MULTIRESOLUTION REPRESENTATION OF URBAN TERRAIN
BY L, SPLINES, L, SPLINES AND PIECEWISE PLANAR SURFACES

John E. Lavery*
Computing and Information Sciences Division
Army Research Office, Army Research Laboratory
P.O. Box 12211, Research Triangle Park, NC 27709-2211

David E. Gilsinn
National Institute of Standards and Technology
100 Bureau Drive, Stop 8910
Gaithersburg, MD 20899-8910

Abstract

Cubic Ly and L4 interpolating splines based on
C' smooth, piecewise cubic Sibson elements on a
tensor-product grid are investigated. Computational
tests were carried out for an 800 m by 800 m area
of Baltimore, Maryland represented by an 801 x 801
set of 1-meter-spacing (posting) data set. Interpo-
lating splines at coarser resolutions were computed
along with ¢y, f5, and /., errors relative to the 800
m by 800 m data set. Piecewise planar interpolations
at the coarser resolutions were also computed along
with the above errors for comparative purposes.

1. Introduction

Currently, irregular geometric surfaces and, in
particular, terrain are often represented by piecewise
planar surfaces on triangulated networks (often called
”TINs” or ”triangulated irregular networks” when the
triangles are irregular in shape). Such triangulated
networks are convenient, because they fit within cur-
rent software and hardware constraints. However,
generating an accurate, error-free surface within a tri-
angulated network framework requires extremely fine
triangulations in regions of rapid change and therefore
storage and manipulation of huge amounts of data.
When the triangulated networks are irregular, intri-
cate data keeping is necessary to avoid errors such
as missing triangles and triangles with mismatched
edges. This results in large computing time and re-
duced zoom-in/out capability.

The conceptual superiority of using smooth sur-
faces for representation of terrain and of irregular
geometric surfaces in general has long been recog-
nized. However, previously available smooth-surface
techniques such as polynomial and rational splines,
radial basis functions and wavelets require too much
data, too much computing time, too much human in-
teraction and/or do not preserve shape well. Within
the conventional spline framework, one can prevent

extraneous, “nonphysical” oscillation only if a human
operator intervenes and corrects the spline in many
places or if the mesh is inordinately fine (and there-
fore the storage and manipulation requirements are
large). Neither of these options is feasible for huge
terrain data sets.

The abrupt changes in elevation that are charac-
teristic of urban terrain are particularly challenging
for both piecewise planar modeling and spline mod-
eling. These abrupt changes in elevation are dou-
bly challenging if one restricts the grid on which one
carries out the modeling to be a grid with regularly
spaced nodes. Recently, a new class of cubic ”L;”
splines that perform well in preserving the shape of
data sets has been developed (Lavery, 2000a, 2000b,
2001). It is the accuracy of these cubic L; splines with
regularly spaced grids for urban terrain that we wish
to investigate in this paper. Any class of surfaces,
such as cubic L; splines, that preserve shape well is
ipso facto a candidate for multiresolution representa-
tion of data and this aspect of the representation of
urban data by L; splines will be investigated in this
paper. We will compare L; splines with a class of
conventional ” Ly” splines and with piecewise planar
surfaces.

2. Cubic L; Splines, Cubic L; Splines
and Piecewise Planar Surfaces

The cubic splines z(z,y) used in this paper con-
sist of C! smooth, piecewise cubic Sibson elements
(Han and Schumaker, 1997; Lavery, 2001) on regu-
larly spaced rectangular grids with nodes (z;,y;) =
(cgt,cyj),i=0,1,...,1,5 =0,1,..., J, where ¢, and ¢,
are known constants. These cubic splines, which exist
on the domain D = (xg,xr) X (yo,ys), are character-
ized by their values z;; = z(x;,y;) and the values of
their derivatives 2 = %(mi7yj) and z}; = g—;(mi, Yi)
at the nodes (z;,y;). At each node (z;,y;), the eleva-
tion z;; is given. To calculate a cubic spline, one must
compute the values of the derivatives zj; and Z?;



The z{; and zz’] of a cubic L; interpolating spline
are calculated by minimizing the following weighted
sum of the absolute values of the second derivatives

of the spline and a regularization term
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over all Sibson-element surfaces z that interpolate the
data z;;. Here, € is an a priori given "regularization
parameter,” that is, a small positive constant that as-
sists the algorithm for minimizing (1) in selecting a
unique solution. For further information about ¢, see
Sec. 3 of Lavery, 2001. The cubic L; spline defined
here is the same as the cubic Ly spline of type As
defined in Lavery, 2001. Minimization of (1) is car-
ried out by discretizing the integral in (1) and using
the primal affine method of Lavery 2001, Vanderbei
1989, Vanderbei, Meketon and Freedman, 1986. The
integral in (1) was discretized in the following man-
ner. Express the integral as the sum of the integrals
over the rectangles [x;, x;41] X [y, yj+1]. Divide each
rectangle into N2 equal subrectangles, where N > 2.
The integral over the rectangle is approximated by
1/[2N(N - 1)] times the sum of the 2N(N - 1) values
of the integrand at the midpoints of the sides of the
subrectangles that are in the interior of the rectangle.

The zfj and zf’j of a conventional cubic Lo in-
terpolating spline are calculated by minimizing the
following weighted sum of the squares of the second
derivatives of the spline and a regularization term
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over all Sibson-element surfaces z that interpolate the
data z;;. The regularization parameter e in (2) is
the same as the € in (1). The integral in (2) was
discretized in the same manner as the integral in (1).

A piecewise planar surface z is calculated by di-
viding each rectangle [z;, ziy1] X [y;,y;+1] into two
triangles by drawing the diagonal from the corner
(x4, ;) to the corner (z;+1,y,+1) and letting z inside
each triangle be the linear interpolant of the data at
the three corners of the triangle.

3. Multiresolution Representation
of Urban Data

Computational tests were carried out on a set of
801 x 801 data that consists of an 800 m by 800 m
portion of a 1000 x 1000 set of 1-meter-posting digi-
tal elevation data for downtown Baltimore, Maryland
surrounding Oriole Park at Camden Yards, home of
the Baltimore Orioles baseball team. (East and west
are reversed in the figures below.) The data set was
obtained from the Joint Precision Strike Demonstra-
tion Project Office (JPSD PO) Rapid Terrain Visual-
ization (RTV) ACTD. For all of these computational
results, N = 3 and ¢ = 107 %/(2N(N — 1)). In Fig.
1, we present the surface for the 800 m by 800 m, 1-
meter-posting subset of the Baltimore data set men-
tioned above. This surface was plotted by a commer-
cial package using bilinear elements. Figs. 2-13 below
were also plotted by the commercial package using bi-
linear elements on 1 m by 1 m cells, the z values at
the corners of which are the values of the splines and
piecewise planar surfaces at these corners.

Fig. 1. Surface based on 1-meter-posting for 800 m by 800m

area of Baltimore, Maryland.

In Figs. 2-5, we present for the 800 m by 800 m
area of Baltimore represented in Fig. 1 the cubic L;
interpolating splines calculated on coarse spline grids
at postings (spacings) of 5 m, 10 m, 20 m and 40 m.
We denote these splines by z(1, 5, 2(1,,10] » 2|L1,20]
and z|r,, 40}, respectively. The coarser meshes smooth
out the surface. However, even at 10 m spacing major
features remain recognizable. At the 20 m and 40 m
spacings the features tend to smooth out in a way



that makes them not readily identifiable.

Fig. 2. Lj spline Z[Ly,5] based on 5-meter-spacing data for
800 m by 800 m area of Baltimore, Maryland.

Fig. 3. L spline Z[L1,10] based on 10-meter-spacing data
for 800 m by 800 m area of Baltimore, Maryland.

In Figs. 6-9, we present for the 800 m by 800 m
area of Baltimore represented in Figs. 1-5 the cubic
Ls interpolating splines calculated on coarse spline

grids at postings (spacings) of 5 m, 10 m, 20 m, and 40
m. We denote these splines by z|1,, 5, 2[1,10] » Z|L.2,20]
and 2|z, 40], respectively. Comments concerning the
smoothing obtained over the coarser meshes, similar
to those above for Ly splines, apply to the discussion
about Lo splines. As with Figures 4 and 5, Figures 8

Fig. 4. L spline Z[Ly,20] based on 20-meter-spacing data
for 800 m by 800 m area of Baltimore, Maryland.
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Fig. 5. L spline Z[L1,40] based on 40-meter-spacing data
for 800 m by 800 m area of Baltimore, Maryland.



and 9 show enough interpolative smoothing that wise planar surfaces calculated on coarse spline grids

many of the features begin to blend with one another. at postings (spacings) of 5 m, 10 m, 20 m and 40 m.
We denote these surfaces by z(,p,5], 2[pp,10]> Z[pp,20] @and
Z[pp,40], Tespectively.
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Fig. 6. L spline Z[Lo,5] based on 5-meter-spacing data for
800 m by 800 m area of Baltimore, Maryland.

Fig. 8. Ly spline Z[L3,20] based on 20-meter-spacing data
for 800 m by 800 m area of Baltimore, Maryland.
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Fig. 7. Lo spline Z[Lo,10] based on 10-meter-spacing data
for 800 m by 800 m area of Baltimore, Maryland. "

In Figs. 10-13, we present for the 800 m by 800 m Fig. 9. Ly spline Z[Ly,40] based on 40-meter-spacing data
area of Baltimore represented in Figs. 1-5 the piece- for 800 m by 800 m area of Baltimore, Maryland.



In the case of the piecewise planar interpolation
one begins to see the planar facets becoming more
distinct as the grid spacing becomes coarser. In par-
ticular, Figures 12 and 13 show the planar facets more
distinctly.
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Fig. 10. Piecewise planar surface Z[pp,5] based on 5-meter-
spacing data for 800 m by 800 m area of Baltimore, Maryland.

Fig. 11. Piecewise planar surface Z[pp,10] based on 10-meter-
spacing data for 800 m by 800 m area of Baltimore, Maryland.

To compare the L; splines, Ly splines and piece-
wise planar surfaces of Figs. 2-13, we will use 1) the
(normalized) ¢; norm || ||; (sum of the absolute values

of the 8012 points divided by 8012), 2) the (normal-
ized) £3 norm || ||2, also known as the RMS or root-
mean-square norm (square root of the quotient that
consists of the sum of the squares of the 8012 points
divided by 8012) and 3) the £, norm || || (maximum
absolute value of the 8012 points). In Tables 1, 2 and
3, we present the /1, ¢ and ¢, norms of the error
between the splines and piecewise planar surfaces of
Figs. 2-13 and the original set of 8012 data points.
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Fig. 12. Piecewise planar surface Z[pp,20] based on 20-meter-
spacing data for 800 m by 800 m area of Baltimore, Maryland.
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Fig. 13. Piecewise planar surface Z[pp,40] based on 40-meter-
spacing data for 800 m by 800 m area of Baltimore, Maryland.



The first row of the tables below contain the spac-
ings, designated by ”s” in meters. In the left hand
column of the tables the following notation is used:
Aly = ||lz1z,,s) — datalls,, Ay = ||lz[z,,s) — datal|s,,
Alo = ||211,,5) — data||,, where data is the original

801 x 801 data used to plot Fig. 1.

Table 1. Norms of differences between
cubic L; splines on coarse grids and original
data.

s(m) 5 10 20 40

Aty 1.314 2207 3.709 5.987
Aly 3.640 5.068 7.582 11.34
Als, 9450 1084 103.1 104.2

Table 2. Norms of differences between
cubic L, splines on coarse grids and original
data.

s(m) 5 10 20 40

Aly 1488 2450 4.014 6.305
Aly 3.726  5.144 7702 11.69
Al 101.2 113.0 9850 104.1

Table 3. Norms of differences between
piecewise planar surfaces on coarse grids and
original data.

s(m) 5 10 20 40

Al 1.389 2346 3.902 6.099
Aly 3.690 5.130 7.545 11.15
Als, 89.82 9485 9557 101.1

By careful visual inspection of the figures, one
can see differences in the L, L, splines and the piece-
wise planar surfaces for the same spacing. These dif-
ferences consist mainly of additional oscillation in the
Lo splines. However, one is not able to determine
by visual inspection which type of interpolation, L;
spline, Lo spline, or piecewise planar surface is more
accurate. Some information about the accuracy can
be gathered from the norms of the errors in Tables 1,
2 and 3. In these tables, the £; errors of the Ly spline
for a given spacing are always smaller than the ¢; er-
rors of the Ly spline and the piecewise planar surface
for the same spacing. In two cases, the /., error of
the L- spline is smaller than the £, error of the corre-
sponding L, spline. In the other cases, it is larger. In
two cases, the £ error and, in all cases, the £, error

for the piecewise planar surfaces are smaller than the
corresponding errors for the L; spline. Furthermore
all of the piecewise planar surface errors are smaller
than the corresponding Lo spline errors.

Overall, this evidence indicates that L; splines
preserve shape better for this terrain data set than
do Ly splines. With respect to the piecewise pla-
nar surface interpolation the criteria for preservation
of shape depends strongly on the measure of differ-
ence between the interpolation and the original data.
Piecewise planar performs better than the Lo spline
for this data set given the three measures of perfor-
mance used. The comparison with the L; spline de-
pends on the error measure.

4. Conclusion

L1 splines provide shape-preserving interpolation
of a surprisingly simple, piecewise polynomial nature
that will result in enhanced accuracy in a multitude
of applications, especially in representation of urban
terrain. L splines are ideal for parallel computing
and computationally efficient updating of huge terrain
skins because they represent local perturbations in
the data by local perturbations in the spline surface.

The results in this paper indicate that L splines
are excellent candidates for representation of urban
terrain. In this article, we have investigated the ap-
proximation properties of Lq interpolating splines on
increasingly coarse grids. On these coarse grids, we
have completely ignored the presence of intermediate
data. In the future, computational experiments with
L; smoothing splines, which use all of the data, in-
cluding the data between the coarse-grid nodes, will
be carried out. It is expected that the performance
of Ly splines will be further enhanced by doing this.
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