Solving Painléve II (and KdV) numerically with Riemann–Hilbert problems

Sheehan Olver
Junior Research Fellow at St John's College
NA Group
Oxford University Mathematical Institute

Anonymous referee report:

"[redacted embarrassing comments]. Reference [16] may serve as a wonderful example of a caring handling of complicated mathematical formulas."

(You can guess what reference [16] was...)

- We present a new method for computing solutions to matrix-valued Riemann-Hilbert problems:
 - It is a collocation method which converges spectrally (almost exponentially) quickly
- We investigate two applications:
 - Painlevé transcendents
 - KdV equation (joint work with Tom Trogdon)
- Other applications:
 - Integrable systems: nonlinear Schrödinger equation,
 Kadomtsev—Petviashvili equation, Benjamin—Ono equation etc.
 - Orthogonal polynomials
 - · Can compute arbitrarily large order orthogonal polynomials for arbitrary weights
 - Random matrix theory
 - ullet Can compute distributions for large but finite n

- A matrix-valued Riemann-Hilbert problem is the following:
 - Given an oriented contour Γ in the complex plane and a matrix-valued function G defined on Γ (here, all functions on Γ are analytic along each piece of Γ);
 - Find a matrix-valued function Φ that is analytic everywhere in the complex plane off of Γ such that

$$\Phi^+(z) = \Phi^-(z)G(z)$$
 for $z \in \Gamma$ and $\Phi(\infty) = I$ where $\Phi^+(z) = \lim_{\substack{x \to z \text{where } x \text{ is left of } \Gamma}} \Phi(x)$ where $\Phi^-(z) = \lim_{\substack{x \to z \text{where } x \text{ is right of } \Gamma}} \Phi(x)$

(see eg. Muskhelishvili 1953)

- Many linear differential equations have well-known integral representations
 - e.g., Airy equation, Bessel equation, Hypergeometric equation and heat and wave equations (via Fourier transform)
- Matrix-valued RH problems can be (loosely) viewed as an analogy of integral representations for *nonlinear* equations
- Importantly, RH problems can be used to determine asymptotics of solutions
 - This works similar to integral representations: the contour is deformed along the path of steepest descent
- · Using a new approach I have constructed, RH problems can now be used as a numerical tool
- Previous method: the Sine kernel RH problem (on the unit interval) and a special solution to Painlevé V were computed in (Dienstfrey 1998), by adapting standard singular integral equation (SIE) methods
 - · Required exponentially clustered collocation points near the endpoints

Painlevé Transcendents

- · Our preliminary application is computing solutions to Painlevé transcendents
- Applications of Painlevé transcendents
 - Asymptotics and special solutions of integrable systems
 - Random matrix distributions
 - Physical applications (quantum gravity, Bose gases, convective flows, general relativity, poly-electrolytes, nonlinear optics, etc.)
- In short: Painlevé equations are nonlinear special functions
- The computation of RH problems and Painlevé transcendents was an open problem (Deift 2008)
- We construct a black box routine for Painlevé II, which is reliable uniformly on the real axis

Hastings-McLeod solution to Painlevé II

Hastings-McLeod solution to Painlevé II

Hastings-McLeod solution to Painlevé II

Homogeneous Painlevé II

$$u'' = xu + 2u^{3}$$

$$s_{1} - s_{2} + s_{3} + s_{1}s_{2}s_{3} = 0$$

$$\Phi^{+}(z) = \Phi^{-}(z)G(z)$$

$$u(x) = 2 \lim_{z \to \infty} z\Phi_{12}(z)$$

(see eg. Fokas et al 2006)

Where the RH formulation comes from (Rough sketch)

Nonlinear differential equation

Lax pair representation

$$\Psi_z(x,z) = A(u,x,z)\Psi(x,z)$$

$$\Psi_x(x,z) = U(u,x,z)\Psi(x,z)$$

Monodromy and Stokes data

Riemann-Hilbert problem

$$\Phi^+(z) = \Phi^-(z)G(z)$$

(see eg. Fokas et al 2006)

Consider the Cauchy transform

$$C_{\Gamma}f(z) = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(t)}{t-z} dt.$$

This map defines a one-to-one correspondence between a function defined on Γ and a function which is analytic everywhere off Γ which decays at ∞

Let

$$\Phi = I + \mathcal{C}V$$

• The RH problem $\Phi^+ = \Phi^- G$ becomes

$$C^+V(x) - C^-V(x)G(x) = G(x) - I$$
 for $x \in \Gamma$

• Having a method to compute the Cauchy transform and its left and right limits allows us to apply the linear operator

$$\mathcal{M}V = \mathcal{C}^+V - (\mathcal{C}^-V)G$$

(similar to Dienstfrey 1998)

ullet We want to construct an approximation to V which satisfies

$$\mathcal{M}V = G - I$$

at a sequence of points; i.e., we construct a collocation method:

- For some basis $\{\psi_1,\ldots,\psi_n\}$ of functions defined on Γ and set of nodes $\{z_1,\ldots,z_m\}$ on Γ
 - Write

$$V = \sum c_k \psi_k$$

Solve the linear system

$$c_1 \mathcal{M} \psi_1(z_1) + \dots + c_n \mathcal{M} \psi_n(z_1) = G(z_1) - I$$

 \vdots
 $c_1 \mathcal{M} \psi_1(z_m) + \dots + c_n \mathcal{M} \psi_n(z_m) = G(z_m) - I$

Two remaining difficulties

- We must compute the Cauchy transform of our basis over Γ
 - By splitting the domain and using conformal maps, this can be reduced to computing the Cauchy transform over the unit interval
 - The Cauchy transform for Chebyshev polynomials over the unit interval can be found in closed form!
- We must include the junction points of Γ in the collocation system
 - This is needed to ensure that the approximation is bounded
 - The Cauchy transform of our basis explodes there; therefore, we assign it a special value

For homogeneous Painlevé II, we need to compute ${\mathcal C}$ over the domain

ullet But we can decompose the transform to a sum over each of Γ 's parts:

$$\mathcal{C}_{\bullet} = \mathcal{C}_{\bullet} + \mathcal{C}_{\bullet} + \mathcal{C}_{\bullet} + \mathcal{C}_{\bullet} + \mathcal{C}_{\bullet} + \mathcal{C}_{\bullet}$$

• Using a conformal map M_k from the unit interval to each ray Γ_k of the jump contour, the Cauchy transform is (due to Plemelj's lemma)

$$\mathcal{C}_{\Gamma_k} f(z) = \mathcal{C}_{(-1,1)} [f \circ M_k] (M_k^{-1}(z)) - \mathcal{C}_{(-1,1)} [f \circ M_k] (M_k^{-1}(\infty))$$

• Thus we have reduced the construction of our collocation method to one problem: the computation of the Cauchy transform over the unit interval $\mathcal{C}_{(-1,1)}$

- There are two standard numerical methods (cf., for eg. King 2009) for computing Cauchy/Hilbert transforms on the unit interval:
 - Standard quadrature, which blows up on the interval

$$\frac{1}{2\pi i} \int_{-1}^{1} \frac{f(x)}{x - z} dx \approx \frac{1}{2\pi i} \sum_{i} w_{i} \frac{f(x_{i})}{x_{i} - z}$$

· Removal of the singularity (and higher order analogues) which is not defined off the interval

$$\frac{1}{2\pi i} \int_{-1}^{1} \frac{f(x)}{x - z} dx \approx \frac{1}{2\pi i} \sum_{i} w_{i} \frac{f(x_{i}) - f(z)}{x_{i} - z} + \frac{f(z)}{2\pi i} \int_{-1}^{1} \frac{1}{x - z} dx$$

(Higher order analogues of this discretization are standard in singular integral equations on the unit interval, used by Elliot 1982 and for RH problems in Dienstfrey 1998)

• Instead, we derived a method which is uniform for all z using Chebyshev polynomial moments:

$$\frac{1}{2\pi i} \int_{-1}^{1} \frac{f(x)}{x - z} dx \approx \sum \check{f}_{k} \frac{1}{2\pi i} \int_{-1}^{1} \frac{T_{k}(x)}{x - z} dx = \sum \check{f}_{k} \mathcal{C}_{(-1,1)} T_{k}(z)$$

• These moments can be expressed in closed form using a very simple and stable one-term recurrence relationship and hypergeometric functions

- We include the origin as a collocation point to ensure that the computed solution is bounded. This is *crucial*, and the reason (Dienstfrey 1998) needed exponentially many points; to simulate boundedness
- At the origin, the Cauchy transforms over the individual rays blow up:

$$C_{\Gamma_k} V_k(z) \sim_{z \to 0} - \frac{V_k(0)}{2i\pi} \log(-e^{i\theta_k}z) + C_k$$

We define the finite part along a curve at angle t as the circled part:

$$C_{\Gamma_k} V_k(z) \sim \left[C_k - \frac{V_k(0)}{2i\pi} i \arg(-e^{i(\theta_k + t)}) - \frac{V_k(0)}{2i\pi} \log|z| \right]$$

Whenever the limits of V along each ray sum to zero, this expression is an equality

$$\mathcal{C}_{\Gamma}V(z) = \mathcal{C}_{\Gamma_1}V_1(z) + \dots + \mathcal{C}_{\Gamma_6}V_6(z)$$

$$= -\frac{1}{2i\pi}(V_1(0) + \dots + V_6(0))\log|z| + \text{bounded terms}$$

$$\sim \text{bounded terms}$$

- Final collocation method for the homogeneous Painlevé II equation:
 - Choose the basis of Chebyshev polynomials mapped to each ray
 - Using the Cauchy transform formulæ, construct the linear system, where we take the finite part as the definition of the Cauchy transform at zero
 - This will be justified because the collocation system itself ensures that the limits along each ray of the computed solution will always sum to zero whenever $s_1s_3 s_1s_2 s_2s_3 \neq 9$
 - Otherwise, the linear system has an extra degree of freedom, and we can add as an extra condition that the contributions at the origin sum to zero

• We transform the RH problem to solution value:

$$u(x) \approx 2 \lim_{z \to \infty} z \frac{1}{2\pi i} \int_{\Gamma} \frac{V(t)}{t - z} dt = -\frac{1}{2\pi i} \int_{\Gamma} V(t) dt$$

- The integral can be evaluated using Clenshaw-Curtis quadrature
- We can also apply this approach for computing the derivative of u(x), reusing most of the computation
- This is the first reliable numerical method for computing the initial conditions for given Stokes' constants
 - And asymptotics are determined from the Stokes' constants

- Consider again the Hastings–McLeod solution, which is equivalent to the choice $(s_1, s_2, s_3) = (i, 0, -i)$
- This solution is important in random matrix theory, in particular, the distribution of the largest eigenvalue of almost all random matrix ensembles is the *Tracy—Widom distribution*, which is expressed in terms of the Hastings—McLeod solution
- Numerical values of the Hastings–McLeod solution at a set of points are available (Prähofer and Spohn 2004)
 - Computed by using the known asymptotics to determine initial conditions for large x, then very high precision arithmetic with Taylor series methods: a very inefficient approach
 - As mentioned before, this computation is particularly difficult because a small perturbation of initial conditions can introduce oscillations or poles

Absolute Error

- Spectral convergence is evident
- The method takes less than 1.5 seconds per point for n=120 (except the first evaluation, where it takes 5.5 seconds)
- For large x, we see the same instability issues as the ODE
- This will be resolved by deforming the RH problem

Other solutions

Real and imaginary parts

Other solutions

Spectral system becomes badly conditioned at poles (can be used to compute location of poles)

$$(s_1,s_2,s_3)=(1,0,-1)$$
 $(1+i,-2,1-i)$ $(1,2,1/3)$

Real and imaginary parts

NONLINEAR STEEPEST DESCENT

- As x becomes large, the $e^{\pm(8i/3z^3+2ixz)}$ terms in the jump matrix G becomes increasingly oscillatory
 - Resolving oscillations requires more collocation points
 - · The representation on six rays is also inherently badly conditioned
- We use three tools from the asymptotic analysis to remove the oscillations (Deift & Zhou 1995):
 - Deformation along the path of steepest descent
 - Matrix factorization and lensing
 - Replace the oscillator with a similar oscillator

We first do the transformation

$$z \mapsto \sqrt{-x}z$$
 so that

$$e^{\pm(8i/3z^3+2ixz)} \mapsto e^{\pm i(-x)^{3/2}(8/3z^3-2z)}$$

• This has two stationary points at $\pm 1/2$, thus we deform the contour to obtain the Riemann–Hilbert problem:

(based on Deift & Zhou 1995 and Fokas et al 2006)

We first do the transformation

$$z\mapsto \sqrt{-x}z$$
 so that

$$e^{\pm(8i/3z^3+2ixz)} \mapsto e^{\pm i(-x)^{3/2}(8/3z^3-2z)}$$

• This has two stationary points at $\pm 1/2$, thus we deform the contour to obtain the Riemann–Hilbert problem:

$$\begin{pmatrix} 1 & -s_1 e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2-3)z} \\ 0 & 1 \end{pmatrix}$$

(based on Deift & Zhou 1995 and Fokas et al 2006)

$$\begin{pmatrix}
1 & s_2 e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2 - 3)z} \\
0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 \\
s_3 e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2 - 3)z} & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & s_2 e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2 - 3)z} & 0 \\
s_1 e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2 - 3)z} & 1
\end{pmatrix}$$

$$(2z)$$

 $G_6G_1G_2$

$$\begin{pmatrix} 1 & 0 \\ -s_2 e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^2-3)z} & 1 \end{pmatrix}$$

- · Each of the paths to infinity have no oscillations and super-exponential decay
- But the path connecting $\pm 1/2$ is still oscillatory:

$$G_{6}G_{1}G_{3} = \begin{pmatrix} 1 & -s_{3}e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^{2}-3)z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ s_{1}e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^{2}-3)z} & 1 \end{pmatrix} \begin{pmatrix} 1 & s_{2}e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(4z^{2}-3)z} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - s_{1}s_{3} & e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(-3+4z^{2})z}s_{1} \\ e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(-3+4z^{2})z}s_{1} & 1 + s_{1}s_{2} \end{pmatrix}$$

• The key now is that we can split jump contours:

- We want to write $G_6G_1G_2$ as ABC where A goes to the identity matrix near the negative imaginary axis, B is nonoscillatory and C goes to the identity matrix near the positive imaginary axis
- This happens to be satisfied by the LDU factorization:

$$G_6G_1G_2 = LDU = \begin{pmatrix} 1 & 0 \\ \frac{s_1}{1 - s_1 s_3} e^{\frac{2}{3}i(-x)^{\frac{3}{2}}(-3 + 4z^2)z} & 1 \end{pmatrix} \begin{pmatrix} 1 - s_1 s_3 & \\ & \frac{1}{1 - s_1 s_3} \end{pmatrix} \begin{pmatrix} 1 & \frac{s_1}{1 - s_1 s_3} e^{-\frac{2}{3}i(-x)^{\frac{3}{2}}(-3 + 4z^2)z} \\ 0 & 1 \end{pmatrix}$$

- Note that we must restrict our attention to the case where $s_1s_3 \neq 1$
 - This excludes the Hastings—McLeod solution
 - Though a different factorization can be used in this case (will touch on later)

(based on Deift & Zhou 1995 and Fokas et al 2006)

The RH problem for negative x and $s_1s_3 \neq 1$

- We can implement a spectral method for this Riemann–Hilbert problem just as we did for the canonical six rays case
- The problem:
 - · The solution is oscillatory along circled connecting curve
 - Fortunately, we have a closed form solution (parametrix) for the contribution from that curve from the analytic development:

$$\Psi^{+} = \Psi^{-}D$$

$$\Psi(z) = \begin{pmatrix} \left(\frac{1+2z}{2z-1}\right)^{\frac{i}{2\pi}} \log D_{11} \\ \left(\frac{1+2z}{2z-1}\right)^{\frac{i}{2\pi}} \log D_{22} \end{pmatrix}$$

(based on Deift & Zhou 1995 and Fokas et al 2006)

• V satisfies the RH problem:

We recover the solution by:

Negative x with $s_1s_3 \neq 1$

Negative x with $s_1s_3=1$

Positive x with $s_2 \neq 0$

Positive x with $s_2 = 0$

Negative x with $s_1s_3 \neq 1$

Negative x with $s_1s_3=1$

Positive x with $s_2 \neq 0$

Positive x with $s_2 = 0$

(joint work with G. Wechslburger)

We can now extend the graph for $(s_1, s_2, s_3) = (1, 2, 1/3)$

Hastings-McLeod $(s_1,s_2,s_3)=(i,0,-i)$

Relative error compared to (Prähofer and Spohn 2004)

- Many integrable systems can be written as RH problems
 - Here, RH problems are generalizations of the Fourier transform solutions to linear PDEs, such as the heat, wave, linear Schrödinger and linear KdV equations
- Examples include
 - Nonlinear Schrödinger (NLS) equation

$$iu_t + u_{xx} + |u|^2 u = 0$$

Davey—Stewartson (DS) I equation

$$iu_t + \frac{1}{2}(u_{xx} + u_{yy}) = u\phi - |u|^2 u$$
$$\phi_{xx} - \phi_{yy} = 2(|u|^2)_{xx}$$

- Shallow water waves:
 - Korteweg–de Vries (KdV) equation

$$u_t + 6uu_x + u_{xxx} = 0$$

Kadomtsev–Petviashvili (KP) I equation

$$(u_t + 6uu_x + u_{xxx})_x - 3u_{yy} = 0$$

KdV equation

• We want to find Φ which satisfies the following jump on the real axis:

$$\Phi^{+} = \Phi^{-} \begin{pmatrix} 1 - |r(z)|^{2} & -\bar{r}(z)e^{-2i(4tz^{3} + xz)} \\ r(z)e^{2i(4tz^{3} + xz)} & 1 \end{pmatrix}$$

where r is the reflection coefficient (essentially, a generalization of the Fourier transform)

- $^{\circ}$ Given a reasonable initial condition, we can efficiently compute r numerically by solving an oscillatory, time-independent linear Schrödinger equation
 - But here we will just assume r is given
- Now Φ is not analytic, but rather meromorphic, with simple poles (depending on the initial condition)
- We can transform the poles to small circles surrounding the pole (suggested by J. DiFranco)

(joint work with T. Trogden, U. Washington)

Deformations

We have two stationary points at

$$\pm\sqrt{-rac{x}{12t}}$$

- We will deform the contour through these stationary points along the paths of steepest descent
- Different regimes of x and t require different lensings
 - Added difficulty: the lensing introduces a pole

Undeformed

P

 $\begin{pmatrix}
1 - |r(z)|^2 & -\bar{r}(z)e^{-2i(4tz^3 + xz)} \\
r(z)e^{2i(4tz^3 + xz)} & 1
\end{pmatrix}$

$$t = 0$$

t > 0

Thursday, 7 April 2011

Plot for t = 200, -1000 < x < 1000

Benefits of an RH numerical approach

- Of course, there are many other numerical methods for such PDEs, however, an approach based on the RH formulation has many benefits, including:
 - x and t are reduced to parameters, therefore we do not need to integrate the solution at a sequence of time steps to compute it for large t
 - ullet Computational cost is bounded for all t and x
 - · We achieve spectral accuracy and avoid boundary truncation effects
 - The KP and DS equations have two spacial dimensions, making standard numerical methods inefficient
 - \cdot y is also simply a parameter in the RH formulation
 - Benjamin-Ono equation has a singular-integral term

Conclusions

- Riemann—Hilbert problems can be numerically solved, efficiently and accurately
- We can now reliably compute solutions to KdV and Painlevé II
 - This could form the building block of a toolbox for computing Painlevé transcendents
 - A first step is the routine PainleveII[$\{s1,s2,s3\},x$] included in RHPackage and reliable for all real x
- Same ideas are applicable to computing other Painlevé transcendents, integrable systems, orthogonal polynomials and random matrix theory distributions

A solution to Painlevé IV

(Mathematica package RHPackage available on my website)

OTHER PAINLEVÉ RH PROBLEMS

