

We obtained the precision in 6-7 digits after comma under the cal-
culation of values u|Γ(r) so for a = 1.0, k = 1 u|Γ(2) = .174544410 + 00.

The different preliminary procedures of the separation of singu-
larity or transformation of the integral into the integral without the
singularity are useful for the computation of integral (9).

Let’s consider the calculations for the case α = π
2 in detail [4].

Let’s introduce the functions

G1r(t) =
π
√
π

2
√

2
e−k(r+t)√
k(r + t)

and

G2r(t) =


0, t ≤ r

π
√
π

2
√

2
e−k(t−r)√
k(t− r)

, t > r.

Then Gr(t) = G1r(t) +G2r(t) and

u|Γ(r) =
2
√

2
π
√
π

∫ b

a
ψ(t)G1r(t)dt+

2
√

2
π
√
π

∫ b

max(a,r)
ψ(t)G2r(t)dt. (17)

The formula (17) is more convenient for the application of procedures of
numerical integration then formula (9).

Here the function G1r(t) hasn’t singularities for all r, t > 0 and the
function G2r(t) hasn’t singularities for t ≥ a, r < a. For r ≥ a integrand
of the second integral in (17) has singularity for t = r and the integral
itself is equal to ∫ b

a
ψ(t)

e−k(t−r)√
k(t− r)

dt.

Let’s make the change of variables t1 =
√

t−r
b−r and introduce the function

g(t1) =
√
b− r
k

ψ((b− r)t21 + r)e−k(b−r)t21 .

Then the second integral in (17) is equal to 2
∫ 1
0 g(t1)dt1, where the latter

integral doesn’t contain any singularities in the integrand.
It’s strongly efficient to use the procedures of numerical integration

for the transformed integral. The accuracy of computations is increased
and the computer time is shorten by this approach.
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3. Summary
The dual integral equations with Macdonald’s function of the imag-

inary order Kiτ (x) in the kernel are considered. The solutions of these
equations and proper mixed boundary value problems are determined
in the form of single quadratures from solutions of second kind Fred-
holm integral equations. The numerical solution is conducted and the
problems of the computational methodology are discussed. Examples
demonstrate the efficiency of the dual integral method in the numerical
solution of the mixed boundary value problems of elasticity, combustion
and electrostatics in the wedge domains.
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