
TESTING SOFTWARE

FOR

SPECIAL FUNCTIONS

Allan MacLeod

University of the West of Scotland

Ceud Mı̀le Fàilte à Alba

Many thanks to N. I. S. T. and the U.S. Government for financial support
in attending this Conference.

20th Century

method for computing special functions:

goto

Abramowitz & Stegun

or Gradshteyn & Ryzhik

or Other

find formula

code formula

21st Century

method for computing special functions:

goto Google

enter function name

download available code in language
wanted

Hundreds of languages available.

Algol 60, Simple, IMP, Fortran 4, Algol 68, Basic, Fortran 77, Matlab, Pascal,
C, Fortran 90, Ada, C++, Java, Mathematica, Pari, Python

are the languages in which I personally have written programs.

High Quality software for special functions needs:

A deep knowledge of the underlying mathemat-
ics of the function being computed.

A deep knowledge of floating-point arithmetic,
especially the effects of overflow and underflow.

A deep knowledge of the programming language
being used and the possible compilers that might
be used.

Testing such software needs all of these and
cunning.

Two quotes from Edsger Dijkstra (ALGOL 60
and shortest-path algorithm)

Programming is one of the most diffi-
cult branches of applied mathematics:
the poorer mathematicians had better
remain pure mathematicians

Program Testing can be used to show
the presence of bugs but never to show
their absence

If Code is Perfect then No Bugs Present

has logical negation

If Bugs Found then Program Not Per-
fect

Sadly, mainly people think logic goes

If No Bugs Found then Code is Perfect

Basic Problem

Let f (x) be the function under consideration,
and F (x) the result returned by a software mod-
ule designed to compute the function.

Several aspects of testing software

1. The accuracy of the code. That is, assess
the behaviour of the function

e(x) =
f (x)− F (x)

f (x)

where we assume that x is not a zero of the
function.

2. The efficiency of the code. Exponential In-
tegral E1(x) can be computed millions of times
in ONE Birch/Swinnerton-Dyer conjecture com-
putation.

3. The robustness of the code - does it pre-
vent underflow and especially overflow. Differ-
ent languages and compilers do different things
for underflow and overflow.

4. The documentation of the code - how easy
is the code to use - especially for non-experts.

For example, the HELP facility for Excel 2010
has the following description

The n-th order modified Bessel function of
the variable x is:

Kn(x) =
p

2
in+1 [Jn(ix) + iYn(ix)]

where Jn and Yn are the J and Y Bessel
functions, respectively.

Accuracy Testing Method 1

Compare against results from higher-precision
computations.

1. How are higher-precision results computed?
If we use use same code bumped-up to higher
precision, all we are testing is numerical stabil-
ity NOT accuracy. If we use another code, how
do we know this comparison code is any good?

2. What if code being tested is already in the
highest available precision? For example, sev-
eral user environments have only one precision.

Accuracy Testing Method 2

Developed by Jim Cody at Argonne National
Lab as extension of the elefunt elementary-
function test software.

Use functional identities to test performance

Γ(2x) =
1√
π

22x−1 Γ(x) Γ(x + 1/2)

Compare LHS to RHS.

Reduce possible sources of error to lowest level.

Argument purification:

Half=0.5

Y=random

X=Y*Half

Z=X+Half

X=Z-Half

Y=X+X

Accuracy Testing Method 3

Taylor Series

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) + . . .

where the derivatives can be easily calculated
eg. error function, normal distribution function,
sine integral

If f (x) = Si(x), we have f ′(x) = sin(x)/x, and

f (n+1)(x) +
n

x
f (n)(x) =

σn(x)

x
where σ1 = cosx, σ2 = − sinx, σ3 = − cosx,
σ4 = sinx, σ5 = σ1, σ6 = σ2,

Codes for these derivatives developed by Walter
Gautschi.

Accuracy Testing Method 4

Table-based tests, based on the ideas of Liu and
Tang originally applied to elementary functions.

J0(a + h) = J0(a) + hJ ′0(a) + . . .

= J0(a)− hJ1(a) + . . .

J0(a + h) = J01 + (J02 − hJ11)− (hJ12 +RN)

where J0(a) = J01 + J02 for example, with J01

accurate to 12 bits (say) and J02 accurate to 23
bits for single precision tests. We thus get ex-
tended accuracy for these control values, which
are computed in multiple-precision beforehand.

Example 1: Normal distribution function

P (x) =
1√
2π

∫ x

−∞
exp(−t2/2) dt

P (x) =
1

2

(
1 + erf

(
x√
2

))
Use Taylor-series approach to develop tests.

Craig in 1984 published (in Journal of Quality
Technology) a code based on the identity

erf(v) ≈ 2

π

(
v

5
+

37∑
n=1

exp(−n2/25) sin(2nv/5)

n

)
for |v| ≤ 5π/2.

The tests showed very poor results in certain
regions.

DOUBLE PRECISION FUNCTION DNML(X)

DOUBLE PRECISION X,Y,S,RN,ZERO,ONE,ERF,SQRT2,PI

DATA SQRT2,ONE/1.414213562373095,1.D0/

DATA PI,ZERO/3.141592653589793,0.D0/

Y=X/SQRT2

IF(X.LT.ZERO) Y=-Y

S=ZERO

DO 1 N=1,37

RN=DFLOAT(N)

S=S+DEXP(-RN*RN/25)/N*DSIN(2*N*Y/5)

1 CONTINUE

S=S+Y/5

ERF=2*S/PI

DNML=(ONE+ERF)/2

IF(X.LT.ZERO) DNML=(ONE-ERF)/2

IF(X.LT.-8.3D0) DNML=ZERO

IF(X.GT.8.3D0) DNML=ONE

RETURN

END

Example 2: Sine Integral

Si(x) =

∫ x

0

sin t

t
dt

For large |x|, use

Si(x) =
π

2
− fi(x) cosx− gi(x) sinx x > 0,

and Si(−x) = −Si(x).

Taylor series test showed big errors in fnlib
code for large negative x. Code was, with absx=|x|,

call r9sifg (absx, f, g)
cosx = cos (absx)
si = pi2 - f*cosx - g*sin(x)
if (x.lt.0.0) si = -si

Code should be (roughly)

call r9sifg (absx, f, g)
sinx = sin (absx)
si = pi2 - f*cos(x) - g*sinx
if (x.lt.0.0) si = -si

This error pointed out in MacLeod(1996), but
code unchanged as of Sunday 27 March 2011!!!!

Example 3: Excel Functions

Statistical distribution functions in all of Excel
97, Excel 2003, Excel 2007 heavily criticized by
McCullough et al.

Excel 2010 documents described improvements
in Special Functions after discussions with ex-
ternal groups such as Nag.

No Gamma function - just ln Γ(x).

ln Γ(2x) = −0.5 lnπ + (2x− 1) ln 2 + ln Γ(x)

+ ln Γ(x + 1/2)

Results

(1.3125, 1.625) (3.5, 5.0)
Excel 2003 5.4E-11 1.2E-11
Excel 2007 5.4E-11 1.2E-11
Excel 2010 2.8E-15 4.0E-16

Special Function Software in the

21st Century

Most high-quality software originally written in
1960− 1985 in Fortran.

Several original developers now retired or dead!
Need young blood.

Computers completely different beasts nowadays
- PCs dominate and RAM cheap. For exam-
ple, integer factorisations are now being done
on networks of PS3 games consoles.

New software needed to use new facilities - func-
tion domains can be divided into far more sub-
regions.

Enormous growth in languages eg Python. Should
we continue to use Fortran as standard? Per-
haps use Matlab as a standard meta-language.

