Log-convexity and log-concavity for series in product ratios of rising factorials and gamma functions

Dmitry Karp

Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

based on joint work with Sergei Sitnik and Segrei Kalmykov

Special Functions in the 21st Century: Theory and Applications, April 6–8, 2011, Washington, DC, USA

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta > 0$ and μ such that $[\mu - \delta, \mu + \delta] \subset (a, b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta).$$
 (1)

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta>0$ and μ such that $[\mu-\delta,\mu+\delta]\subset(a,b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta).$$
 (1)

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial convolution

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta>0$ and μ such that $[\mu-\delta,\mu+\delta]\subset(a,b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial convolution

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta>0$ and μ such that $[\mu-\delta,\mu+\delta]\subset(a,b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial convolution

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta > 0$ and μ such that $[\mu - \delta, \mu + \delta] \subset (a, b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta>0$ and μ such that $[\mu-\delta,\mu+\delta]\subset(a,b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial convolution

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta > 0$ and μ such that $[\mu - \delta, \mu + \delta] \subset (a, b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta > 0$ and μ such that $[\mu - \delta, \mu + \delta] \subset (a, b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta).$$
 (1)

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial

Definition of log-concavity and log-convexity

A continuous function $f:(a,b)\to\mathbb{R}_+$ is log-concave on (a,b) if for any $\delta > 0$ and μ such that $[\mu - \delta, \mu + \delta] \subset (a, b)$

$$f(\mu)^2 \ge f(\mu + \delta)f(\mu - \delta). \tag{1}$$

If inequality (1) is reversed f is log-convex.

- Log-convexity is stronger then convexity
- Log-convexity is additive
- Log-convexity is not preserved by convolution
- Log-concavity is weaker than concavity
- Log-concavity is not additive
- Log-concavity is preserved by convolution
- Log-concavity and log-convexity are both preserved by binomial convolution

Discrete and Wright log-concavity

Wright log-concavity

f is Wright log-concave if for any $\delta > 0$ and $\varepsilon > 0$:

$$f(\mu + \varepsilon)f(\mu + \delta) \ge f(\mu + \delta + \varepsilon)f(\mu)$$

$$\updownarrow$$

$$\mu \to f(\mu + \delta)/f(\mu) \text{ is non-increasing}$$
(2)

For continuous functions Wright log-concativity=log-concavity

Discrete and Wright log-concavity

Wright log-concavity

f is Wright log-concave if for any $\delta > 0$ and $\varepsilon > 0$:

$$f(\mu + \varepsilon)f(\mu + \delta) \ge f(\mu + \delta + \varepsilon)f(\mu)$$

$$\updownarrow$$

$$\mu \to f(\mu + \delta)/f(\mu) \text{ is non-increasing}$$
(2)

For continuous functions Wright log-concativity=log-concavity

If (1) (or (2)) only holds for $\delta = 0, 1, 2, \dots$ the function f will be called discrete log-concave (or discrete Wright log-concave). $(2) \Rightarrow (1)$

Discrete and Wright log-concavity

Wright log-concavity

f is Wright log-concave if for any $\delta > 0$ and $\varepsilon > 0$:

$$f(\mu + \varepsilon)f(\mu + \delta) \ge f(\mu + \delta + \varepsilon)f(\mu)$$

$$\updownarrow$$

$$\mu \to f(\mu + \delta)/f(\mu) \text{ is non-increasing}$$
(2)

For continuous functions Wright log-concativity=log-concavity

If (1) (or (2)) only holds for $\delta = 0, 1, 2, \dots$ the function f will be called discrete log-concave (or discrete Wright log-concave). $(2) \Rightarrow (1)$

Examples of discrete log-concavity: Newton's inequalities for elementary symmetric polynomials, Laguerre inequalities for derivatives of entire functions, Alexandrov-Fenchel inequalities for mixed volumes, log-concavity of combinatorial sequences, Turán inequalities for orthogonal polynomials (for latest development see Szwarc, Berg, Krasikov).

Under what conditions on the positive sequence $\{f_k\}$ and the numbers $a_1, \ldots, a_n, b_1, \ldots, b_m$ the functions:

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{(a_1 + \mu)_k \cdots (a_n + \mu)_k}{(b_1 + \mu)_k \cdots (b_m + \mu)_k},$$

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{\Gamma(a_1 + \mu + k) \cdots \Gamma(a_n + \mu + k)}{\Gamma(b_1 + \mu + k) \cdots \Gamma(b_m + \mu + k)}$$

is [discrete, Wright] log-concave or log-convex?

Instead of rising factorial we can consider another binomial sequence of polynomials or q-rising factorial, instead of Gamma function - another explicit function...

Instead of log-convexity we can consider convexity with respect to different means...

Under what conditions on the positive sequence $\{f_k\}$ and the numbers $a_1, \ldots, a_n, b_1, \ldots, b_m$ the functions:

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{(a_1+\mu)_k \cdots (a_n+\mu)_k}{(b_1+\mu)_k \cdots (b_m+\mu)_k},$$

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{\Gamma(a_1 + \mu + k) \cdots \Gamma(a_n + \mu + k)}{\Gamma(b_1 + \mu + k) \cdots \Gamma(b_m + \mu + k)}$$

is [discrete, Wright] log-concave or log-convex?

Instead of rising factorial we can consider another binomial sequence of polynomials or q-rising factorial, instead of Gamma function - another explicit function...

Instead of log-convexity we can consider convexity with respect to different means...

Under what conditions on the positive sequence $\{f_k\}$ and the numbers $a_1, \ldots, a_n, b_1, \ldots, b_m$ the functions:

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{(a_1+\mu)_k \cdots (a_n+\mu)_k}{(b_1+\mu)_k \cdots (b_m+\mu)_k},$$

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{\Gamma(a_1 + \mu + k) \cdots \Gamma(a_n + \mu + k)}{\Gamma(b_1 + \mu + k) \cdots \Gamma(b_m + \mu + k)}$$

is [discrete, Wright] log-concave or log-convex?

Instead of rising factorial we can consider another binomial sequence of polynomials or q-rising factorial, instead of Gamma function - another explicit function. . .

Instead of log-convexity we can consider convexity with respect to different means...

Under what conditions on the positive sequence $\{f_k\}$ and the numbers $a_1, \ldots, a_n, b_1, \ldots, b_m$ the functions:

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{(a_1+\mu)_k \cdots (a_n+\mu)_k}{(b_1+\mu)_k \cdots (b_m+\mu)_k},$$

$$\mu \to \sum_{k=0}^{\infty} f_k \frac{\Gamma(a_1 + \mu + k) \cdots \Gamma(a_n + \mu + k)}{\Gamma(b_1 + \mu + k) \cdots \Gamma(b_m + \mu + k)}$$

is [discrete, Wright] log-concave or log-convex?

Instead of rising factorial we can consider another binomial sequence of polynomials or q-rising factorial, instead of Gamma function - another explicit function. . .

Instead of log-convexity we can consider convexity with respect to different means...

Lommel's (1870) formula

$$x^{2}[J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x)] = \sum_{k=0}^{\infty} (2k + \nu + 1)J_{2k+\nu+1}^{2}(x)$$

$$\Delta_{\nu} := J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x) \geq 0, \quad x \in \mathbb{R}, \quad \nu > -1.$$

$$J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x) > \frac{1}{\nu+1}J_{\nu}^{2}(x), \quad x \in \mathbb{R}, \quad \nu > 0.$$

$$\Delta_{\nu} = \frac{1}{\nu+1} J_{\nu}^{2}(x) + \frac{2}{\nu+2} J_{\nu+1}^{2}(x) + 2\nu \sum_{k=2}^{\infty} \frac{J_{k+\nu}^{2}(x)}{(\nu+k-1)(\nu+k-1)}.$$

Baricz and Pogány (2011, including a survey).

Lommel's (1870) formula

$$x^{2}[J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x)] = \sum_{k=0}^{\infty} (2k + \nu + 1)J_{2k+\nu+1}^{2}(x)$$

$$\Delta_{\nu} := J_{\nu}^2(x) - J_{\nu+1}(x)J_{\nu-1}(x) \geq 0, \quad x \in \mathbb{R}, \ \nu > -1.$$

Improvement by Szász (1950):

$$J_{\nu}^{2}(x)-J_{\nu+1}(x)J_{\nu-1}(x)>rac{1}{
u+1}J_{\nu}^{2}(x),\quad x\in\mathbb{R},\ \
u>0.$$

$$\Delta_{\nu} = \frac{1}{\nu+1} J_{\nu}^{2}(x) + \frac{2}{\nu+2} J_{\nu+1}^{2}(x) + 2\nu \sum_{k=2}^{\infty} \frac{J_{k+\nu}^{2}(x)}{(\nu+k-1)(\nu+k-1)}.$$

Baricz and Pogány (2011, including a survey).

Lommel's (1870) formula

$$x^{2}[J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x)] = \sum_{k=0}^{\infty} (2k + \nu + 1)J_{2k+\nu+1}^{2}(x)$$

$$\Delta_{\nu} := J_{\nu}^2(x) - J_{\nu+1}(x)J_{\nu-1}(x) \ge 0, \quad x \in \mathbb{R}, \ \nu > -1.$$

Improvement by Szász (1950):

$$J_{\nu}^{2}(x)-J_{\nu+1}(x)J_{\nu-1}(x)>\frac{1}{\nu+1}J_{\nu}^{2}(x),\quad x\in\mathbb{R},\ \ \nu>0.$$

Thiruvenkatachar and Nanjundiah (1951):

$$\Delta_{\nu} = \frac{1}{\nu+1} J_{\nu}^{2}(x) + \frac{2}{\nu+2} J_{\nu+1}^{2}(x) + 2\nu \sum_{k=2}^{\infty} \frac{J_{k+\nu}^{2}(x)}{(\nu+k-1)(\nu+k-1)}.$$

Baricz and Pogány (2011, including a survey).

Lommel's (1870) formula

$$x^{2}[J_{\nu}^{2}(x) - J_{\nu+1}(x)J_{\nu-1}(x)] = \sum_{k=0}^{\infty} (2k + \nu + 1)J_{2k+\nu+1}^{2}(x)$$

$$\Delta_{\nu} := J_{\nu}^2(x) - J_{\nu+1}(x)J_{\nu-1}(x) \geq 0, \quad x \in \mathbb{R}, \ \nu > -1.$$

Improvement by Szász (1950):

$$J_{\nu}^{2}(x)-J_{\nu+1}(x)J_{\nu-1}(x)>rac{1}{
u+1}J_{\nu}^{2}(x),\quad x\in\mathbb{R},\ \
u>0.$$

Thiruvenkatachar and Nanjundiah (1951):

$$\Delta_{\nu} = \frac{1}{\nu+1} J_{\nu}^{2}(x) + \frac{2}{\nu+2} J_{\nu+1}^{2}(x) + 2\nu \sum_{k=2}^{\infty} \frac{J_{k+\nu}^{2}(x)}{(\nu+k-1)(\nu+k-1)}.$$

Log-concavity of $\nu \to J_{\nu}(x)$ on $(-1,\infty)$ and fixed x>0 - Ismail and Muldoon (1978). Extensions to higher order inequalities - Skovgaard (1954), Karlin and Szegő (1960), Al-Salam (1961), Patrick (1973), Baricz and Pogány (2011, including a survey).

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

$$I_{\nu}^{2}(x) - I_{\nu+1}(x)I_{\nu-1}(x) \ge 0, \quad x > 0, \quad \nu > -1$$

Essentially equivalent inequality

$$xI_{\nu}'(x)/I_{\nu}(x) < \sqrt{x^2 + \nu^2}$$

appeared in Gronwall (1932) for $\nu>0$ and later in Phillips and Malin (1950) for integer ν .

Log-concavity of $\nu \to I_{\nu}(x)$ on $(-1, \infty)$ and fixed x > 0 - Baricz (2010) following the proof of Ismail and Muldoon (1978) for J_{ν} .

Ismail and Muldoon (1978):

$$K_{\nu+1}(x)K_{\nu-1}(x) - K_{\nu}^{2}(x) \ge 0, \quad x > 0, \quad \nu \in \mathbb{R}$$

log-convexity of $\nu \to K_{\nu}$ - Baricz (2010).

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

$$I_{\nu}^{2}(x) - I_{\nu+1}(x)I_{\nu-1}(x) \ge 0, \quad x > 0, \quad \nu > -1$$

Essentially equivalent inequality

$$xI_{\nu}'(x)/I_{\nu}(x)<\sqrt{x^2+\nu^2}$$

appeared in Gronwall (1932) for $\nu>0$ and later in Phillips and Malin (1950) for integer ν .

Log-concavity of $\nu \to I_{\nu}(x)$ on $(-1, \infty)$ and fixed x > 0 - Baricz (2010) following the proof of Ismail and Muldoon (1978) for J_{ν} .

Ismail and Muldoon (1978)

$$K_{\nu+1}(x)K_{\nu-1}(x) - K_{\nu}^{2}(x) \ge 0, \quad x > 0, \quad \nu \in \mathbb{R}$$

log-convexity of $u
ightarrow K_{
u}$ - Baricz (2010)

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

$$I_{\nu}^{2}(x) - I_{\nu+1}(x)I_{\nu-1}(x) \ge 0, \quad x > 0, \quad \nu > -1$$

Essentially equivalent inequality

$$xI_{\nu}'(x)/I_{\nu}(x)<\sqrt{x^2+\nu^2}$$

appeared in Gronwall (1932) for $\nu>0$ and later in Phillips and Malin (1950) for integer ν .

Log-concavity of $\nu \to I_{\nu}(x)$ on $(-1,\infty)$ and fixed x>0 - Baricz (2010) following the proof of Ismail and Muldoon (1978) for J_{ν} .

Ismail and Muldoon (1978)

$$K_{\nu+1}(x)K_{\nu-1}(x) - K_{\nu}^{2}(x) \ge 0, \quad x > 0, \quad \nu \in \mathbb{R}$$

log-convexity of $u
ightarrow K_{
u}$ - Baricz (2010)

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

$$I_{\nu}^{2}(x) - I_{\nu+1}(x)I_{\nu-1}(x) \ge 0, \quad x > 0, \quad \nu > -1$$

Essentially equivalent inequality

$$xI_{\nu}'(x)/I_{\nu}(x)<\sqrt{x^2+\nu^2}$$

appeared in Gronwall (1932) for $\nu > 0$ and later in Phillips and Malin (1950) for integer ν .

Log-concavity of $\nu \to I_{\nu}(x)$ on $(-1, \infty)$ and fixed x > 0 - Baricz (2010) following the proof of Ismail and Muldoon (1978) for J_{ν} .

Ismail and Muldoon (1978):

$$K_{\nu+1}(x)K_{\nu-1}(x) - K_{\nu}^2(x) \ge 0, \quad x > 0, \quad \nu \in \mathbb{R}$$

log-convexity of $\nu \to K_{\nu}$ - Baricz (2010).

Alzer (1990) inequality for exponential remainder:

 $_{1}F_{1}(1; n; x)^{2} < {}_{1}F_{1}(1; n+\nu; x){}_{1}F_{1}(1; n-\nu; x) \Leftrightarrow \text{Gautschi (1982) inequality}$

Here n and $n-\nu$ are non-negative integers, x>0.

$$_{1}F_{1}(1; n+1; x)^{2} > \frac{n}{n+1} {}_{1}F_{1}(1; n; x) {}_{1}F_{1}(1; n+2; x)$$

$$[{}_{1}F_{1}(a;c;x)]^{2} - {}_{1}F_{1}(a+n;c;x){}_{1}F_{1}(a-n;c;x) \ge 0$$

Alzer (1990) inequality for exponential remainder:

$$_{1}F_{1}(1; n; x)^{2} < {}_{1}F_{1}(1; n+\nu; x){}_{1}F_{1}(1; n-\nu; x) \Leftrightarrow \text{Gautschi (1982) inequality}$$

Here n and $n-\nu$ are non-negative integers, x>0.

Sitnik (1993): $\mu \to {}_1F_1(1;\mu;x)$ is log-convex on([0, ∞) and $\mu \to {}_1F_1(1;\mu;x)/\Gamma(\mu)$ is discrete log-concave:

$$_{1}F_{1}(1; n+1; x)^{2} > \frac{n}{n+1} {}_{1}F_{1}(1; n; x) {}_{1}F_{1}(1; n+2; x)$$

$$[{}_{1}F_{1}(a;c;x)]^{2} - {}_{1}F_{1}(a+n;c;x){}_{1}F_{1}(a-n;c;x) \ge 0$$

Alzer (1990) inequality for exponential remainder:

$$_{1}F_{1}(1; n; x)^{2} < {}_{1}F_{1}(1; n+\nu; x){}_{1}F_{1}(1; n-\nu; x) \Leftrightarrow \text{Gautschi (1982) inequality}$$

Here n and $n-\nu$ are non-negative integers, x>0.

Sitnik (1993): $\mu \to {}_1F_1(1;\mu;x)$ is log-convex on([0, ∞) and $\mu \to {}_1F_1(1;\mu;x)/\Gamma(\mu)$ is discrete log-concave:

$$_{1}F_{1}(1; n+1; x)^{2} > \frac{n}{n+1} {}_{1}F_{1}(1; n; x) {}_{1}F_{1}(1; n+2; x)$$

Baricz (2008): $\mu \to {}_1F_1(a; c + \mu; x)$ is log-convex on $[0, \infty)$ for a, c, x > 0 and $\mu \mapsto {}_1F_1(a + \mu; c + \mu; x)$ is log-convex on $[0, \infty)$ for a > c > 0, x > 0

$$[{}_{1}F_{1}(a;c;x)]^{2} - {}_{1}F_{1}(a+n;c;x){}_{1}F_{1}(a-n;c;x) \ge 0$$

Alzer (1990) inequality for exponential remainder:

$$_{1}F_{1}(1; n; x)^{2} < {}_{1}F_{1}(1; n+\nu; x){}_{1}F_{1}(1; n-\nu; x) \Leftrightarrow \text{Gautschi (1982) inequality}$$

Here *n* and $n - \nu$ are non-negative integers, x > 0.

Sitnik (1993): $\mu \to {}_1F_1(1;\mu;x)$ is log-convex on ([0, ∞) and $\mu \to {}_1F_1(1;\mu;x)/\Gamma(\mu)$ is discrete log-concave:

$$_{1}F_{1}(1; n+1; x)^{2} > \frac{n}{n+1} {}_{1}F_{1}(1; n; x) {}_{1}F_{1}(1; n+2; x)$$

Baricz (2008): $\mu \to {}_1F_1(a; c + \mu; x)$ is log-convex on $[0, \infty)$ for a, c, x > 0 and $\mu \mapsto {}_1F_1(a + \mu; c + \mu; x)$ is log-convex on $[0, \infty)$ for a > c > 0, x > 0

Barnard-Gordy-Richards (2009):

$$[{}_{1}F_{1}(a;c;x)]^{2}-{}_{1}F_{1}(a+n;c;x){}_{1}F_{1}(a-n;c;x)\geq 0$$

for all a > 0, $c > a \ge n-1$ and $x \in \mathbb{R}$ or $a \ge n-1$, c > -1 ($c \ne 0$), x > 0, and positive integer n. If fact, they showed that the left hand side has positive Taylor coefficients.

Rising factorial series

Theorem 1 (K.-Sitnik, 2009)

Suppose $\{f_n\}_0^\infty$ is a positive log-concave (log-convex) sequence. Then the function

$$a \mapsto f(a,x) := \sum_{n=0}^{\infty} f_n \frac{(a)_n}{n!} x^n$$

is strictly log-concave (log-convex) on $(0,\infty)$ for each fixed x>0 and, moreover, given any positive $a,\ b$ and δ the function

$$\varphi_{a,b,\delta}(x) := f(a+\delta,x)f(b,x) - f(b+\delta,x)f(a,x)$$

has positive (negative) power series coefficients so that the function $x \to \varphi_{a,b,\delta}(x)$ $(x \to -\varphi_{a,b,\delta}(x))$ is absolutely monotonic on $(0,\infty)$.

Corollaries and Conjectures

Corollary 1

Suppose $\{f_k\}_0^n$ is a log-concave sequence, $\alpha, \beta > 0$. Then the polynomial

$$P_n^{\alpha,\beta}(x) = \sum_{k=0}^n f_k f_{n-k} \binom{n}{k} \left[(x+\alpha)_k (x+\beta)_{n-k} - (x+\alpha+\beta)_k (x)_{n-k} \right],$$

has no positive roots.

Conjecture :

All coefficients of the polynomial $P_n^{\alpha,\beta}(x)$ are positive.

Conjecture 2

The polynomial $P_n^{\alpha,\beta}(x)$ is Hurwitz stable (all its roots have negative real parts).

Corollaries and Conjectures

Corollary 1

Suppose $\{f_k\}_0^n$ is a log-concave sequence, $\alpha, \beta > 0$. Then the polynomial

$$P_n^{\alpha,\beta}(x) = \sum_{k=0}^n f_k f_{n-k} \binom{n}{k} \left[(x+\alpha)_k (x+\beta)_{n-k} - (x+\alpha+\beta)_k (x)_{n-k} \right],$$

has no positive roots.

Conjecture 1

All coefficients of the polynomial $P_n^{\alpha,\beta}(x)$ are positive.

Conjecture 2

The polynomial $P_n^{\alpha,\beta}(x)$ is Hurwitz stable (all its roots have negative real parts).

Corollaries and Conjectures

Corollary 1

Suppose $\{f_k\}_0^n$ is a log-concave sequence, $\alpha, \beta > 0$. Then the polynomial

$$P_n^{\alpha,\beta}(x) = \sum_{k=0}^n f_k f_{n-k} \binom{n}{k} \left[(x+\alpha)_k (x+\beta)_{n-k} - (x+\alpha+\beta)_k (x)_{n-k} \right],$$

has no positive roots.

Conjecture 1

All coefficients of the polynomial $P_n^{\alpha,\beta}(x)$ are positive.

Conjecture 2

The polynomial $P_n^{\alpha,\beta}(x)$ is Hurwitz stable (all its roots have negative real parts).

Theorem 2 - gamma function series (K.-Sitnik, 2009)

Suppose $\{g_n\}_0^{\infty}$ is a positive sequence. Then the function

$$a \to g(a,x) := \sum_{n=0}^{\infty} g_n \Gamma(a+n) x^n$$

is log-convex on $(0,\infty)$. Moreover, given any positive a, b and δ the function

$$\psi_{a,b,\delta}(x) := g(a+\delta,x)g(b,x) - g(b+\delta,x)g(a,x)$$

has negative power series coefficients so that $x \to -\psi_{a,b,\delta}(x)$ is absolutely monotonic on $(0, \infty)$.

$$\frac{\Gamma(a+\delta)\Gamma(b)}{\Gamma(b+\delta)\Gamma(a)} < \frac{f(b+\delta,x)f(a,x)}{f(a+\delta,x)f(b,x)} < 1 \text{ for } b>a>0 \text{ and } x>0.$$

Theorem 2 - gamma function series (K.-Sitnik, 2009)

Suppose $\{g_n\}_0^{\infty}$ is a positive sequence. Then the function

$$a \to g(a,x) := \sum_{n=0}^{\infty} g_n \Gamma(a+n) x^n$$

is log-convex on $(0,\infty)$. Moreover, given any positive a, b and δ the function

$$\psi_{a,b,\delta}(x) := g(a+\delta,x)g(b,x) - g(b+\delta,x)g(a,x)$$

has negative power series coefficients so that $x \to -\psi_{a,b,\delta}(x)$ is absolutely monotonic on $(0, \infty)$.

Corollary 2

Let $f(a,x) = \sum_{n=0}^{\infty} f_n(a)_n x^n/n!$ with log-concave sequence $\{f_n\}$. Then

$$\frac{\Gamma(a+\delta)\Gamma(b)}{\Gamma(b+\delta)\Gamma(a)} < \frac{f(b+\delta,x)f(a,x)}{f(a+\delta,x)f(b,x)} < 1 \text{ for } b>a>0 \text{ and } x>0.$$

Reciprocal rising factorial series

Theorem 3 (K.-Sitnik, 2009)

Suppose $\{h_n\}_0^\infty$ is a positive sequence. Then the function

$$a \rightarrow h(a,x) := \sum_{n=0}^{\infty} \frac{h_n}{(a)_n} x^n$$

is log-convex on $(0,\infty)$. Moreover, given any positive $a,\ b$ and δ the function

$$\lambda_{a,b,\delta}(x) := h(a+\delta,x)h(b,x) - h(b+\delta,x)h(a,x)$$

has negative power series coefficients so that $x \to -\lambda_{a,b,\delta}(x)$ is absolutely monotonic on $(0,\infty)$.

Reciprocal gamma function series

Theorem 4 (Kalmykov-K., 2011)

Suppose $\{q_n\}_0^\infty$ is a positive log-concave sequence. Then the function

$$a \mapsto q(a,x) := \sum_{n=0}^{\infty} \frac{q_n x^n}{n! \Gamma(a+n)},\tag{3}$$

is strictly log-concave on $(0,\infty)$ for each fixed x>0 and, moreover, given any positive $a,\ b$ and δ the function

$$\eta_{a,b,\delta}(x) := q(a+\delta,x)q(b+\delta,x) - q(a+b+\delta,x)q(\delta,x)$$

has positive power series coefficients so that the function $x \to \eta_{a,b,\delta}(x)$ is absolutely monotonic on $(0,\infty)$.

Series in ratios of rising factorials

Theorem 5 (Kalmykov-K., 2011)

Suppose c>a>0 and $\{f_n\}_0^\infty$ is a positive log-concave sequence. Then the function

$$\mu \mapsto f(a+\mu,c+\mu;x) := \sum_{n=0}^{\infty} f_n \frac{(a+\mu)_n}{(c+\mu)_n} \frac{x^n}{n!},$$

is strictly discrete Wright log-concave on $(0, \infty)$ for each fixed x > 0. Moreover, given any $\mu > 0$ the function

$$\varphi_{a,c,\mu}(x) := f(a+1,c+1;x)f(a+\mu,c+\mu;x) - f(a,c;x)f(a+\mu+1,c+\mu+1;x)$$

has positive power series coefficients so that the function $x \to \varphi_{a,c,\mu}(x)$ is absolutely monotonic on $(0,\infty)$. If a>c>0 and $\{f_n\}_0^\infty$ is any positive sequence, then $\mu\mapsto f(a+\mu,c+\mu;x)$ is strictly log-convex on $(0,\infty)$ for each fixed x>0.

Series in ratios of gamma functions

Theorem 6 (Kalmykov-K., 2011)

Suppose a>c>0 and $\{g_n\}_0^\infty$ is a positive log-concave sequence. Then the function

$$\mu \mapsto g(a+\mu,c+\mu;x) := \sum_{n=0}^{\infty} g_n \frac{\Gamma(a+\mu+n)}{\Gamma(c+\mu+n)} \frac{x^n}{n!},$$

is strictly discrete Wright log-concave on $(0, \infty)$ for each fixed x > 0. Moreover, given any $\mu > 0$ the function

$$\psi_{a,c,\mu}(x) := g(a+1,c+1;x)g(a+\mu,c+\mu;x) - g(a,c;x)g(a+\mu+1,c+\mu+1;x)$$

has positive power series coefficients so that the function $x \to \psi_{a,c,\mu}(x)$ is absolutely monotonic on $(0,\infty)$. If c>a>0 and $\{g_n\}_0^\infty$ is any positive sequence, then $\mu \mapsto g(a+\mu,c+\mu;x)$ is strictly log-convex on $(0,\infty)$ for each fixed x>0.

Conjecture

Conjecture 3

The word "discrete" may be removed from Theorems 5 and 6.

Lemma (Kalmykov-K., 2011)

The following identity holds for the Kummer function $_1F_1$:

$${}_{1}F_{1}(a + \mu; c + \mu; x){}_{1}F_{1}(a + 1; c + 1; x)$$

$$-{}_{1}F_{1}(a + \mu + 1; c + \mu + 1; x){}_{1}F_{1}(a; c; x)$$

$$= \frac{(c - a)x}{c(c + 1)(c + \mu)(c + \mu + 1)} \times$$

$$\left\{ (c + \mu)(c + \mu + 1){}_{1}F_{1}(a + 1; c + 2; x){}_{1}F_{1}(a + \mu + 1; c + \mu + 1; x) - c(c + 1){}_{1}F_{1}(a + 1; c + 1; x){}_{1}F_{1}(a + \mu + 1; c + \mu + 2; x) \right\}.$$

Conjecture

Conjecture 3

The word "discrete" may be removed from Theorems 5 and 6.

Lemma (Kalmykov-K., 2011)

The following identity holds for the Kummer function $_1F_1$:

$${}_{1}F_{1}(a + \mu; c + \mu; x)_{1}F_{1}(a + 1; c + 1; x)$$

$$- {}_{1}F_{1}(a + \mu + 1; c + \mu + 1; x)_{1}F_{1}(a; c; x)$$

$$= \frac{(c - a)x}{c(c + 1)(c + \mu)(c + \mu + 1)} \times$$

$$\left\{ (c + \mu)(c + \mu + 1)_{1}F_{1}(a + 1; c + 2; x)_{1}F_{1}(a + \mu + 1; c + \mu + 1; x) - c(c + 1)_{1}F_{1}(a + 1; c + 1; x)_{1}F_{1}(a + \mu + 1; c + \mu + 2; x) \right\}.$$

Application to generalized hypergeometric function

Let $e_m(c_1,\ldots,c_q)$ denote m-th elementary symmetric polynomial,

$$e_m(c_1, \ldots, c_q) = \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq q} c_{i_1} c_{i_2} \cdots c_{i_m}$$

Lemma (Heikkala, Vamanamurthy, Vuorinen, 2009), (K.-Sitnik, 2009)

Suppose $a_i, b_i > 0$, i = 1, ..., q. The sequence of hypergeometric terms

$$f_n = rac{(a_1)_n \cdots (a_q)_n}{(b_1)_n \cdots (b_q)_n}$$
 is log-concave if

$$\frac{e_q(b_1,\ldots,b_q)}{e_q(a_1,\ldots,a_q)} \le \frac{e_{q-1}(b_1,\ldots,b_q)}{e_{q-1}(a_1,\ldots,a_q)} \le \cdots \le \frac{e_1(b_1,\ldots,b_q)}{e_1(a_1,\ldots,a_q)} \le 1.$$
(4)

and log-convex if

$$\frac{e_q(b_1,\ldots,b_q)}{e_q(a_1,\ldots,a_q)} \ge \frac{e_{q-1}(b_1,\ldots,b_q)}{e_{q-1}(a_1,\ldots,a_q)} \ge \cdots \ge \frac{e_1(b_1,\ldots,b_q)}{e_1(a_1,\ldots,a_q)} \ge 1.$$
 (5)

Application to generalized hypergeometric function

Let $e_m(c_1,\ldots,c_q)$ denote m-th elementary symmetric polynomial,

$$e_m(c_1, \ldots, c_q) = \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq q} c_{i_1} c_{i_2} \cdots c_{i_m}$$

Lemma (Heikkala, Vamanamurthy, Vuorinen, 2009), (K.-Sitnik, 2009)

Suppose $a_i,b_i>0$, $i=1,\ldots,q$. The sequence of hypergeometric terms

$$f_n = \frac{(a_1)_n \cdots (a_q)_n}{(b_1)_n \cdots (b_q)_n}$$
 is log-concave if

$$\frac{e_q(b_1,\ldots,b_q)}{e_q(a_1,\ldots,a_q)} \leq \frac{e_{q-1}(b_1,\ldots,b_q)}{e_{q-1}(a_1,\ldots,a_q)} \leq \cdots \leq \frac{e_1(b_1,\ldots,b_q)}{e_1(a_1,\ldots,a_q)} \leq 1. \quad (4)$$

and log-convex if

$$\frac{e_q(b_1,\ldots,b_q)}{e_q(a_1,\ldots,a_q)} \ge \frac{e_{q-1}(b_1,\ldots,b_q)}{e_{q-1}(a_1,\ldots,a_q)} \ge \cdots \ge \frac{e_1(b_1,\ldots,b_q)}{e_1(a_1,\ldots,a_q)} \ge 1.$$
 (5)

• For a > b > 0, c > 0 and integer $m \ge 2$

$$_4F_3\left(egin{array}{c} -m,a,1-c-m,1-am/(a+b) \\ c,1-b-m,-am/(a+b) \end{array} \middle| -1
ight) > 0,$$

and for b > a > 0 the sign of inequality is reversed;

- The function $\alpha \mapsto {}_2F_1(\alpha,b;c;x)$ is log-concave, on $(0,\infty)$ if 0 < x < 1, b > c > 0 or x < 0, c > 0 > b and on $(-\infty,c]$ if 0 < x < 1, c > 0 > b or x < 0, b > c > 0;
- The function $\alpha \mapsto {}_3F_2\left(\alpha,a_1,a_2;b_1,b_2;x\right),\ 0< x<1$ is log-concave on $(0,\infty)$ if

$$\frac{b_1b_2}{a_1a_2} \le \frac{b_1+b_2}{a_1+a_2} \le 1;$$

• For a > b > 0, c > 0 and integer $m \ge 2$

$$_{4}F_{3}\left(\begin{array}{c} -m,a,1-c-m,1-am/(a+b) \\ c,1-b-m,-am/(a+b) \end{array} \right| -1 \right) > 0,$$

and for b > a > 0 the sign of inequality is reversed;

- The function $\alpha \mapsto {}_2F_1(\alpha, b; c; x)$ is log-concave, on $(0, \infty)$ if 0 < x < 1, b > c > 0 or x < 0, c > 0 > b and on $(-\infty, c]$ if 0 < x < 1, c > 0 > b or x < 0, b > c > 0;
- The function $\alpha \mapsto {}_3F_2\left(\alpha,a_1,a_2;b_1,b_2;x\right),\ 0< x<1$ is log-concave on $(0,\infty)$ if

$$\frac{b_1b_2}{a_1a_2} \le \frac{b_1+b_2}{a_1+a_2} \le 1$$

• For a > b > 0, c > 0 and integer $m \ge 2$

$$_{4}F_{3}\left(\begin{array}{c} -m,a,1-c-m,1-am/(a+b) \\ c,1-b-m,-am/(a+b) \end{array} \right| -1 \right) >0,$$

and for b > a > 0 the sign of inequality is reversed;

- The function $\alpha \mapsto {}_2F_1(\alpha, b; c; x)$ is log-concave, on $(0, \infty)$ if 0 < x < 1, b > c > 0 or x < 0, c > 0 > b and on $(-\infty, c]$ if 0 < x < 1, c > 0 > b or x < 0, b > c > 0;
- The function $\alpha \mapsto {}_3F_2\left(\alpha,a_1,a_2;b_1,b_2;x\right)$, 0 < x < 1 is log-concave on $(0,\infty)$ if

$$\frac{b_1b_2}{a_1a_2} \le \frac{b_1+b_2}{a_1+a_2} \le 1;$$

• For a > b > 0, c > 0 and integer $m \ge 2$

$$_{4}F_{3}\left(\begin{array}{c} -m,a,1-c-m,1-am/(a+b) \\ c,1-b-m,-am/(a+b) \end{array} \right| -1 \right) >0,$$

and for b > a > 0 the sign of inequality is reversed;

- The function $\alpha \mapsto {}_2F_1(\alpha, b; c; x)$ is log-concave, on $(0, \infty)$ if 0 < x < 1, b > c > 0 or x < 0, c > 0 > b and on $(-\infty, c]$ if 0 < x < 1, c > 0 > b or x < 0, b > c > 0;
- The function $\alpha \mapsto {}_3F_2\left(\alpha,a_1,a_2;b_1,b_2;x\right)$, 0 < x < 1 is log-concave on $(0,\infty)$ if

$$\frac{b_1b_2}{a_1a_2} \le \frac{b_1+b_2}{a_1+a_2} \le 1;$$

An application: directional statistics

Probability density function of multivariate Watson distribution:

$$\rho(\pm \mathbf{x}; \boldsymbol{\mu}, \kappa) = \frac{\Gamma(d/2)}{2\pi^{d/2} {}_1F_1(1/2; d/2; \kappa)} e^{\kappa(\boldsymbol{\mu}, \mathbf{x})^2}.$$

The distribution is defined in projective hyperplane $\mathbb{P}^{d-1}=$ sphere \mathbb{S}^{d-1} with opposite points identified. μ and \mathbf{x} are unit vectors in \mathbb{R}^d .

Maximum likelihood estimation for Watson distributions leads to a particular case of the equation

$$g(a,c,x) := \frac{{}_{1}F_{1}'(a,c;x)}{{}_{1}F_{1}(a,c;x)} = r, \quad r \in (0,1), \quad c > a > 0.$$
 (6)

Theorem: uniqueness of solution (K.-Sra, 2010)

Let c > a > 0. Then g(a, c, x) is monotone decreasing on \mathbb{R} mapping it onto (0,1), so that for each $r \in (0,1)$ the solution of (6) exists and is unique.

An application: directional statistics

Probability density function of multivariate Watson distribution:

$$\rho(\pm \mathbf{x}; \boldsymbol{\mu}, \kappa) = \frac{\Gamma(d/2)}{2\pi^{d/2} {}_1F_1(1/2; d/2; \kappa)} e^{\kappa(\boldsymbol{\mu}, \mathbf{x})^2}.$$

The distribution is defined in projective hyperplane $\mathbb{P}^{d-1}=$ sphere \mathbb{S}^{d-1} with opposite points identified. μ and \mathbf{x} are unit vectors in \mathbb{R}^d .

Maximum likelihood estimation for Watson distributions leads to a particular case of the equation

$$g(a,c,x):=\frac{{}_{1}F_{1}'(a,c;x)}{{}_{1}F_{1}(a,c;x)}=r, \quad r\in(0,1), \quad c>a>0.$$
 (6)

Theorem: uniqueness of solution (K.-Sra, 2010)

Let c > a > 0. Then g(a, c, x) is monotone decreasing on \mathbb{R} mapping it onto (0,1), so that for each $r \in (0,1)$ the solution of (6) exists and is unique.

An application: directional statistics

Probability density function of multivariate Watson distribution:

$$\rho(\pm \mathbf{x}; \boldsymbol{\mu}, \kappa) = \frac{\Gamma(d/2)}{2\pi^{d/2} {}_1F_1(1/2; d/2; \kappa)} e^{\kappa(\boldsymbol{\mu}, \mathbf{x})^2}.$$

The distribution is defined in projective hyperplane $\mathbb{P}^{d-1} = \text{sphere } \mathbb{S}^{d-1}$ with opposite points identified. μ and \mathbf{x} are unit vectors in \mathbb{R}^d .

Maximum likelihood estimation for Watson distributions leads to a particular case of the equation

$$g(a,c,x) := \frac{{}_{1}F_{1}'(a,c;x)}{{}_{1}F_{1}(a,c;x)} = r, \quad r \in (0,1), \quad c > a > 0.$$
 (6)

Theorem: uniqueness of solution (K.-Sra, 2010)

Let c > a > 0. Then g(a, c, x) is monotone decreasing on \mathbb{R} mapping it onto (0,1), so that for each $r \in (0,1)$ the solution of (6) exists and is unique.

Introduce the notation:

$$L(r) = \frac{rc - a}{r(1 - r)} \left(1 + \frac{1 - r}{c - a} \right),$$

$$B(r) = \frac{rc - a}{2r(1 - r)} \left(1 + \sqrt{1 + \frac{4(c+1)r(1-r)}{a(c-a)}} \right),$$

$$U(r) = \frac{rc - a}{r(1 - r)} \left(1 + \frac{r}{a} \right).$$

Theorem: two-sided bounds (K.-Sra, 2010)

For a/c < r < 1 we have

$$L(r) < x(r) < B(r) < U(r).$$
 (7)

For 0 < r < a/c we have

$$L(r) < B(r) < x(r) < U(r).$$
 (8)

If r = a/c we have x = L(a/c) = B(a/c) = U(a/c) = 0. All three bounds are also asymptotically precise at r = 0 and r = 1.

Curious open problems

Turán (1946) inequality for Legendre polynomials:

$$_2F_1(-\mu, 1+\mu; 1; y)^2 > {}_2F_1(-\mu-\delta, 1+\mu+\delta; 1; y){}_2F_1(-\mu+\delta, 1+\mu-\delta; 1; y),$$
 for $y \in (0, 1), \ \mu = 1, 2, \dots$ and $\delta = 1$.

Conjecture 4

Turán inequality is true for all $\mu>0$ and $0<\delta<1$

Prékopa-Ninh while studying some convex optimization problems conjectured that

$$\left[(1+k)_{2}F_{2} \begin{pmatrix} k/2+1, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x \right]^{2} \ge k_{2}F_{2} \begin{pmatrix} k/2+1/2, k/2+1 \\ 3/2, 2 \end{pmatrix} | x \end{pmatrix} (k+2)_{2}F_{2} \begin{pmatrix} k/2+2, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x$$

Curious open problems

Turán (1946) inequality for Legendre polynomials:

$$_2F_1(-\mu, 1+\mu; 1; y)^2 > {}_2F_1(-\mu-\delta, 1+\mu+\delta; 1; y){}_2F_1(-\mu+\delta, 1+\mu-\delta; 1; y),$$
 for $y \in (0, 1), \ \mu = 1, 2, \dots$ and $\delta = 1$.

Conjecture 4

Turán inequality is true for all $\mu > 0$ and $0 < \delta < 1$.

Prékopa-Ninh while studying some convex optimization problems conjectured that

$$\left[(1+k)_{2}F_{2} \begin{pmatrix} k/2+1, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x \right]^{2} \ge k_{2}F_{2} \begin{pmatrix} k/2+1/2, k/2+1 \\ 3/2, 2 \end{pmatrix} | x \end{pmatrix} (k+2)_{2}F_{2} \begin{pmatrix} k/2+2, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x$$

Curious open problems

Turán (1946) inequality for Legendre polynomials:

$$_2F_1(-\mu, 1+\mu; 1; y)^2 > {}_2F_1(-\mu-\delta, 1+\mu+\delta; 1; y){}_2F_1(-\mu+\delta, 1+\mu-\delta; 1; y),$$
 for $y \in (0, 1), \ \mu = 1, 2, \dots$ and $\delta = 1$.

Conjecture 4

Turán inequality is true for all $\mu > 0$ and $0 < \delta < 1$.

Prékopa-Ninh while studying some convex optimization problems conjectured that

$$\left[(1+k)_{2}F_{2} \begin{pmatrix} k/2+1, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x \right]^{2} \ge k_{2}F_{2} \begin{pmatrix} k/2+1/2, k/2+1 \\ 3/2, 2 \end{pmatrix} | x \end{pmatrix} (k+2)_{2}F_{2} \begin{pmatrix} k/2+2, k/2+3/2 \\ 3/2, 2 \end{pmatrix} | x \right)$$

THANK YOU FOR ATTENTION!