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a b s t r a c t

We introduce the first analytical model of asymmetric community dynamics to yield Hubbell’s neutral
theory in the limit of functional equivalence among all species. Our focus centers on an asymmetric
extension of Hubbell’s local community dynamics, while an analogous extension of Hubbell’s meta-
community dynamics is deferred to an appendix. We find that mass-effects may facilitate coexistence in
asymmetric local communities and generate unimodal species abundance distributions indistinguishable
from those of symmetric communities. Multiple modes, however, only arise from asymmetric processes
and provide a strong indication of non-neutral dynamics. Although the exact stationary distributions of
fully asymmetric communities must be calculated numerically, we derive approximate sampling
distributions for the general case and for nearly neutral communities where symmetry is broken by a
single species distinct from all others in ecological fitness and dispersal ability. In the latter case, our
approximate distributions are fully normalized, and novel asymptotic expansions of the required
hypergeometric functions are provided to make evaluations tractable for large communities. Employing
these results in a Bayesian analysismay provide a novel statistical test to assess the consistency of species
abundance data with the neutral hypothesis.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The ecological symmetry of trophically similar species forms the
central assumption in Hubbell’s unified neutral theory of biodi-
versity and biogeography (Hubbell, 2001). In the absence of stable
coexistence mechanisms, local communities evolve under zero-
sum ecological drift—a stochastic process of density-dependent
birth, death, and migration that maintains a fixed community size
(Hubbell, 2001). Despite a homogeneous environment, migration
inhibits the dominance of any single species and fosters high levels
of diversity. The symmetry assumption has allowed for consider-
able analytical developments that draw on the mathematics of
neutral population genetics (Fisher, 1930; Wright, 1931) to derive
exact predictions for emergent, macro-ecological patterns (Chave,
2004; Etienne and Alonso, 2007;McKane et al., 2000, 2004; Vallade
and Houchmandzadeh, 2003; Volkov et al., 2003, 2005, 2007;
Etienne and Olff, 2004; Pigolotti et al., 2004; He, 2005; Hu et al.,
2007; Babak and He, 2008, 2009). Among the most significant
contributions are calculations of multivariate sampling distribu-
tions that relate local abundances to those in the regional meta-
community (Alonso and McKane, 2004; Etienne and Alonso, 2005;

Etienne, 2005, 2007). Hubbell (2001) first emphasized the utility of
sampling theories for testing neutral theory against observed
species abundance distributions (SADs). Since then, Etienne and
Olff (2004, 2005) have incorporated sampling distributions as
conditional likelihoods in Bayesian analyses (Etienne, 2007,
2009). Recent work has shown that the sampling distributions of
neutral theory remain invariant when the restriction of zero-sum
dynamics is lifted (Etienne et al., 2007; Haegeman and Etienne,
2008; Conlisk et al., 2010) and when the assumption of strict
symmetry is relaxed to a requirement of ecological equivalence
(Etienne et al., 2007; Haegeman and Etienne, 2008; Allouche and
Kadmon, 2009a,b; Lin et al., 2009).

The success of neutral theory in fitting empirical patterns of
biodiversity (Hubbell, 2001; Volkov et al., 2003, 2005; He, 2005;
Chave et al., 2006) has generated a heated debate among ecologists,
as there is strongevidence for species asymmetry in thefield (Harper,
1977;Goldberg andBarton, 1992;ChaseandLeibold, 2003;Wootton,
2009; Levine and HilleRisLambers, 2009). Echoing previous work on
the difficulty of resolving competitive dynamics from the essentially
static observations of co-occurrence data (Hastings, 1987), recent
studies indicate that interspecific tradeoffs may generate unimodal
SADs indistinguishable from the expectations of neutral theory
(Chave et al., 2002; Mouquet and Loreau, 2003; Chase, 2005; He,
2005; Purves and Pacala, 2005; Walker, 2007; Doncaster, 2009).
These results underscore the compatibility of asymmetries and
coexistence. The pioneeringwork ofHutchinson (1951), has inspired
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Current extinction rates are ~1000 times higher 
than the expected background.

At this rate, ~50% of present-day species will be 
extinct by 2100. 

(UN Convention on Biological Diversity)

Motivation for Quantitative Modeling in Ecology



Goal:  Predict observed patterns of species 
abundance and distribution based on a 
dynamical model prescribing interactions 
among the individuals of the coexisting 
species in a given area.  

Central method:  Specify rates of birth, 
death, migration, and speciation for a master 
equation where allowed abundances are the 
non-negative integers and the timing of 
demographic events are stochastic.

Quantitative Modeling of Community Ecology



The Appearance of Hypergeometric Functions

Univariate master equations with birth and death 
rates that are polynomial in the number of 

individuals yield stationary distributions with a 
normalization given by a hypergeometric function.

Adrienne Kemp (1968)



J − Community size > 10, 000 individuals

2F1
that depends on
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Abstract

We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters
a; b; c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner,
Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider
a few examples of 3F2 functions of unit argument, to explain which di!culties arise in these cases, when
standard integrals or di"erential equations are not available.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Gauss hypergeometric function (see [1, chap. 15, 2, 30])

2F1

(

a; b

c
; z

)

= 1 +
ab
c
z +

a(a+ 1)b(b+ 1)
c(c + 1)2!

z2 + · · ·=
∞
∑

n=0

(a)n(b)n
(c)nn!

zn; (1)

where Pochhammer’s symbol (a)n is de#ned by

(a)n =
!(a+ n)
!(a)

= (−1)nn!
(

−a

n

)

; (2)

and the in#nite series in (1) is de#ned for |z|¡ 1 and c #= 0;−1;−2; : : : .
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Dear Professor Temme, 

In the course of my research, I came across your 2003 paper "Large parameter cases of the Gauss hypergeometric
function."  If you have any suggestions on my current problem, they would be greatly appreciated.

I am attempting to find an asymptotic expansion of the Gauss hypergeometric function, 
_2F_1( \alpha - \lambda, \beta + m \lambda, \gamma + n \lambda; z ), 
for large \lambda and generic m, n, where all parameters are real valued.  Is this a known case?

Thanks you very much for considering this, 
Andrew

-----------------------------------------------------
The University of Texas at Austin
Section of Integrative Biology (BIO 223)
1 University Station C0930
Austin, TX 78712
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Dear Andrew,

this is certainly not a known case; I will see what can be said about this. Are m and n positive? Perhaps integers?
Also the value of the ratio m/n may be important. And is z < 1?

With best regards,

  Nico.

[Quoted text hidden]
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Two-Species Phenomenological Niche Theory

Criteria for a Stable Coexisting Fixed Point:

dn1

dt
= n1(r1 − a11n1 − a12n2)

dn2

dt
= n2(r2 − a22n2 − a21n1)

ri − intrinsic growth rate
aij − competition strength

r2
a12

a22
< r1

r1
a21

a11
< r2

Volterra-Lotka Equations:
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Diversity requires 
species asymmetries.

Criteria for a Stable Coexisting Fixed Point:



Consumer-Resource Niche Theory

Diversity requires species asymmetries.

The number of species at equilibrium is 
equal to the number of limiting 
resources.
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THE INFLUENCE OF BIOLOGICALLY CONDITIONED 

MEDIA ON THE GROWTH OF A MIXED POPULATION 

OF PARAMECIUM CAUDATUM AND P. AURELIA 

BY G. F. GAUSE, 0. K. NASTUKOVA AND W. W. ALPATOV. 

(Zoological Institute, Moscow University.) 

(With six Figures in the Text.) 

I. INTRODUCTION. 

THE displacing of one species by another is apparently connected with the 

advantages belonging to one of the competitors. In other terms one of them 

is relatively better adapted to the habitat. The problem of relative adaptation 

has been recently analysed theoretically by Fisher (4), but in spite of its 

general interest it has hitherto been very insufficiently investigated on concrete 

biological examples. 
The present paper is an account of the investigation on relative adaptation 

in two species of Infusoria-Paramecium caudatum and P. aurelia-under 

different conditions and at different stages of population growth. The case of 

two similar species simplifies the analysis of certain general regularities of 

competition in comparison with the study of similar races belonging to the 

same species. 
Certain interesting observations showing the dependence of the relative 

adaptation of two species of animals on environmental conditions have recently 

appeared in ecological literature. For instance, Beauchamp and Ullyott (3) 

have shown that when two species of Planaria in the English Lake District 

occur in competition with one another, temperature is the factor which governs 

the relative success and efficiency of the two species. Timofeeff-Ressovsky (9), 
dealing with the two species of fruit-fly Drosophila, has arrived at the same 

conclusions. We have studied in this paper the action of biologically con- 

ditioned media, containing waste products of the organisms that have lived in 

them before. 
We had to deal with the influence of homotypic and heterotypic con- 

ditioning (produced by organisms of the same and of a different species) on 

the growth of a mixed population. As Woodruff (10) showed in his classical 

paper, heterotypic conditioning in certain cases has much less influence on 

the rate of reproduction of Infusoria than homotypic conditioning. In the 

papers which have appeared since, the question of species specificity of the 

conditioning has not attracted the attention it deserves-as Allee (1) has 

1934
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Figs. 1, 2, 3 and 4 show graphically the changes in the populations. One 
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on the seventh day. The maximal level attained remains invariable up to 

about the tenth day, and decline of the population only begins later on. 
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Neutral Theory

Speciation and extinction events 
balance over evolutionary time 
scales to maintain species 
diversity despite an incessant 
turnover in species composition.  

This mechanism for maintaining 
diversity does not require 
species asymmetries, and 
neutral theory assumes that 
birth and death rates are 
independent of species identity.



50 hectares
∼ 21, 000 canopy trees
∼ 225 species



50 hectares
∼ 21, 000 canopy trees
∼ 225 species

Could there be 225 limiting resources for canopy trees?



Neutral Theory Extends the Moran Model

Transition Rates for Each of the Symmetric Species

gn =
J − n

J

(
n

J − 1

)

rn =
n

J

(
J − n

J − 1

)

Marginal Dynamics Given by a Univariate Master Equation

dPn

dt
= gn−1Pn−1 + rn+1Pn+1 − (gn + rn)Pn

, probability of gain

, probability of loss

Rate of gain

Rate of reduction



Small
Local Island Community

Large
Mainland Community

Local Community Dynamics
for Any Given Species



Local Community Dynamics
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Relative abundance

Small
Local Island Community

x ∈ (0, 1)
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non-negative 

integer 
number of 
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Small
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A 
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integer 
number of 
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Migration Probability
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Neutral Theory

conservation of community size. One can show that the system is
guaranteed to reach the stationary solution (2) in the infinite time
limit14.
The frequency of species containing n individuals is given by:

fn ¼
XS

k¼1

Ik ð3Þ

where S is the total number of species and the indicator I k is a
random variable which takes the value 1 with probability Pn,k and 0
with probability (1 2 Pn,k). Thus the average number of species
containing n individuals is given by:

kfnl¼
XS

k¼1

Pn;k ð4Þ

The RSA relationship we seek to derive is the dependence of kfnl
on n.
Let a community consist of species with bn;k ; bn and dn;k ; dn

being independent of k (the species are assumed to be demographi-
cally identical).
From equation (4), it follows that kfnl is simply proportional to

Pn, leading to:

kfnl¼ SP0

Yn21

i¼0

bi
diþ1

ð5Þ

We consider a metacommunity in which the probability d that an
individual dies and the probability b that an individual gives birth to
an offspring are independent of the population of the species to
which it belongs (density-independent case), that is, bn ¼ bn and
dn ¼ dnðn. 0Þ: Speciation may be introduced by ascribing a non-
zero probability of the appearance of an individual of a new species,
that is, b0 ¼ v– 0: Substituting the expressions into equation (5),

one obtains the celebrated Fisher log series15:

kfM
n l¼ SMP0

b0b1…bn21

d1d2…dn
¼ v

xn

n
ð6Þ

where M refers to the metacommunity, x ¼ b/d and v¼ SMP0v=b is
the biodiversity parameter (also called Fisher’s a). We follow the
notation of Hubbell2 in this paper. Note that x represents the ratio of
effective per capita birth rate to the death rate arising from a variety
of causes such as birth, death, immigration and emigration. Note
that in the absence of speciation, b0 ¼ v¼ v¼ 0; and, in equili-
brium, there are no individuals in the metacommunity. When one
introduces speciation, x has to be less than 1 to maintain a finite
metacommunity size JM ¼P

nnkfnl¼ vx=12 x:
We turn now to the case of a local community of size Jundergoing

births and deaths accompanied by a steady immigration of indi-
viduals from the surrounding metacommunity. When the local
community is semi-isolated from the metacommunity, one may
introduce an immigration rate m, which is the probability of
immigration from the metacommunity to the local community.
For constant m (independent of species), immigrants belonging to
the more abundant species in the metacommunity will arrive in the
local community more frequently than those of rarer species.

Our central result (see Box 1 for a derivation) is an analytic
expression for the RSA of the local community:

kfnl¼ v
J!

n!ðJ2 nÞ!
GðgÞ

GðJþ gÞ

ðg

0

Gðnþ yÞ
Gð1þ yÞ

GðJ2 nþ g2 yÞ
Gðg2 yÞ

expð2yv=gÞdy ð7Þ

where GðzÞ ¼
Ð1
0 t

z21e2tdt which is equal to (z 2 1)! for integer z

and g¼ mðJ21Þ
12m : As expected, kfnl is zero when n exceeds J. The

computer calculations in Hubbell’s book2 as well as those more
recently carried out by McGill3 were aimed at estimating kfnl by
simulating the processes of birth, death and immigration.

One can evaluate the integral in equation (7) numerically for a
given set of parameters: J, v andm. For large values of n, the integral
can be evaluated very accurately and efficiently using the method of
steepest descent16. Any given RSA data set contains information
about the local community size, J, and the total number of species in
the local community, SL ¼

PJ
k¼1kfkl: Thus there is just one free

fitting parameter at one’s disposal.
McGill asserted3 that the lognormal distribution is a more

parsimonious null hypothesis than the neutral theory, a suggestion
which is not borne out by our reanalysis of the Barro Colorado
Island (BCI) data. We focus only on the BCI data set because, as
pointed out by McGill3, the North American Breeding Bird Survey
data are not as exhaustively sampled as the BCI data set, resulting in
fewer individuals and species in any given year in a given location.
Furthermore, the McGill analysis seems to rely on adding the bird
counts over five years at the same sampling locations even though
these data sets are not independent.

Figure 1 shows a Preston-like binning5 of the BCI data4 and the fit
of our analytic expression with one free parameter (11 degrees of
freedom) along with a lognormal having three free parameters (9
degrees of freedom). Standard chi-square analysis17 yields values of
x2 ¼ 3.20 for the neutral theory and 3.89 for the lognormal. The
probabilities of such good agreement arising by chance are 1.23%
and 8.14% for the neutral theory and lognormal fits, respectively.
Thus one obtains a better fit of the data with the analytical solution
to the neutral theory to BCI than with the lognormal, even though
there are two fewer free parameters. McGill’s analysis3 on the BCI
data set was based on computer simulations in which there were
difficulties in knowing when to stop the simulations, that is,
when equilibrium had been reached. It is unclear whether
McGill averaged over an ensemble of runs, which is essential to
obtain repeatable and reliable results from simulations of stochastic

Figure 1 Data on tree species abundances in 50-hectare plot of tropical forest in
Barro Colorado Island, Panama4. The total number of trees.10 cm DBH in the data set is

21,457 and the number of distinct species is 225. The red bars are observed numbers of

species binned into log2 abundance categories, following Preston’s method
5. The first

histogram bar represents kf 1l/2, the second bar kf 1l/2 þ kf 2l/2, the third bar
kf 2l/2 þ kf 3l þ kf 4l/2 the fourth bar kf 4l/2 þ kf 5l þ kf 6l þ kf 7l þ kf 8l/2
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The theory of island biogeography1 asserts that an island or a
local community approaches an equilibrium species richness as a
result of the interplay between the immigration of species from
themuch larger metacommunity source area and local extinction
of species on the island (local community). Hubbell2 generalized
this neutral theory to explore the expected steady-state distri-
bution of relative species abundance (RSA) in the local commu-
nity under restricted immigration. Here we present a theoretical
framework for the unified neutral theory of biodiversity2 and an
analytical solution for the distribution of the RSA both in the
metacommunity (Fisher’s log series) and in the local community,
where there are fewer rare species. Rare species are more extinc-
tion-prone, and once they go locally extinct, they take longer to
re-immigrate than do common species. Contrary to recent
assertions3, we show that the analytical solution provides a better
fit, with fewer free parameters, to the RSA distribution of tree
species on Barro Colorado Island, Panama4, than the lognormal
distribution5,6.

The neutral theory in ecology2,7 seeks to capture the influence of
speciation, extinction, dispersal and ecological drift on the RSA
under the assumption that all species are demographically alike on a
per capita basis. This assumption, while only an approximation8–10,
appears to provide a useful description of an ecological community
on some spatial and temporal scales2,7. More significantly, it allows
the development of a tractable null theory for testing hypotheses
about community assembly rules. However, until now, there has
been no analytical derivation of the expected equilibrium distri-
bution of RSA in the local community, and fits to the theory have
required simulations2 with associated problems of convergence
times, unspecified stopping rules, and precision3.

The dynamics of the population of a given species is governed by
generalized birth and death events (including speciation, immigra-
tion and emigration). Let bn,k and dn,k represent the probabilities of
birth and death, respectively, in the kth species with n individuals
with b21;k ¼ d0;k ¼ 0: Let pn,k(t) denote the probability that the kth
species contains n individuals at time t. In the simplest scenario, the
time evolution of pn,k(t) is regulated by the master equation11–13

dpn;kðtÞ
dt

¼ pnþ1;kðtÞdnþ1;k þ pn21;kðtÞbn21;k 2 pn;kðtÞðbn;k

þ dn;kÞ ð1Þ
which leads to the steady-state or equilibrium solution, denoted by
P:

Pn;k ¼ P0;k

Yn21

i¼0

bi;k
diþ1;k

ð2Þ

for n . 0 and where P0,k can be deduced from the normaliza-
tion condition

P
nPn;k ¼ 1: Note that there is no requirement of

Box 1
Derivation of the RSA of the local community

We study the dynamics within a local community following the
mathematical framework of McKane et al.27, who studied a mean-field
stochastic model for species-rich communities. In our context, the
dynamical rules2 governing the stochastic processes in the
community are:
(1) With probability 1–m, pick two individuals at random from the

local community. If they belong to the same species, no action is
taken.Otherwise, with equal probability, replace one of the individuals
with the offspring of the other. In other words, the two individuals serve
as candidates for death and parenthood.
(2) With probability m, pick one individual at random from the local

community. Replace it by a new individual chosen with a probability
proportional to the abundance of its species in the metacommunity.
This corresponds to the death of the chosen individual in the local
community followed by the arrival of an immigrant from the
metacommunity. Note that the sole mechanism for replenishing
species in the local community is immigration from the
metacommunity, which for the purposes of local community dynamics
is treated as a permanent source pool of species, as in the theory of
island biogeography1.
These rules are encapsulated in the following expressions for effective

birth and death rates for the kth species:

bn;k ¼ ð12mÞn
J

J2 n

J21
þm

mk
JM

12
n

J

! "
ð8Þ

dn;k ¼ ð12mÞn
J

J2 n

J21
þm 12

mk
JM

# $
n

J
ð9Þ

where mk is the abundance of the kth species in the metacommunity
and JM is the total population of the metacommunity.
The right hand side of equation (8) consists of two terms. The first

corresponds to rule (1) with a birth in the kth species accompanied by a
death elsewhere in the local community. The second term accounts
for an increase of the population of the kth species due to immigration
from the metacommunity. The immigration is, of course, proportional
to the relative abundance mk/JM of the kth species in the
metacommunity. Equation (9) follows in a similar manner. Note that
bn,k and dn,k not only depend on the species label k but also are no
longer simply proportional to n.
Substituting equation (8) and (9) into equation (2), one obtains the

expression27:

Pn;k ¼
J!

n!ðJ2 nÞ!
GðnþlkÞ
GðlkÞ

Gðck 2 nÞ
Gðck 2 JÞ

Gðlk þck 2 JÞ
Gðlk þckÞ

; FðmkÞ ð10Þ

where

lk ¼
m

ð12mÞ ðJ21Þ mk
JM

ð11Þ

and

ck ¼ Jþ m

ð12mÞ ðJ2 1Þ 12
mk
JM

# $
ð12Þ

Note that the k dependence in equation (10) enters only through mk.
On substituting equation (10) into equation (4), one obtains:

kfnl¼
XSM

k¼1

FðmkÞ ¼ SMkFðmkÞl¼ SM

ð
dmr̂ðmÞFðmÞ ð13Þ

Here r̂ðmÞdm is the probability distribution of the mean populations of
the species in the metacommunity and has the form of the familiar Fisher
log series (in a singularity-free description15,28):

r̂ðmÞdm¼ 1

Gð1Þd1 expð2m=dÞm121dm ð14Þ

where d ¼ x/(1 2 x). Substituting equation (14) into the integral in
equation (13), taking the limits SM ! 1 and 1 ! 0 with v ¼ SM1
approaching a finite value15,28 and on defining y ¼ m g

dv ; one can obtain
our central result, equation (7).
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result of the interplay between the immigration of species from
themuch larger metacommunity source area and local extinction
of species on the island (local community). Hubbell2 generalized
this neutral theory to explore the expected steady-state distri-
bution of relative species abundance (RSA) in the local commu-
nity under restricted immigration. Here we present a theoretical
framework for the unified neutral theory of biodiversity2 and an
analytical solution for the distribution of the RSA both in the
metacommunity (Fisher’s log series) and in the local community,
where there are fewer rare species. Rare species are more extinc-
tion-prone, and once they go locally extinct, they take longer to
re-immigrate than do common species. Contrary to recent
assertions3, we show that the analytical solution provides a better
fit, with fewer free parameters, to the RSA distribution of tree
species on Barro Colorado Island, Panama4, than the lognormal
distribution5,6.

The neutral theory in ecology2,7 seeks to capture the influence of
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per capita basis. This assumption, while only an approximation8–10,
appears to provide a useful description of an ecological community
on some spatial and temporal scales2,7. More significantly, it allows
the development of a tractable null theory for testing hypotheses
about community assembly rules. However, until now, there has
been no analytical derivation of the expected equilibrium distri-
bution of RSA in the local community, and fits to the theory have
required simulations2 with associated problems of convergence
times, unspecified stopping rules, and precision3.
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generalized birth and death events (including speciation, immigra-
tion and emigration). Let bn,k and dn,k represent the probabilities of
birth and death, respectively, in the kth species with n individuals
with b21;k ¼ d0;k ¼ 0: Let pn,k(t) denote the probability that the kth
species contains n individuals at time t. In the simplest scenario, the
time evolution of pn,k(t) is regulated by the master equation11–13
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with the offspring of the other. In other words, the two individuals serve
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metacommunity. Note that the sole mechanism for replenishing
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where mk is the abundance of the kth species in the metacommunity
and JM is the total population of the metacommunity.
The right hand side of equation (8) consists of two terms. The first

corresponds to rule (1) with a birth in the kth species accompanied by a
death elsewhere in the local community. The second term accounts
for an increase of the population of the kth species due to immigration
from the metacommunity. The immigration is, of course, proportional
to the relative abundance mk/JM of the kth species in the
metacommunity. Equation (9) follows in a similar manner. Note that
bn,k and dn,k not only depend on the species label k but also are no
longer simply proportional to n.
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Objectives

Allow for asymmetries in demographic rates as the 
first step towards unifying niche and neutral theory.

Retain neutral theory as the symmetric limit.

Fit stationary distributions that emerge from the 
asymmetric theory to data and test for departures 
from neutrality.
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A Nearly Neutral Local Community
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Statement of the ProblemAppendix C.2. Expanding 2F1(α− JL, α + λ; α + 1− ξ; η)

Appendix C.2.1. Notation
We write

a = α− JL, b = α + β + µJL, c = α + γ + ρJL, (C.2.1.1)

with α = 0, 1, 2 and JL a positive integer. In terms of w, m, x, and mo we
have

β = − mx

1−m + x(w − 1)
, µ = −β, (C.2.1.2)

and

γ =
1− xwmo + x(w − 1)

1− wmo + x(w − 1)
, ρ = −γ. (C.2.1.3)

The asymptotic behaviour will be considered of the Gauss hypergeometric
function

F = 2F1(a, b; c; η), (C.2.1.4)

for large–JL, where

η = w
1−m + x(w − 1)

1− wmo + x(w − 1)
, (C.2.1.5)

and
w ∈ (0,∞), x,m, mo ∈ (0, 1). (C.2.1.6)

Appendix C.2.2. The neutral case: w = 1, m = mo

In this case

η = 1, µ =
mx

1−m
, ρ = −1−mx

1−m
. (C.2.2.1)

The exact relation

2F1(−n, b; c; 1) =
(c− b)n

(c)n
=

Γ(c)Γ(c− b + n)

Γ(c + n)Γ(c− b)
, n = 0, 1, 2, . . . , (C.2.2.2)

can be used, together with the asymptotic estimate of the ratio of gamma
functions

Γ(x + n)

Γ(y + n)
= nx−y (1 +O(1/n)) , n→∞. (C.2.2.3)
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Critical Values

Appendix C.2.3. Critical values
Considered as functions of w, µ and ρ become unbounded at w = wcµ

and w = wcρ , respectively, where

wcµ =
m + x− 1

x
, wcρ =

1− x

mo − x
. (C.2.3.1)

The case w → wcµ

In this case η becomes small, b becomes unbounded, but the product bη
remains finite. The kth term of the standard power series of F becomes (see
also (C.2.2.3))

(a)k(b)k

k!(c)k
ηk ∼ (a)k

k!(c0)k
zk, (C.2.3.2)

with

z = lim
w→wcµ

bη = u + vJL, c0 = lim
w→wcµ

c = γ0 + ρ0JL, (C.2.3.3)

where

u = − mx(m + x− 1)

mx−mo(m + x− 1)
, v = −u, (C.2.3.4)

and

γ0 =
x(m(1−mo) + mo(1− x))

mx−mo(m + x− 1)
, ρ0 = −γ0. (C.2.3.5)

It follows that F approaches a confluent hypergeometric function:

2F1(a, b; c; η)→ 1F1(a; c0; z). (C.2.3.6)

Further action is needed to obtain an asymptotic approximation of the 1F1–
function.

The case w → wcρ

In this case η and c become unbounded, but the ratio η/c remains finite.
The kth term of the standard power series of F becomes

(a)k(b)k

k!(c)k
ηk ∼ (a)k(b0)k

k! zk
, (C.2.3.7)

with

z = lim
w→wcρ

c/η = u + vJL, b0 = lim
w→wcρ

b = β0 + µ0JL, (C.2.3.8)
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28where

u =
mo(mo − x)(1− x)

mx−mo(m + x− 1)
, v = −u, (C.2.3.9)

and

β0 = − mx(mo − x)

mx−mo(m + x− 1)
, µ0 = −β0. (C.2.3.10)

It follows that F approaches a 2F0 hypergeometric function

2F1(a, b; c; η)→ 2F0(a, b0;−; 1/z) =
−a∑

k=0

(a)k(b0)k

k! zk
, (C.2.3.11)

because a is a negative integer. This function can be expressed in terms of
the Kummer U–function

2F0(a, b0;−; 1/z) = (−z)aU(a, 1 + a− b0,−z). (C.2.3.12)

Further action is needed to obtain an asymptotic approximation of the U–
function.

Appendix C.2.4. Expansion A
An integral representation is

2F1(a, b; c; η) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tη)−a dt, (C.2.4.1)

valid for c > b > 0, η < 1. This integral can be used when ρ > µ > 0, η < 1.
As an example, consider

r = 3, m = 1
2 , mo = 1

2 , x = 1
3 . (C.2.4.2)

This gives

b = α + 1
11(JL − 1), c = α + 5(JL − 1), µ = 1

11 , ρ = 5, η = −11.
(C.2.4.3)

In this case the integrand becomes small at t = 0 and t = 1, and there is
a maximum of the integrand at t = t1, with t1 ∈ (0, 1). This point gives the
main contribution.

Write (C.2.4.1) as

2F1(a, b; c; η) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tα+β−1(1− t)γ−β−1(1− tη)−αe−JLφ(t) dt,

(C.2.4.4)
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3 . (C.2.4.2)

This gives

b = α + 1
11(JL − 1), c = α + 5(JL − 1), µ = 1

11 , ρ = 5, η = −11.
(C.2.4.3)

In this case the integrand becomes small at t = 0 and t = 1, and there is
a maximum of the integrand at t = t1, with t1 ∈ (0, 1). This point gives the
main contribution.

Write (C.2.4.1) as

2F1(a, b; c; η) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tα+β−1(1− t)γ−β−1(1− tη)−αe−JLφ(t) dt,

(C.2.4.4)
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Expansion A



The Remaining Cases
Expansion B

Expansion C

The saddle points t0 and t1 are the zeros of φ′(t). For the example (??) this
gives

t0 = −0.01169 · · · , t1 = 0.1178 · · · , (C.2.4.6)

and
φ(t1) = −0.02136 · · · , φ′′(t1) = 35.83 · · · . (C.2.4.7)

An asymptotic approximation follows from the substitution

φ(t)− φ(t1) = 1
2φ

′′(t1)s
2, sign(t− t1) = sign(s), (C.2.4.8)

which gives

2F1(a, b; c; η) =
Γ(c)

Γ(b)Γ(c− b)
e−JLφ(t1)

∫ ∞

−∞
f(s)e−

1
2JLφ′′(t1)s2

ds, (C.2.4.9)

where

f(s) = tα+β−1(1− t)γ−β−1(1− tη)−α dt

ds
. (C.2.4.10)

Because locally at t = t1 (or s = 0), t = t1 + s +O(s2), we have dt/ds = 1 at
s = 0, and

f(0) = tα+β−1
1 (1− t1)

γ−β−1(1− t1η)−α. (C.2.4.11)

This gives the first order approximation

2F1(a, b; c; η) ∼ Γ(c)

Γ(b)Γ(c− b)
e−JLφ(t1)f(0)

∫ ∞

−∞
e−

1
2JLφ′′(t1)s2

ds, (C.2.4.12)

that is

2F1(a, b; c; η) ∼ Γ(c)

Γ(b)Γ(c− b)
e−JLφ(t1)f(0)

√
2π

JLφ′′(t1)
, JL →∞.

(C.2.4.13)

C.2.5. Expansion B
Another integral representation is

2F1(a, b; c; η) =
Γ(1 + b− c)

Γ(b)Γ(1− c)

∫ ∞

0

tb−1(t + 1)c−b−1(1 + tη)−a dt, (C.2.5.1)
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which is only valid for a = 0,−1,−2, . . . and c < a + 1. It can be verified
by expanding (1 + tη)−a in powers of η. We have µ > 0 and ρ < −1, and
because

η = − mx

(1−mox)

ρ

µ
, (C.2.5.2)

we see that η ≥ 0.
As an example, consider

r = 1
3 , m = 1

2 , mo = 1
2 , x = 1

3 . (C.2.5.3)

This gives

b = α + 3(JL − 1), c = α + 15
13(1− JL), µ = 3, ρ = −15

13 , η = 1
13 .

(C.2.5.4)
Write (??) as

2F1(a, b; c; η) =
Γ(1 + b− c)

Γ(b)Γ(1− c)

∫ ∞

0

tα+β−1(t + 1)γ−β−1(1 + tη)−αe−JLψ(t) dt,

(C.2.5.5)
where

ψ(t) = −µ ln(t)− (ρ− µ) ln(t + 1)− ln(1 + tη). (C.2.5.6)

The saddle points t0 and t1 are for the example (??)

t0 = −74.89 · · · , t1 = 3.385 · · · , (C.2.5.7)

and
ψ(t1) = 2.251 · · · , ψ′′(t1) = 0.04951 · · · . (C.2.5.8)

An asymptotic approximation follows from the substitution

ψ(t)− ψ(t1) = 1
2ψ

′′(t1)s
2, sign(t− t1) = sign(s), (C.2.5.9)

which gives

2F1(a, b; c; η) =
Γ(1 + b− c)

Γ(b)Γ(1− c)
e−JLψ(t1)

∫ ∞

−∞
g(s)e−

1
2JLψ′′(t1)s2

ds, (C.2.5.10)

where

g(s) = tα+β−1(1 + t)γ−β−1(1 + tη)−α dt

ds
. (C.2.5.11)
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which gives

2F1(a, b; c; η) =
Γ(1 + b− c)

Γ(b)Γ(1− c)
e−JLψ(t1)

∫ ∞

−∞
g(s)e−

1
2JLψ′′(t1)s2

ds, (C.2.5.10)

where

g(s) = tα+β−1(1 + t)γ−β−1(1 + tη)−α dt

ds
. (C.2.5.11)

Because locally at t = t1 (or s = 0), t = t1 + s +O(s2), we have dt/ds = 1 at
s = 0, and

g(0) = tα+β−1
1 (1 + t1)

γ−β−1(1 + t1η)−α. (C.2.5.12)

This gives the first order approximation

2F1(a, b; c; η) ∼ Γ(1 + b− c)

Γ(b)Γ(1− c)
e−JLψ(t1)g(0)

∫ ∞

−∞
e−

1
2JLψ′′(t1)s2

ds, (C.2.5.13)

that is

2F1(a, b; c; η) ∼ Γ(1 + b− c)

Γ(b)Γ(1− c)
e−JLψ(t1)g(0)

√
2π

JLψ′′(t1)
, JL →∞.

(C.2.5.14)

Appendix C.2.6. Expansion C
If µ < ρ < −1 and η < 0, apply the transformation

2F1(a, b; c; η) = (1− η′)a
2F1(a, b′; c; η′), (C.2.6.1)

where

b′ = c− b = β′ + µ′JL, β′ = γ − β, µ′ = ρ− µ, η′ =
η

η − 1
. (C.2.6.2)

Now,
µ′ > 0, ρ < −1, η′ > 0, (C.2.6.3)

and it follows that Expansion B, §Appendix C.2.5, applies to the Gauss
function on the right-hand side of (C.2.6.1).
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so use Expansion B.



The Remaining Cases

1. wcµ , wcρ < 0

For all w > 0, we have µ > 0, ρ < −1, and η > 0, so use Expansion B.

2. wcµ > 0, wcρ < 0

For all wcµ > w > 0, we have µ < −1, ρ < −1, and η < 0, so use Expansion C.

For all w > wcµ , we have µ > 0, ρ < −1, and η > 0, so use Expansion B.

3. wcµ < 0, wcρ > 0

For all wcρ > w > 0, we have µ > 0, ρ < −1, and η > 0, so use Expansion B.

For all w > wcρ , we have ρ > µ > 0 and η < 0, so use Expansion A.

4. wcρ > wcµ > 0

For all wcµ > w > 0, we have µ < −1, ρ < −1, and η < 0, so use Expansion C.

For all wcρ > w > wcµ , we have µ > 0, ρ < −1, and η > 0, so use Expansion B.

For all w > wcρ , we have ρ > µ > 0 and η < 0, so use Expansion A.

C.3 Expanding 2F1(1− JM , 1; 2− ξM ; ηM)

C.3.1 Notation

We write
a = 1− JM , b = 1, c = σ + τJM , (C.3.1.1)

with

σ = 1 +
1

1− wνo
, τ = − 1

1− wνo
. (C.3.1.2)

The asymptotic behaviour will be considered of the Gauss hypergeometric function

F = 2F1(a, b; c; ηM) (C.3.1.3)

for large–JM , where

ηM =
w(1− ν)

1− wνo
, (C.3.1.4)

and
w ∈ (0,∞), ν, νo ∈ (0, 1). (C.3.1.5)

C.3.2 The neutral case: w = 1, ν = νo

In this case ηM = 1 and (C.2.2.2) can be used to get an exact result in terms of gamma functions.

C.3.3 The critical case wcνo
= 1/νo

In this case we have (see also §C.2.3)

2F1(a, b; c; ηM)→ 2F0(a, b;−; 1/z) = (−z)aU(a, 1 + a− b,−z), (C.3.3.1)

where

z = −(JM − 1)νo

1− ν
. (C.3.3.2)
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Additional Work for the Mainland Model

Expanding 2F1(1− JM , 1; 2− ξM ; ηM ) and 3F2(1− JM , 1, 1; 2, 2− ξM ; ηM ).



Summary

For a problem in ecological modeling, we have 
derived a great number of expansions of 
hypergeometric functions by identifying critical 
parameter values and enumerating special cases.

In a few cases, the asymptotics can only be 
described by using their limits in the form of 
confluent hypergeometric functions.

Future research is needed to develop uniform 
transitions among the great number of special cases.




