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Motivation for Quantitative Modeling in Ecology

Current extinction rates are ~1000 times higher
than the expected background.

At this rate, ~50% of present-day species will be
extinct by 2100.

(UN Convention on Biological Diversity)



Quantitative Modeling of Community Ecology

e Goal: Predict observed patterns of species
abundance and distribution based on a
dynamical model prescribing interactions
among the individuals of the coexisting
species in a given area.

e Central method: Specify rates of birth,
death, migration, and speciation for a master
equation where allowed abundances are the
non-negative integers and the timing of
demographic events are stochastic.



The Appearance of Hypergeometric Functions

Univariate master equations with birth and death
rates that are polynomial in the number of
individuals yield stationary distributions with a
normalization given by a hypergeometric function.

Adrienne Kemp (1968)



o F1
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Dear Professor Temme,

In the course of my research, | came across your 2003 paper "Large parameter cases of the Gauss hypergeometric
function." If you have any suggestions on my current problem, they would be greatly appreciated.

| am attempting to find an asymptotic expansion of the Gauss hypergeometric function,
_2F _1( \alpha - \lambda, \beta + m \lambda, \gamma + n \lambda; z ),
for large \lambda and generic m, n, where all parameters are real valued. Is this a known case?

Thanks you very much for considering this,
Andrew



Dear Andrew,

this is certainly not a known case; | will see what can be said about this. Are m and n positive? Perhaps integers?
Also the value of the ratio m/n may be important. And is z < 1?

With best regards,

Nico.
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e Niche and Neutral Coexistence Mechanisms



Two-Species Phenomenological Niche Theory

Volterra-Lotka Equations:
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Diversity requires
species asymmetries.



Consumer-Resource Niche Theory

e Diversity requires species asymmetries.

e The number of species at equilibrium is
equal to the number of limiting
resources.



TH

Origins of Niche Theory

(£ INFLUENCE OF BIOLOGICALLY CONDITIONED

MEDIA ON THE GROWTH OF A MIXED POPULATION
OF PARAMECIUM CAUDATUM AND P. AURELIA

By G. F. GAUSE, 0. K. NASTUKOVA axp W. W. ALPATOV.

(Zoological Institute, Moscow Unaversity.)

1934
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Eventual
Extinction?



Neutral Theory

e Speciation and extinction events
BIODIVERSITY AND BIOGEOGRAPHY balance over evolutionary time
scales to maintain species
diversity despite an incessant
turnover in species composition.

STEPHEN P, HUBBELL

e This mechanism for maintaining
diversity does not require
species asymmetries, and
neutral theory assumes that
birth and death rates are
independent of species identity.
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Could there be 225 limiting resources for canopy trees?



Neutral Theory Extends the Moran Model

Transition Rates for Each of the Symmetric Species

= . e Rate of gain
gn — 7 71 Jd

n(J=n Rate of reducti
I = —
J J—]_ ate Or redauction

Marginal Dynamics Given by a Univariate Master Equation

dP,
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Neutral Theory
letters to nature

Neutral theory and relative species
abundance in ecology 2003

Igor Volkov', Jayanth R. Banavar', Stephen P. Hubbell*’
& Amos Maritan*”
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e Breaking the Symmetry of Neutral Theory



Objectives

e Allow for asymmetries in demographic rates as the
first step towards unifying niche and neutral theory.

e Retain neutral theory as the symmetric limit.
e Fit stationary distributions that emerge from the

asymmetric theory to data and test for departures
from neutrality.



Extending the Moran Model

Transition Rates

n; win; Rate of gaining species j
SO wen, —w; ) after losing species i

Community Dynamics from a Multivariate Master Equation

dP~
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A Nearly Neutral Local Community

Stationary Distribution for the Asymmetric Species

x 1({J\ ,BA+n&—n
Py = oF1(—Jr, A1 —&;n) 1(75)77 ( ¢~ )

. B(A,¢)
Moments
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e Asymptotic Expansions of Hypergeometric Functions



Statement of the Problem

We write
a=a—J, b=a+B+ut,, c=a+v+pJg,

with o = 0, 1,2 and J;, a positive integer. In terms of w, m, x, and m, we

have
mx

B:_l—m—l—x(w—l)’ p==p

and
1 — xwm, + x(w — 1)

L —wm,+x(w—1)"

Y = p=—7.

The asymptotic behaviour will be considered of the Gauss hypergeometric
function

F' = 9Fi(a,b;c;n),

for large—J;,, where
l—m+z(w—1)

1 —wmy+z(w—1)

nN=w

and
w € (0,00), x,m,m, € (0,1).



Critical Values

B m 1 —zwm,+ax(w—1)
Cl-m+z(w-1) =

H 1 —wm,+ x(w—1)

Considered as functions of w, p and p become unbounded at w = w,,
and w = w,,, respectively, where
m-+x—1 Il —=x

wC: , wC:
X

m, — I



The Case of

wﬁwcu

In this case n becomes small, b becomes unbounded, but the product bn
remains finite. The kth term of the standard power series of F' becomes

(a)x
no~ z,

/C'(C)k /C'(Co)k

with
z= lim m=u+vJy,, co= lim c=yy+ poJr,
W—Wey, W—Wc,

where

mx(m +x — 1)

U= — . U= —u,
mx — my(m +x — 1)

and

z(m(l —m,) + my(l — x))

70 = mz —mg(m+x—1) Po = —"0-

It follows that F' approaches a confluent hypergeometric function:
2 F1(a, b;¢;m) — 1F1(a; co; 2).

Further action is needed to obtain an asymptotic approximation of the | Fi—
function.



The Case of

wﬁwcp

In this case n and ¢ become unbounded, but the ratio n/c remains finite.
The kth term of the standard power series of F' becomes

(@O & ()b

kl(c)y ' klzk
with
z= lim ¢/m=u+vJy,, by= lim b= Gy+ poJyr,
where .
Y mo(me — z)(1 — ) =

mx — my(m +x — 1)
and : )

mx(m, — T

Bo = — o = —Do-

mx —my(m+x — 1)’
It follows that F' approaches a 5Fy hypergeometric function

— (a)x(b
2 F1(a, b;¢5m) — 2Fo(a, bo; —;1/2) = Z ( Zﬁ(z,f)k,

k=0

because a is a negative integer. This function can be expressed in terms of
the Kummer U—function

o Fo(a,by; —;1/2) = (—2)*Ul(a, 1 + a — by, —2).

Further action is needed to obtain an asymptotic approximation of the U—
function.



The Remaining Cases

Expansion A

An integral representation is

F(b)l;((?— b) /O P =) (L =)

valid for ¢ > b > 0,n < 1. This integral can be used when p > u > 0,7 < 1.

2 Fi(a,b;e;m) =



The Remaining Cases

Expansion B

Another integral representation is

et e

which is only valid for a = 0,—1,—-2,... and ¢ < a + 1. It can be verified
by expanding (1 + 1)~ in powers of . We have 4 > 0 and p < —1, and
because

oFi(a,b;cm) =

B mr P
e (1 —mox) p

we see that n > 0.

Expansion C
It < p< —1andn <0, apply the transformation
2F1(a,b;em) = (1 —n')*Fi(a, b5 cn),

where
V—c—b=0+uJy, B =v—08 W=p—p, n=——

Now,
>0, p<—1, 1 >0,

so use Expansion B.



The Remaining Cases

. We,, We, <0

For all w > 0, we have u > 0, p < —1, and n > 0, so use Expansion B.

. We, >0, w, <0
For all w., > w > 0, we have u < —1, p < —1, and n < 0, so use Expansion C.
For all w > w,,, we have u > 0, p < —1, and n > 0, so use Expansion B.

W, <0, we, >0
For all w., > w > 0, we have u >0, p < —1, and n > 0, so use Expansion B.
For all w > w,,, we have p > u > 0 and i < 0, so use Expansion A.

. We, > We, >0

For all w., > w > 0, we have u < —1, p < —1, and < 0, so use Expansion C.
For all w., > w > w,,, we have u >0, p < —1, and n > 0, so use Expansion B.
For all w > w,,, we have p > 1 > 0 and n <0, so use Expansion A.



Additional Work for the Mainland Model

Expanding o F1 (1 — Jar, 1;2 — Ears ) and 3F2(1 — Jar, 1,1;2,2 — S )



Summary

e For a problem in ecological modeling, we have
derived a great number of expansions of
hypergeometric functions by identifying critical
parameter values and enumerating special cases.

e In a few cases, the asymptotics can only be
described by using their limits in the form of
confluent hypergeometric functions.

e Future research is needed to develop uniform
transitions among the great number of special cases.






