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Abstract. Invariant tori of solutions for nonlinearly coupled oscillators are generalizations of limit cycles in the
phase plane. They are surfaces of aperiodic solutions of the coupled oscillators with the property that once a
solution is on the surface it remains on the surface. Invariant tori satisfy a defining system of nonlinear partial
differential equations. This case study shows that with the help of a symbolic manipulation package, such as
MACSYMA, approximations to the invariant tori can be developed by using Galerkin's variational method. The
resulting series must be manipulated efficiently, however, by using the Poisson series representation for multiply
periodic functions, which makes maximum use of the list processing techniques of MACSYMA. Three cases are
studied for the single van der Pol oscillator with forcing parameter e = 0.5, 1.0, 1.5, and three cases are studied for
a pair of nonlinearly coupled van der Pol oscillators with forcing parameters e = 0.005, 0.5, 1.0. The approximate
tori exhibit good agreement with direct numerical integrations of the systems.
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1. Introduction

Many authors have considered the problem of approximating the limit cycle of the van der
Pol oscillator

+ w2z = e(1 —	 (1)

Of those, several have developed series representations of the limit cycle for various values
of the parameter c using both perturbation and Galerkin methods. Loud [29] developed a first
order parametric representation of (1) forced by 0.1 cos(t) with e = 3.0 using the properties
of invariant manifolds. Stokes [40] extended the nonlinear Galerkin methods of Urabe [42]
to autonomous differential equations and developed a series representation up to the seventh
harmonic for the case c = 0.1. Others have used Poincare—Lindstedt methods. Melvin [32,
33] describes a computer implementation of the Poincare—Lindstedt method for 0 < c < 1.5.
Deprit and Schmidt [11] complemented Melvin's work by symbol manipulation to develop
an exact representation for the limit cycle and its frequencies up to e8 . Other series methods
have also been attempted. The author [21], using methods of integral manifolds, developed a
parametric representation of the limit cycle. Garcia-Margallo and Bejarano [19] developed a
first order solution by the method of harmonic balance for a generalized van der Pol oscillator --
with e = 0.1.

The dynamics of mutually coupled van der Pol oscillators have also been studied by a
number of authors. Rand and Holmes [35] have studied them with weakly diffuse linear
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coupling. They look for conditions that lead to phase-locked periodic solutions using a two-
time expansion technique. Storti and Rand [41] have extended this wok to the case of strong
diffuse linear coupling. Kouda and Mori [27] have used nonlinear modal analysis to study the
stability of various modes for a system of mutually coupled van der Pol oscillators with fifth
order nonlinear characteristics and coupling delay. All of these studies, however, have looked
at particular time dependent solutions.

When two van der Pol oscillators are coupled nonlinearly the solutions can form a surface
of solutions called an invariant torus. Very few authors have approached the problem of
approximating an entire invariant torus for coupled van der Pol oscillators. Diliberto et al.
[14] related the construction of invariant tori (or periodic surfaces in their terminology) to
the construction of first integrals. Diliberto [13] developed a formal iterative technique of
developing a periodic surface by generating sequences of near-identity transformations. He
suggested that this technique could be applied to non-Hamiltonian systems. However, no
application was given to a particular system. The author, Gilsinn [22], proposed a technique
for directly computing invariant tori for weakly nonlinearly coupled oscillators and showed
that it could approximate the motion of two nonlinearly coupled van der Pol oscillators on
the torus to a high degree of accuracy but only under the assumption of small E. Dieci et al.
[12] have recently developed a numerical scheme to approximate tori but do not give direct
analytic representations.

The current work is a case study of the computational experience involved in applying both
symbolic and numerical methods to the construction of analytic representations of invariant
tori for a larger range of E. The goal of producing a parametric representation of a torus is
of course to reduce the order of the system being solved. The Galerkin method is used along
with standard trigonometric basis functions in order to study large nonlinearities. This report
shows, in Section 2, that the construction of a parametric representation of an invariant torus
for a system of coupled oscillators of the form

z l +	 =	 (z, I),

	+ co2z2 = Ef2 (z, Z),	 (2)

where z = (Z1 1 Z2)T = (iii i2)T E > 0, can be reduced to the construction of a solution
of a system of partial differential equations in a similar manner to the construction of center
manifolds as described by Carr [6]. The general form of the Galerkin projection equations is
then developed. The construction of invariant tori and other invariant manifolds such as inertial
manifolds is related to the construction of center manifolds in Section 3. To apply the Galerkin
method efficiently in a symbolic manipulation program some intermediate trigonometric
representations are used, called Poisson series, described in Section 4. Not all symbolic
programs provide Poisson series expansions for trigonometric series but MACSYMA does
provide such a facility (see MACSYMA [30]). The demonstration of the power of this facility
is the basis for the rest of this paper.

Periodic surfaces have not been the subject of much investigation due in part the author
believes to the extremely large trigonometric expansions that result whereas Taylor series
expansions have been successfully used to develop center manifolds. For example, Shaw
and Pierre [38] have used the technique of nonlinear normal modes to develop a series
representation for a center manifold by constructing a solution to an appropriate partial
differential equation using methods described in Carr [6]. The use of Poisson series to represent
trigonometric series, however, provides an efficient intermediate tool to investigate periodic
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and quasi-periodic surfaces. In Section 5 Galerkin constructions, using Poisson series as a
tool, will be given for the limit cycle of the van der Pol oscillator and the invariant torus of
a nonlinearly coupled system of van der Pol oscillators. A typical MACSYMA program to
compute the torus approximation will be given in Section 6 and a discussion of some interesting
properties of the residual errors between predicted and computed trajectories on the torus will
be examined in Section 7 while some final conclusions will be given in Section 8.

2. A System of Partial Differential Equations

One of the first steps in transforming the problem of computing an invariant torus for (2)
into the problem of solving a system of partial differential equations is to introduce polar
coordinates

7	 0Zi = Xi Sinc.Jj 3,

= *X7 cos (s) '3 3	 39 31

for j = 1,2, where '7 > 0 is introduced to simplify powers if necessary. Using (3) it is not
hard to show that (2) can be reduced to a system of the form

= d + s0(9, x),

= EX(0,x),	 (4)

where 9 = (01 , 92 )T , d = (1,1)T , e = (e l , 82)T, X = (x1, X2)T , X = (Xi , X2 )T • (3(0,x),

X(9, x) are assumed to be periodic with vector period 27r/w = (2r/wi ,2r/w2 ). No attempt
will be made in this paper to be concerned with the minimal conditions for the existence of
invariant tori. For a discussion of many of these conditions see Aulbach [1] or Hale [24]. As
a result e, X will be assumed to be sufficiently differentiable with bounded derivatives for
O E R2 and X E D C R2, D a large but compact region in R2.

A parameterized surface x = S(9), with vector period 2r/w, is an invariant torus for (4),
if given that 9(t) solves

9 = d + &Go (0 ,S(0)),	 (5)

for all t E (-00, 00), then (9(t), S (0 (t)))T solves (4) for all t E (-00, 00). To develop the
partial differential equation satisfied by S(9) assume that an invariant torus for (4) exists with
vector period 27r/w. Let 9(t), with 0(0) = 0, be a solution of (5) for all t E (-00, 00). Then
the definition of an invariant torus implies that

dt (S(9(t))) = cX(0(t),S(0(t)))
	

(6)

Or

DS(9(t)) • O(t) = eX(0(t),S(0(t)))
	

(7)

where DS(9) is the Jacobian given by

DS(9) =
asi

 (8)
113=1,2

(3)
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But 0(t) solves (5) so (7) becomes

DS(0 (t)) • (d + ee(e(t), S(0(t))) = EX(0 (t), S(0(t)))
	

(9)

or setting t = 0

DS(0) • (d + e0(0, S(0))) = eX(0, S(0))
	

(10)

which holds true for any initial 0. (10) is the required system of partial differential equations
that must be satisfied by an invariant torus. The reverse argument also shows that if S(0)
solves (10) then it is a parametric representation of an invariant torus for (4). For the sake of
notation rewrite (10) as

(NS)(0) = DS(0) • (d + ce(e,S)) — eX(0,S) = 0.	 (11)

In this paper the Galerkin method will be applied to (11) to solve for invariant tori. The
difference between this system and an analogous system used to compute center manifolds for
equilibria is that in (11) vector periodic representations for S (0) are sought rather than algebraic
representation. This introduces computational complexity as will become evident.

To begin the Galerkin approximation assume a trial solution of the form

SK(0) = c1 01(0 ) + • • • + cKOK(0)	 (12)

where { (0)} is a basis set, each cbi (9) periodic with vector period 27r/w. The parameters
c1 ,... , cK are selected to satisfy

(
N	 ci0i(0)) , 05 (0)) = 0	 (13)

i=1

for j = 1, . , K, where (•, -) is an appropriately defined inner product. System (13) is
sometimes called the variational system.

In the next section we show that the problem of computing a parametric representation of
an invariant torus is not an isolated problem but is linked to the problems of approximating
various types of invariant manifolds. They all relate to the idea of a center manifold.

3. Invariant Manifolds

Let

= X(x)
	

(14)

for x E Rm . A set S C R" is said to be an invariant manifold for (14) if, for xo E S the
solution x(t) of (14) with x(0) = xo is in S for all t.

A center manifold is one example of an invariant manifold. In particular, following Carr
[6], consider the system

= Ax + f (x, y),

= By + g(x, y),	 (15)

where x E Rn , y E Rm . A and B are constant matrices. The eigenvalues of A have zero real
parts and those of B have negative real parts. The functions f and g have continuous second
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order derivatives with f (0, 0) = 0, D f (0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0 where Df and
Dg are Jacobian matrices. If y = h(x) is an invariant manifold for (15) and h is smooth then
it is called a center manifold if h(0) = 0, Dh(0) = 0. Carr [6] shows that there exists a center
manifold for (15) given by y = h(x) for Ix I < 6, where h has continuous second derivatives.
In order to approximate the center manifold let 0: Rrn have continuous first derivatives
in a neighborhood of the origin and define the operator

(N 0)(x) = 0(x) • (Ax + f (x, 0)) — B 0(x) — g(x, 0).	 (16)

This operator is analogous to that defined in (11). From the definition of a center manifold, h,
it must satisfy

(Nh)(x) = 0.	 (17)

Directly solving (17) is difficult, but the next result indicates that a center manifold can be
approximated. Again, let 0 be a continuously differentiable map of a neighborhood of the
origin in Rn to Rm with 0(0) = 0, D0(0) = 0 and suppose that as x 0, (N 0)(x) = 0(1:0)
where q > 1. Then as x 0, I h(x) — 0(x) I = oaxi q ) where q > 1. An illustration of this
calculation is given in Guckenheimer and Holmes [23]. Carr [6] has also extended these results
to nonlinear wave and diffuse equations.

Nonlinear normal modes in vibration studies exhibit the properties of invariant manifolds.
Shaw and Pierre [38] have used the techniques of center manifolds to show that in the
neighborhood of equilibrium points nonlinear modes are invariant manifolds for nonlinear
equations of motion. They begin with equations of the form

xi = Yi7

yi = Mx / Y),
	 (18)

for i = 1,2, . . . , N where x = (x 1 , . . . , XN )T represents displacements and y = (Y1, Y21• ,
y N )T represents the corresponding velocities. If there exists at least one motion for which all
displacements and velocities are functionally related to a single pair of variables, say u = xi,
v = y i , then the functional relations for the invariant manifold are assumed to be

xi = Xi(u,v),

Yi = Yi(u, Y ),	 (19)

for i = 1,2, . . . , N. They show that the invariant manifold can be computed by approximating
the solution of the first order partial differential equations

axi 	axi
fi ytt, X2,• • • ,XN; V , Y2 • • • YN)=Yiau	 av

V +	 flAU, A2, • • • XN; V: Y2, • • • 7 YN)au	 av

=	 X2, . • • XN; 372, • • • , YAr )	 (20)

by use of power series. For the problem of nonlinear normal modes (20), although written here
in component form, is analogous to (10). Shaw and Pierre [39] have extended these results to
nonlinear continuous systems.
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Invariant manifolds in the case of quasiperiodic and periodic systems have in the past
been referred to as integral manifolds for nonautonomous systems (see Bogoliubov and
Mitropolsky [4] and Hale [24]) and periodic surfaces for autonomous systems (see Diliberto
[13]). The results for integral manifolds are related to those of center manifolds in that they
demonstrate conditions under which an equilibrium integral manifold or torus, in the case of
periodic surfaces, perturbs to a nearby integral manifold or torus on which the solutions are
quasiperiodic. In particular, Hale [24] extended the work of Bogoliubov and Mitropolsky [4]
to a system of the form

= d(e) + e(t, 0, y, z, 6),

= Ay + Y(t,O,y,z,e),

= eCz + EZ(t,O, y, z, e),	 (21)

and showed that there exists an integral manifold

y = MAO,

z = g(t,O,E),	 (22)

both quasiperiodic or periodic in t and 0 depending on the quasiperiodicity or periodicity of
(21). The author (Gilsinn [21]) extended the center manifold approximation theorem to one
for integral manifolds by defining

(Ni (F, G))(t, , e) = D 1 F + D2F • [d(E) + e(t, 9, F, G, e)] – AF – Y(t, 0, F, e),

(N2 (F, G))(t, 9, e) = D I G + D2G • [d(e) + 0(t, 9, F, G, e)]

– ECG – EZ(t,0,F,G, e). 	 (23)

If F(t, , e) and G (t, , e) can be constructed so that

l(N1 (F, G))(t, 9, e)I = 0 (eN ),

l(N2(F,G))(t,O,E)1 = 0(EN+1),	 (24)

then

I f(t, 0, 6) – F(t, 0, E)I = 0 (e N ),

Ig(to 9, e) – G(t, 9, E)I = 0(EN ),	 (25)

where f (t, 9, e) and g (t, 0, e) are given in (22).
Some continuous dissipative systems have finite dimensional invariant manifolds called

inertial manifolds. The evolutionary equations, when restricted to these manifolds, reduce
to finite dimensional ordinary differential equations called inertial forms. The existence of
inertial manifolds for nonlinear evolutionary equations in the self-adjoint case has been shown
by Foias et al. [18] and in the nonself-adjoint case by Sell and You [37]. A number of authors
describe methods of approximating inertial manifolds. See, for example, Brown et al. [5],
Debussche and Marion [7], Foias et al. [17] and Jolly [26]. Several of these authors have used
nonlinear Galerkin methods described in Marion and Temam [31]. However, the method of
constructing inertial manifolds that seems closest to the approach in this paper is called elliptic
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regularization, described in Fabes et al. [15]. In their work they are interested in the existence
of inertial manifolds for nonlinear evolutionary equations of the form

du 
+ Au = F(u)	 (26)dt

on a Hilbert space H. A is assumed to be a positive definite, self-adjoint operator on H with
compact resolvent. The function F contains the nonlinear terms. They let P be an orthogonal
projection of H so that the range PH is finite dimensional. If Q = P then system (26)
becomes

—
dp 

+ Ap = PF(p + q)dt

—
q 

+ Qq = QF(p + q ) q)	 (27)dt

where P is often selected as the projection onto the space spanned by {eh , em } where
ex is the eigenvector af the operator A corresponding to the eigenvalue A i , with the ordering
0 < A 1 < A2 < A3 < .. An inertial manifold is realized as the graph of a function (1.:
PH —+ OH. If D = -a. denotes the derivative with respect to p E PH, then (I) solves31)

Dts (PF(p + ') — Ap) = QF(p + ) — A (I) , (28)

a first order partial differential equation over PH. This equation is analogous to equation (10),
but is solved by replacing (28) with the regularized elliptic equation

—e72 (1. + D 41)(PF(p + (10) — Ap) = QF(p + 4) — (29)

with suitable boundary conditions. Under appropriate conditions on A the solution (N of (29)
converges to a weak solution 4:I) of (28) as c —+ 0.

4. Poisson Series

For the rest of this paper we will concentrate on the quasiperiodic solutions for (10) using a spe-
cial trigonometric series form for intermediate calculations because once the trial approximate
solution (12) is substituted in (11) it becomes crucial that the intermediate series generated
be manipulated efficiently. Jefferys [25] has pointed out that workers in celestial mechanics,
constructing, for example, the theory of the orbit of a celestial body, have had to deal with
expansions involving hundreds or even thousands of terms. Barton and Fitch [3] have noted
that even in simple problems involving the manipulation of functions, problems starting from
and resulting in quite short expressions frequently lead to intermediate expressions of inordi-
nate length in the course of computation. They refer to this as the problem of `blow-up'.

This problem has been somewhat alleviated by the use of a series representation called a
Poisson series. This series was defined by Deprit and Rom [8] in the form

EE
.
-•E EE•••EP1'4•••gz

ij �0 i2	 m�0 	i >0 ii >0 j200 in 00

X C41:i322 'll"i3mn cos[	 C71 t l + j2t2 ± — • + intn)

+ Sii':42:::::i3m..n sin( j i t 1 + j2t2 + ... + jntn)
(30)
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where • • • , im, • • • in are integers, pi, P2) • • • , Pm are canonical, or position depen-
dent, polynomial variables and t 1, -2, • • • to are canonical angular variables. As an example
of this form of representation consider the simple expression

(3x2y + x) sin2 (v + 2) cos2 (2v + u)	 (31)

and note that it is not in the Poisson series form. However, it can be rewritten in the form

--
8	8

x2y cos(6v + 6) — —
1 

x
3

3 2+ —
4 

x y cos(4v + 2) +

——3 x2y cos(2v + 4u) —
4

3— x2 y cos(2v — 2) —

+
4 x

2y +
4 

x

which, although seemingly more complex than (31), can be represented computationally very
compactly in a list structure.

The Poisson series is not a new representation. E. T. Whittaker [44] has pointed out
that those working in celestial mechanics had used this representation in the 19th century.
He himself used in the early part of the current century to construct integrals for certain
Hamiltonian systems. These integrals he called adelphic integrals.

The significance of the representation of a trigonometric series in the form (30) has been
discussed by Fateman [16]. The Poisson series can be successfully represented in computer
memory compactly by keeping track of:

1. the type of each term, i.e. whether it is sin or cos,
2. the coefficients of the angular variables,
3. the exponents of the polynomials and
4. the coefficients of the terms.

He further pointed out that this representation is canonical, compact, easy to search and is
useful in solving many classes of problems. He employed these ideas in developing the Poisson
series subpackage for MACSYMA [30]. It was written in LISP and used list representations
to link the term type, angular coefficients, polynomial exponents and term coefficients of each
term to each other term. Linked lists are efficient structures for searching for terms, inserting
terms and extracting them. All of these operations are needed in algebraically manipulating
trigonometric series represented as lists.

Other compact representations of Poisson series for efficient computing have been used in
the past. Kovalevsky [28] reviewed some early attempts in Europe to program many of the
operations needed to perform symbolic computation in celestial mechanics. In particular, he
reviewed the work of Barton [2], whose methods are similar to those used in MACSYMA in
that both use linked lists, although Barton used assembly codes to program his algorithms. He
represented a Poisson series as a doubly-linked list where the primary chain links the vectors of
coefficients of the canonical angular variables. Each of these are in turn linked to the exponents
of the first polynomial terms. These then are linked to both their coefficient and to the exponents

cos(6v + 6u)

1
—
4 

x cos(4v + 2u)

1
x cos(2v + 4u)

1
x cos(2v — 2u)

(32)
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11 HI	 II HU 0 0 11 II4 4II 6 6

UH OH OH OH HU

L
O 11	 II 00II O II 10110 0

A,
	 -Polynomial constants	 Termination character---I

— — — - Exponents of canonical polynomial variables
- Coefficients of the canonical angular variables

- Pointer to the start of the expression

Fig. 1. Barton's doubly linked list storage scheme for the example expression.

of the second polynomial term. The doubly linked list can be continued depending on the
length of the series. Figure 1 shows a representation of (32) using Barton's scheme. Note that
only the significant constants, coefficients and exponents need to be stored.

Deprit and Rom [10] used Poisson series to develop a high order asymptotic representation
of the limit cycle for the van der Pol's equation. It is well known that equation (1) possesses
a unique limit cycle for all positive values of the damping coefficient E. In the neighborhood
of e = 0 they represented this cycle by a series

(33)
n>0

the coefficients x,,(t) being periodic functions oft with the minimal period T. The period was
represented as a series of the form

T = 2ir (1 E Tnen) .	 (34)
n>1

They obtained an asymptotic expansion of the limit cycle up to degree 30 in E. Numerical
values were given to e, and the corresponding initial condition and period were evaluated
from the series. For E as large as 0.75 the estimates given by the series for the amplitude
and the period agreed to 15 decimal places with the correct values. When E reached 1.75 the
agreement was still within 10-3.

Melvin [33] used Poisson series to develop the Poincare--Lindstedt expansion for the van
der Pol oscillator in the range 0 < E < 1.5. His approach was to extend his earlier work,
Melvin [32], by a numerical construction of the coefficients. Deprit and Schmidt [11] applied
a symbolic manipulation package called MAO (for Mechanized Algebraic Operations), devel-
oped by Rom [36], to redo the calculations of Melvin and generate the series with coefficients
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as exact quotients of relatively prime integers. They developed the limit cycle to order 8 and
confirmed Melvin's coefficients were exact to 6 digits with rounding for the last digit.

Several simple trigonometric relations make it feasible to manipulate the Poisson series
efficiently. The following identities are used in practice

sin A sin B = 1 cos(A + B) + cos(A — B)

1
sin A cos B = sin(A + B) + sin(A — B)

cos A	
1

cos B = cos(A + B) + 
1

cos(A — B).	 (35)

Another property that will be used subsequently is the following integral

2ir 2ir	 2,r

f f f s in (j l t i + j2t2 jan) dtn dt2 dt = 0
	

(36)

00	 0

with a similar result for cos. In particular this says that an integral of a Poisson series over all its
full period is just the leading term with ji = j2 = = jn = 0. The advantage of this property
is that an inner product of two trigonometric expressions need not involve an integration. The
product of the trigonometric terms can be converted into a Poisson representation and the
harmonic terms with nonzero angular coefficients dropped, which is how an inner product of
trigonometric terms in MACSYMA can be performed.

5. Applications

Two applications of the Poisson series representation, as an intermediate tool to computing the
Galerkin approximation of invariant tori, will be studied. The first application approximates
the limit cycle of the classic van der Pol oscillator, which can be considered a one parameter
torus. The second application will be to a nonlinearly coupled system of van der Pol oscillators
for which a two parameter invariant torus will be constructed.

5.1. VAN DER POL OSCILLATOR

For the classic van der Pol oscillator

— 6(1 — z2 )i + z = 0	 (37)

set

z = r cos 0.

= r sin 0.	 (38)

Then (37) becomes (see equation (4))

0 = 1 + 60(0, r),

= EX (0, r),	 (:39)
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where

r) = (1 — r2 cos2 0) sin e cos 0,

X(0, r) = (1 — r2 cos2 9)r sin2 O. (40)

If r(9) is a differentiable parametric representation of a limit cycle of period 27r then by
equation (10)

—
dr 

(OM + e0(0, r(0))) = EX(0 , r(0)).	 (41)
dB

Putting this in the form of equation (11) gives

dr
(Nr)(0)(0)(1 + ceo, r(6))) — eX(0,r(0)).	 (42)d9

Previous work has shown that only even harmonics are represented in the angular parametric
representation of the van der Pol oscillator (see Gilsinn [22]). Thus only even harmonics are
assumed in the Galerkin representation of the limit cycle. The essential algorithm used in
MACSYMA is relatively straightforward and can be stated as:

1. Initialize the number of even harmonics and the damping parameter e.
2. Define the symbols basic representation

7-1 (0) = E (an, cos(n9) + bn sin(ne))	 (43)
n=0

n(even)

where the coefficients an, bn, are to be determined.
3. In MACSYMA put the complete expansion of the following expression into Poisson

form

(Nr,e)(0) = 
dr e 

(0)(1 + e((1 — ri (9)2 cos2(9)) sin(0) cos(0))
de

— e((1 — re(9)2 cos2(0))rt (9) sin2 (8)),	 (44)

where equation (43) has been symbolically substituted.
4. Put each of the basis terms into Poisson form. That is put 1, cos(n0), sin(n0), for

n = 2, 4, ... , £, into Poisson form in MACSYMA.
5. For each of the basis functions form the Poisson products

(Nri)(0) • 1,

(Nri )(0) • cos(n19),

(Nri)(0) • sin(n0),	 (45)

for n = 2, 4, ... , t.
6. In MACSYMA there is an operation that can be applied to trim off all harmonic terms of

a Poisson series with nonzero angular coefficients. Since (36) holds, apply this trim operation
to the products in (45) to get

((Nre)(0),1)

((Nre)(0), cos(nO)),

((Nri)(0), sin(n0))	 (4.6)
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Table 1. Approximate solution coefficients.

Coeff. E = 0.5 e = 1.0 E = 1.5

ao 2.01365 2.05365 2.11428

a2 -0.03839 -0.14508 -0.2955

1)2 -0.2454 -0.46456 -0.64067

a4 0.02234 0.07883 0.15199

b4 0.12123 0.22542 0.31222

a6 0.01686 0.05226 0.07512

b6 -0.00622 -0.04375 -0.11723

a8 -0.01165 -0.03006 -0.03707

bs 0.00574 0.03403 0.07853

alo 9.2107e-4 0.01209 0.03988

bio 0.00157 0.00654 -1.55835e-4

a 12 -0.00123 -0.01142 -0.02715

b12 -0.00133 -0.00195 0.00877

a l ,' -1.23504e-4 -4.84576e-4 0.00694

b14 1.36739e-4 0.00306 0.01138

a 16 -0.00117 -0.00979

616 -0.00304 -0.00496

aig -5.47954e-4 -0.00246

bi8 2.16835e-4 0.00419

a20 -0.00144

b20 -0.00451

a22 -0.00171

622 -1.59286e-4

a24 0.00114

b24 -0.00173

for n = 2, 4, . . . , £. Here the inner product is defined for two functions 7(9) and g(0), both
periodic with period 27r in all components of 9, as

27r

(r, g) = -
1 

f r(9)g(9) dO
27r

The end result of (28) is to produce £ + 1 equations in t + 1 unknown parameters.
7. These nonlinear equations are solved in MACSYMA by Newton's method. The only

limitation on the entire process is the number of equations that can be held in memory.
The coefficients of the even terms in the expansion of the parameterized form of the limit

cycle are given in Table 1 and are those used in equation (43). The expansion coefficients are
shown for the case of e = 0.5, 1.0 and 1.5. Further cases could have been considered but
they would not have added further information to the fact that the Galerkin approximations of
sufficient length appear to converge adequately. All expansions were performed on a 486/33
PC with 32M Bytes of memory.

(47)
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Table 2. Maximum error between the full system
and phase equation on the limit cycle.

E = 0.5 E = 1.0 e = 1.5

3.20435e — 4 7.711411e — 3 0.131990
5.25951e — 4 8.93307e — 3 0.212730

APPROXIMATE LIMIT CYCLE
FULL SYSTEM INTEGRATION

5

4

APPROXIMATE LIMIT CYCLE
PHASE EQUATION INTEGRATION

(a)	 (b)

Fig. 2. Trajectories on the limit cycle: (a) full system, (b) phase equation only (E. = 1.0). Initial conditions on the
approximate limit cycle. Integration step size 0.05, number of steps 500.

The error trends were then computed between the numerically integrated angle-radial
equations, equation (39), and the approximate system, given by

= 1 + e8(0, r1(0)),

r = rt (0)•	 (48)

This system represents the integration of the phase equation on the approximate torus. In all
case studies for both the single and coupled oscillators Gear's method (see Gear [20]) was
used. Equations (39) and (48) were integrated with 500 steps of length 0.05. The coefficients
for rt (9) in (48) for the case E = 0.5 are the 15 coefficients in the column under e = 0.5 in
Table 1. The coefficients for the other two cases are in their respective columns. The maximum
absolute error between (39) and (48) are shown in Table 2. For the given number of simulation
steps the maximum absolute errors in this case show an excellent fit. In all three cases plots of
the limit cycles for the integration of the full and approximate system are indistinguishable.
Figure 2 shows the results for e = 1.0.

As another measure of the quality of the approximation the Fourier spectrum of the phase
and radial solutions for (39) and the phase and radial solutions for (48) were computed. The
spectra are nearly identical and are graphically demonstrated in Figure 4. Table 3 shows that for

= 0.5 the dominant angular frequencies (w = 2.7rf , fin Hertz) very nearly duplicate the ideal
angular frequencies shown in column 1. The angular frequencies in Table 3 are computed from
the time dependent solutions of (48) with linear trends subtracted out. Although these seven
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Table 3. Dominant frequency response of the phase equation on the limit cycle.

Ideal = 0.5 = 1.0 e = 1.5

0 r 0 r 8 r

2 2.011 2.011 2.011 1.759 1.759 1.759

4 4.021 4.021 3.770 3.770 3.519 :3.519
6 6.032 5.781 5.781 5.529 5.278 5.278

8 8.042 7.791 7.791 7.540 7.037 7.037

10 10.05 9.802 9.299 9.550 8.796 8.796

12 11.81 11.81 11.56 11.31 10.56 10.56

14 13.82 13.82 13.07 13.07 12.32 12.32

16 - - 15.08 15.08 14.07 14.07

18 - - - 16.84 15.83 15.83

20 - - - - 17.59 17.59

22 - - - - 19.35 19.35

24 - - - - 21.36 21.36

Table 4. Dominant frequency response of the full system on the limit cycle.

Ideal = 0.5 E = 1.0 c = 1.5

0 r 8 r

2 2.011 2.011 2.011 1.759 1.759 1.759

4 4.021 4.021 3.770 3.770 3.519 3.519

6 6.032 5.781 5.781 5.529 5.278 5.278

8 8.042 7.791 7.791 7.540 7.037 7.037

10 10.05 9.802 - 9.550 8.796 8.796

12 11.81 11.81 11.56 11.56 10.56 10.56

14 13.82 13.82 13.07 13.07 12.32 12.32

16 - - 15.08 15.08 14.07 14.07

18 - - 17.09 - 15.83 15.83

20 - - - - 17.59 17.59

22 - - - - 19.60 19.60

24 - - - - 21.36 21.36

even frequencies are somewhat expected considering the assumed approximate parametric
expansion of the limit cycle, these frequencies track those of the full system integration as
shown in Table 4. Note that in these and other frequency tables in this report some of the
entries are blank. This means that those frequencies were too small to detect or were small
relative to nearby frequencies, such as side lobes.

Observations similar to the above can be made about the cases 6 = 1.0, 6 = 1.5. Notice
however that as the numerical accuracy decreases in Table 2 the frequencies in Table 3 show
shifts from the expected angular frequencies. Plots in Figure 3 show that for the case E = 1.0
there are periodic components to both angular and radial errors as well as a definite increasing
trend. Extending the number of basis elements used reduced the error range for the same tune
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(a)	 (b)

Fig. 3. Absolute errors between integrating the full system and the phase equation on the limit cycle. (a) shows the
phase differences and (b) shows the radial differences. Initial conditions are as in Figure 2.

interval, but the error trends still increase as time increases. For the case e = 0.5 the linear
trend was not dominant but it was for the case e = 1.5. These trends can be explained in terms
of the integration algorithm used and will be discussed in a separate section below.

The size and complexity of the MACSYMA calculations can be illustrated by the number of
terms in the equations that must be solved to generate the Galerkin coefficients. The average
number of terms in the variational equations for the case e = 0.5 is 267. In the c = 1.0
case there are 19 equations and 19 unknowns. However, the average number of terms in the
variational equations for the case e = 1.0 is 478 and the number for the case c = 1.5 could
not be computed along with solving the equations without 'hanging' the system.

For a given e > 0 and a given maximum integration time it appears to be possible to
select the number of terms in the Galerkin approximation to maintain errors within prescribed
bounds. However, the tighter the error specification the number of terms required begins to
grow rapidly. The memory available to MACSYMA of course limits these expansions. An
attempt was made by the author on the 486 PC to extend the basis set for the case E = 1.5 in
order to reduce the error. However, MACSYMA, although generating the variation equations,
could not perform the Newton approximation and simply 'hung'. It was clear that memory
limitations had been reached. For the given selection of basis terms for each of the E values
the maximum absolute errors increase with increasing e. Further reduction in absolute errors
would require increasing the basis set, thus increasing the harmonics in the approximation.
The ability to do this clearly depends on usable memory available which also depends on how
the operating system accesses memory.

Again, as a final test on the quality of the approximation the power spectra of the angular
and radial equations for the integration of the angular-radial system for the two cases e = 1.0,
1.5 are given in Tables 3 and 4. A perusal of these two tables clearly shows that the Galerkin
method does as well as numerical methods in generating frequencies.

Table 3 reflects Table 2. It shows that the angular frequencies nearly match the expected or
ideal frequencies used in the approximations provided the basis set is sufficiently extensive. For
E = 0.5 selecting a basis set of seven even harmonics from 2 to 14 gave a good approximation
for the integration period selected. For e = 1.0 only four computed angular frequencies round
to the ideal and for c = 1.5 only two properly round. The errors shown in Table 2 mirror
these approximations. This suggests the result that given an integration period and an e there
exists a basis set of even harmonics that produces an absolute integration error of less than a
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Fig. 4. Spectral plots of the amplitudes of the phase and radial equations for the full system, (a) phase, (b) radial,
and the approximate system, (c) phase, (d) radial. Initial conditions as in Figure 2.

prescribed amount. The relationship of the approximation obtained and the actual frequencies
produced is a question for further research.

As a note of interest, the Galerkin method as discussed in this paper holds a close affinity
to the Method of Harmonic Balance as described, for instance, in Nayfeh and Mook [34].
Galerkin's method, however, can be implemented more efficiently in MACSYMA. Both
methods seek to generate a set of algebraic equations that must be solved to compute the
coefficients of the assumed approximate solution, in this case equation (43). In fact all of
the steps of the previous MACSYMA algorithm would be the same for harmonic balance
except for numbers 4, 5 and 6. At this point, instead of being able to project out the variational
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equations by a simple trimming of all harmonics in the Poisson series, one would have to write
an algorithm in MACSYMA to compare all of the harmonics produced by expanding (44)
with those in (43) in order to identify the terms to drop from the expansion of (44). This is not
a straightforward process, since each term would have to be syntactically parsed to form the
leading polynomial and the harmonic portion before the harmonic portion could be compared
with those in (43). Thus it is clear that, although they are intimately related, Galerkin's
projection steps lend themselves to more efficient programming than harmonic balance in
MACSYMA. These comments also apply to the assumed expansions for the torus as described
in the next section. For an example of the steps required to apply a symbolic manipulation
program to the solution of a nonlinear oscillation problem by harmonic balance see Wang and
Huseyin [43]. They provide a source code example from the language MAPLE.

5.2. COUPLED VAN DER POL OSCILLATORS

The example considered in this section is the system

	

+ ca?.z i = e(1 – z? –	 ,
2

W3Z2 = e(1 – az i2 – z2 )i2 .

This system has also been studied by the author in [22] where a perturbation series formula
was developed for an invariant torus in the case of small 6 . > 0. The first step in developing a
representation for an invariant ton for (49) was to reduce into the form (4). This was done by
introducing the polar type coordinate

1/2	 \zi = xi sinkwivi),

zl = W1X
11 /2
 COS(WI, 91),

1/2
Z2 = x2 sin(w292),

/2	 /

	

= W2X2 cos(w2 92).	 (50)

Then (49) becomes (4) with

= – (1) (sin(.0 1 0 1 ) cos(co " 0" ) – x1 Sin3 (f.0 1 01 ) cOS(wit9i)

– axe sin(w1 0" ) cos(w 1 0 1 ) sin2(w292)),

1	 , . _	 A 	 ,
e2(9, x) = – (—) ksin(w2v2) cos(w292) –	 sin2P1 01 ) sin(w202 ) cos(w292)

w2

- x2 sin3 (w202) cos(w292)),

X1(1 9 X) = 2x 1 (cos2 (w" 0 " ) x1 sin2 (w1 01 ) cos2(w " 0" ) – axe cos2 ((.0 1 0 1 ) sin2(w292)),

X2 (0, x) = 2x2 (cos2 (b.;202) – ax 1 sin2 (w i 0 1 ) cos2(w292)

– x2 sin2 (w292 ) cos2 (w202))• (51)

From the form of (51) it seemed appropriate to look for S(0) as multiple Fourier series with
period 211- in 0 1, in 02 . For the case of a real valued double Fourier series, if it has continuous

(49)

x)
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and bounded second partial derivatives then the double Fourier series converges absolutely
and uniformly. For the current problem S(9) will be taken as a vector of two components since
x is a two dimensional vector. The N-th partial sum will be designated as

S(1) (6)
S N (9)	 N	 (52)

4)(e)

where
N N

4,) (0) = E E (aa COS(Win01) cos(w2m92) +	 cos(cv i n0 i ) sin(w2m02)
n=0 m=0

+ sin(coi n0 1 ) cos(w2m02) + sin(wi nei) sin(w2m02)) (53)

and the coefficients were determined for i = 1, 2. Certain of the coefficients were understood
as 0. For those terms, where n = 0, or m = 0, the sin components were 0.

In terms of components (42) was written as two separate partial differential equations

as(i) aso) 	 aso)
(N S(1) )(0) =	 a02 +6  aoi 8 1 (0, S(0))

aei

as
e,

) e2 (e, S(0)) — eXi (0 , S(0)) = 0a

85(2) as(2)	 as(2) 
ei (0 , SO))(Ns(2))(0) =  aei + 80

2 -1-"' ae,

as
+ E 

a0(2)
2 e2(9, S(0)) — E X2(0 , S(e)) = 0.

The variational equations that were solved were given by

((N S (i) (0), cos(cv nO i ) cos(co2ne2)) = 0,

((N S(i) (0), cos(w i n0 1 ) sin(w2m02)) = 0,

((N S(i) (0), sin (w i 	) cos(w2m02)) = 0,

((N S(i) (0), sin(w i n01 ) sin(w2me2)) = 0,

for i = 1, 2, where the inner product is defined by

2/r/w 1 2/r/w2
O1(.0(r, g) =

	

	 f r(0 i , 02)901,02) de2 del.47r2 
2 f

0	 0

The first step in approximating invariant tori was to locate potential candidates. To do this N
was set to 0 in (53). From (54), (55) and (56) only two equations had to be solved,

	

(1)	 (2)

(1) (1 au) —	 = 0,a00	 — 4	 2

(1)	 (2)

a(2) (1 — c-L°—° — ( a ) = 0.oo	 2	 4

(54)

(55)

(56)

(57)
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These were, incidentally, the same two equations that had to be solved to locate potential
invariant tori using the average technique developed by Gilsinn [22]. There were four solutions
for (57), given by

1. 410) — a
(2
oo) = 0,

2. ago) = 0, a(I20) = 4,

3. a lo) = 4, a2) = 0,

4 — 8a	 a(2) 4 — 8a4. a lo) — 	 	 (58)1 — 4aa	 °° — 1 — 4aa

The first solution represented the trivial original solution. The next two represented separate
limit cycles and were the first order approximations to the radii of the limit cycles. Note that
the radial values are 4 since the transformations in (50) have an exponent of 2 as a device to
simplify the resulting equations. The last solution represented the invariant torus. As shown
in Gilsinn [22] an appropriate region of asymptotic stability of the torus was determined by
the parameter region 0 < a < 0 < a < 1. To be more specific the following parameters
remained fixed for this case study:

a = 0.20,

a = 0.40,

(yI = 1.0,

w2 = 1.414. (59)

From (58) the first approximation to the radii were 40)  = 3.53, 4; 1.18. Tables 5 and 6
list the coefficients computed by both the averaging based approximation developed by the
author in [22] for e = 0.05 and the coefficients computed by the Galerkin approximation for
e = 0.05, 0.5, 1.0. As can be seen from the tables the coefficients from the averaging and
those from the Galerkin approximation for e = 0.05 were very close. The averaging method
however did not generate coefficients for terms of the order of 1 x 10-3 or smaller.

The symbolic algorithm for computing these coefficients is similar to the algorithm used to
compute the limit cycle of the van der Pol oscillator. Before beginning however the following
substitutions were made to transform (54) into a form that could be expanded as a Poisson
series:

x = wieh

y = W292.
	 (60)

The MACSYMA algorithm then became:
1.Initialize the number of even harmonics Q and the damping parameter 6.
2.Define the two symbolic basis representations:

e
slt(x, y) = E E (aim, cos(nx) cos(my) + binm cos(nx) sin(my)

n=0 m=0
n(even) m(even)



288 David E. Gilsinn

Table 5. Coefficients for the approximate torus.

Coeff. Averaged

E = 0.05

Galerkin

= 0.05 E = 0.5 e = 1.0

a100 3.52941 3.52981 3.57764 3.74297

aim 0.00161 0.14848 0.50194

C120 0.07785 0.07783 0.76096 1.46385

a140 4.8305-e4 0.0508 0.21725

a140 0.03893 0.03893 0.39509 0.82167

aloe -1.15736e-5 0.01108 0.09261

b102 0.007341 0.00737 0.09197 0.20859

alas -3.9817e-5 -0.00234 -0.00734

b104 2.0644e-6 8.43295e-4 -7.16953e-4

a122 0.00126 0.09832 0.27036

b122 0.01469 0.01461 0.09642 0.09347

0122 -0.01039 -0.01029 -0.03782 -0.06894

d122 0.00154 0.11586 0.29067

a124 -8.03012e-5 -0.01197 -0.05671

b124 -4.22521-6 -8.06277e-4 0.01969

C124 3.76436e-6 -6.75525e-4 -0.01863

d124 -5.30407e-5 -0.00864 -0.04021

a142 -3.86687e-4 -0.02074 -0.00394

b142 9.9227e-6 0.00746 0.04247

0142 -2.8437e-6 -0.00188 -0.03848

d142 -1.75136e-4 0.00167 0.07459

a144 -1.59375e-4 -0.00844 0.00469

b144 1.72939e-5 0.0128 0.05859

C144 -1.80894e-5 -0.01319 -0.05961

d144 -1.50128e-4 -0.00703 0.01202

+ clnm sin(nx) cos(my) + dlnm sin(nx) sin(my)),

s2t(x, y ) = E E (a2nm cos(nx) cos(my) + b2nm cos(nx) sin(my)
n.0 m=0

n(even) m(even)

+ C2nm sin(nx) cos(my) + d2nm sin(nx) sin(my)). 	 (61)

3. Put Ee l , Ee2 ,	 EX2 into Poisson representation after inserting sl t , and s2e.
4. Put sl t and s2e into Poisson form.

w2 42it , w2 2sy. , w1 as x2,5. Compute the derivatives w 1	 in Poisson form.

6. By using Poisson summation form the expressions for (NS(1) )(x, y) and (NS(2) )(x, y)
from (54).

7. For n,m = 0, , t put all of the basis elements

cos(nx) cos(my)

cos(nx) sin(my)
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Table 6. Coefficients for the approximate torus.

Coeff. Averaged

e = 0.05

Galerkin
c = 0.05 E = 0.5 c = 1.0

ano 1.17647 1.17652 1.16989 1.07185

a220 3.88936e-4 0.03478 0.09534

C220 0.02076 0.02075 0.19404 0.31232

a240 3.82244e-5 0.0043 0.01902

C240 3.7533e-6 0.00271 0.01006

a202 -3.87425e-4 -0.0301 -0.07748

b202 0.006118 0.00614 0.07512 0.16681

(22°4 -7.5554e-5 -0.00427 -0.00585

b204 0.003059 0.00307 0.03565 0.07392

a222 5.78693e-4 0.04187 0.06161

b222 0.02937 0.02934 0.26475 0.44625

C222 -0.02077 -0.02075 -0.18939 -0.33731

d222 2.09716e-4 0.01118 -0.02793

a224 -9.5337e-6 -0.00624 -0.04413

6224 -1.06561e-5 0.00668 -0.03141

C224 1.11702e-5 0.00833 0.04891

C1224 1.15034e-4 0.00688 0.71993e-5

a242 -2.43808e-4 -0.02108 -0.06231

b242 3.19611e-6 0.00423 0.03415

C242 -1.33117e-7 -0.0015 -0.02107

d242 -1.83154e-4 -0.01605 -0.05281

a244 -3.20202e-4 -0.02741 -0.10108

6244 9.20099e-6 0.00584 0.01424

C244 -8.41689e-6 -0.00504 -0.00895

d244 -3.01856e-4 -0.02558 -0.09529

sin(nx) cos(my)

sin(nx) sin(my)
	

(62)

into Poisson form.
8. For i = 1,2 and n, m = 0, , t, using Poisson multiplication, put the expressions

(NS() )(x, y) cos(nx) cos(my)

(N S(i) )(x, y) cos(nx) sin(my)

(NS() )(x, y) sin(nx) cos(my)

(N S( )(x, y) sin(nx) sin(my)	 (63)

into Poisson form.
9. Compte the inner products (55) by trimming off all harmonic terms with n, m = 1, , t.

This gives the algebraic expressions for (55).
10. Solve these by Newton's method.
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Table 7. Maximum error between the full
system and phase equations on the torus.

= 0.05 E = 0.5 E = 1.0

01 9.186e-3 0.918 11.179

02 2.502e-3 0.131 1.276

x 1 2.579e-3 1.953 5.503

X2 8.160e-4 0.502 1.458

Tables 5 and 6 give the coefficients for the even harmonic terms up to 4. Each harmonic
included in the assumed expansion increased the number of unknowns and resulting equations
by 16. Each of the variational equations had several hundred terms. Because of the limitations
of the PC only even harmonic terms up to 4 could be used. A workstation version of MACSY-
MA was not available to the author. It, no doubt, could have extended these limits. The results
discussed below however indicate strongly that the Galerkin method, used in conjunction with
the Poisson series representation, is an adequate technique for approximating invariant tori
for systems with large damping parameters.

Table 7 shows the results of integrating the full system (4), using (51), and the approximate
phase equations on the torus given by

= d + ee(0,SN(9)),

x = SN(0).	 (64)

The integration step size was 0.1 and the number of integration steps was 4000. The table
gives the absolute errors between the phase and radial results for both the full and approximate
systems.

For the case c = 0.05 the phase difference errors showed increases whereas the radial
differences oscillate around a mean. In both cases the absolute errors are small. The main
peaks of the Fourier spectra of the time integration of (4) and (64) respectively for this case
are shown in Table 8. These results are also very comparable to those given in Gilsinn [221.
This suggests that, at least for small c, the averaging and Galerkin methods are consistent.

In Table 8, column 1 represents the linear combinations of the angular frequencies in
radians per second, whereas the other column are given in Hertz. For example, from the
first row, using (59), 2w2 — 2w = 0.828 radians per second. After dividing by 27r this is
given approximately by 0.132 Hz, which is shown in column 2. The other three columns
are the frequencies in Hertz computed by integrating (64) using the Galerkin coefficients for
E = 0.05 in Tables 5 and 6. These angular frequency combinations indicate the aperiodiLcity
of the solutions on the torus.

Figure 5 shows the full and approximate system integration for the case e = 0.5. Initial
conditions for both integrations were taken on the approximate torus. The integration step size
and number were the same as in the case e = 0.05. Figure 6 shows the error trends. There
is an increasing trend with oscillations about it for both the angular and radial solutions. An
explanation for this can be found as indicated earlier in the numerical scheme used to integrate
the differential equations and will be discussed below.
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APPROXIMATE TORUS
FULL SYSTEM INTEGRATION

(a)

APPROXIMATE TORUS
PHASE EQUATION INTEGRATION

(b)

Fig. 5. Trajectories on the torus: (a) full system, (b) phase equations only (e = 0.5). Initial conditions on the
approximate torus. Integration step size 0.1, number of steps = 4000.

Figures 7 and 8 show the spectral plots from integrating the full system in the form (4),
using (51), and the approximate system (64) with coefficients taken from Tables 5 and 6 in the
Galerkin columns for e = 0.5. Tables 9 and 10 show the frequencies in Hertz that compare
with the theoretical angular frequencies given in column 1. For this value of E the frequencies
in these two tables are quite similar.

The error trends between the full and approximate system integration for c = 1.0 on the
torus show similar trends to those for e = 0.5. The errors are large since only harmonics 2
and 4 are used in the approximate solutions. The PC used was not able to handle a larger
expansion. These larger errors are reflected in the frequency Tables 11 and 12 where it is clear
that there are definite frequency shifts in the approximate solutions.
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Fig. 6. Absolute errors between integrating the full system and the phase equations on the torus. (a) and (b) show
the phase differences where (c) and (d) show the radial differences. Initial conditions as in Figure 5.

6. MACSYMA Program for the Torus

In this section the MACSYMA program for the simple case of one even harmonic is given in
order to demonstrate how the Poisson representation was used to perform efficient intermediate
representations of the trigonometric terms. The program syntax is not particularly difficult
to understand. Lines beginning with /* and ending with */ are comments. Lines terminating
with $ suppress any output, while those ending with ; produce an output after execution. The
colon ,:, is an assignment operator. Array elements are identified by square brackets after



Constructing Galerkin's Approximations 293

Table 8. Major frequency responses in Hertz after the inte-
gration of the full system and phase equations starting on the
approximate torus (e. = 0.05).

e = 0.05

Full system integration

Ang. freq. Theory 01 02 X1 X2

2w2 - 2w 1 0.132 0.132 0. i 32 0.132 0.132
2w 1 0.318 0.318 0.318 0.318 0.318
2w2 0.450 0.450 0.450 0.450 0.450
4w 1 0.637 0.637 - 0.637 0.637
2co2 + 2w 1 0.768 0.767 0.767 0.767 0.767
4w2 0.900 - 0.900 - 0.900
6w 1 0.955 0.955 - 0.955 -
- - - - - 1.087
4w2 + 2w 1 1.2185 - - - 1.2175
8w/ 1.273 - - - -

Integration of phase equations on the approximate torus

2w2 - 2w 1 0.132 0.133 0.133 0.133 0.133
loi 0.318 0.318 0.318 0.318 0.318
2w2 0.450 0.450 0.450 0.450 0.450
4‘.,) 1 0.637 0.637 0.637 0.637 0.637
2w2 + 2co i 0.767 0.767 0.767 0.767 0.767
4co2 0.900 - 0.900 - 0.900
6co i 0.955 0.955 - 0.955 0.955
- - - - - 1.087
4w2 + 2w 1 1.2185 - - - 1.2175
flw 1 1.273 - - 1.273 -

the array variable name, e.g. a[1,2,3] for the element (1,2,3) of array a. Algebraic operations
in expressions use the standard symbols, except that exponentiation is designated by ". For
loops with the step option are straightforward. A more detailed explanation is given in the
MACSYMA reference manual [30].

/* Load the Poisson package and set the harmonic limits for intermediate expressions */
load(pois2)$
poislim: 60$
/* Set the maximum basis harmonics for this run and expand the assumed solutions */
/* Algorithm Step: 1 */
1:2$
/* Algorithm Step: 2 */
s1:0$
s2:0$
/* For loops are similar to FORTRAN or BASIC loops */



294 David E. Gilsinn

for n:0 step 2 thru 1 do
for m:0 step 2 thru 1 do

(sl: sl + a[1,n,m]*cos(n*x)* cos(m*y)
+ b[1,n,m]*cos(n*x)*sin(m*y)
+ c[1,n,m]*sin(n*x)*cos(m*y)
+ d[1,n,m]*sin(n*x)*sin(m*y),

s2:s2 + a[2,n,m]*cos(n*x)*cos(m*y)
+ b[2,n,m]*cos(n*x)*sin(m*y)
+ c[2,n,m]*sin(n*x)*cos(m*y)
+ d[2,n,m]*sin(n*x)*sin(m*y))$

/* Set up the first order partial differential equations */
/* Algorithm Step: 3 */
/* To do this, first evaluate theta(1), theta(2), x(1), x(2) multiplied by eps. See (33) and (36). */
/* Evaluate them for the fixed parameters then put them in Poisson form */
expl: -(eps/mul)*(sin(x)*cos(x) - sl*sin(x)1*cos(x)

-ac*s2*sin(x)*cos(x)*sin(y)"2)$
exp 1: subst( [eps=0.5,ac=0.20,mul=1.0],expl)$
etl:intopois(expl)$
exp2:-(eps/mu2)*(sin(y)*cos(y) - alpha*sl*sin(x)"2*sin(y)*cos(y)

-s2*sin(y)"3*cos(y))$
exp2:subst([eps=0.5,alpha=0.40,mu2=1.414],exp2)$
et2:intopois(exp2)$
exp3: -ep s*2*s 1 *(cos(x)"2 - sl*sin(x)"2*cos(x)^2

-ac*s2*cos(x)"2*sin(y)^2)$
exp3:subst([eps=0.5,ac=0.20],exp3)$
emxl:intopois(exp3)$
exp4:-eps*2*s2*(cos(y)"2 - alpha*sl*sin(x)"2*cos(y)"2

-s2*sin(y)"2*cos(y)^2)$
exp4:subst([eps=0.5,alpha=0.40],exp4)$
emx2:intopois(exp4)$
/* Algorithm Step: 4 */
/* Introduce the frequency parameters and put sl and s2 into Poisson form */
t[1,1]:subst([mul=1.0],mul*s1);
mul sl:intopois(t[1,1])$
t[2,1]: subst([m2=1.414],mu2*s1);
mu2s1:intopois(t[2,1])$
t[1,21: subst([mul=1.0],mul* s 2);
muls2:intopois(t[1,2])$
t[2,2]:subst([mu2=1.414],mu2*s2);
mu2s2:intopois(t[2,2])$
/* Algorithm Step: 5 */
/* Get Partial Derivatives */
dmul s 1 dx:poisdiff(mul sl ,x)$
dmu2s1dy:poisdiff(mu2s1,y)$
dmul s2dx:poisdiff(mul s2,x)$
dmu2s2dy:poisdiff(mu2s2,y)$
/* Algorithm Step: 6 */
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/* First PDE */
ns[1]:poisplus(dmuls1dx,dmu2s1dy)$
temp:poistimes(dmul sldx,et1)$
ns[1]:poisplus(ns[1],temp)$
temp:poistimes(dmu2s 1 dy,et2)$
ns[1]:poisplus(ns[1],temp)$
ns[1]:poisplus(ns[1],emx1)$
/* Second PDE */
ns[2]:poisplus(dmu1s2dx,dmu2s2dy)$
temp:poistimes(dmul s2dx,etl )$
ns[2]:poisplus(ns[2],temp)$
temp:poistimes(dmu2s2dy,et2)$
ns[2]:poisplus(ns[2],temp)$
ns[2]:poisplus(ns[2],emx2)$
/* Algorithm Step: 7 */
/* Put the basis functions into Poisson form */
basis [1]:intopois(1)$
k:2$
for n:2 step 2 thru 1 do

(basis[k]:intopois(cos(n*x)), k:k+1)$
for n:2 step 2 thru 1 do

(basis[k]:intopois(sin(n*x)), k:k+1)$
for m:2 step 2 thru 1 do

(basis[k]:intopois(cos(m*y)), k:k+1)$
for m:2 step 2 thru 1 do

(basis[k]:intopois(sin(m*y)), k:k+1)$
for n:2 step 2 thru 1 do

for m:2 step 2 thru 1 do
(basis[k]:intopois(cos(n*x)*cos(m*y)),
basis[k+1]:intopois(cos(n*x)*sin(m*y)),
basis[k+2]:intopois(sin(n*x)*cos(m*y)),
basis[k+3]:intopois(sin(n*x)*sin(m*y)), k:k+4)$

k:k-1;
/* Algorithm Steps: 8 and 9 */
/* Generate the determining equations by inner products with basis functions. In the case of
Poisson forms this comes about by stripping off all harmonics of x and y. The stripping occurs
during the succeeding multiplications. */
poistrim(uc,vc,wc,xc,yc,zc) := is (abs(xc) >= 1 or abs(yc) >= 1)$
for i:1 thru k do

(nsl [i]:poistimes(ns [1] ,basis [i]),
ns2M:poistimes(ns[2],basis[i]),
equat[i]:outofpois(nsl[i]),
equat[k+i]:outofpois(ns2[i]))$

/* Remove the trim function in order not to affect any other operations. */
remfunction(poistrim)$
/* Algorithm Step: 10 */
/* Generate the input parameter lists for the Newton's approximation. */
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/* The function endcons constructs lists by adding to the end of an existing list.
/* First construct the list of equations to be solved. */
eqlst: [1$
for n:1 thru 2*k do

(eqlst:endcons(equat[n],eqlst))$
/* Second construct the list of variables to be evaluated. */
vars: []$
for j:1 thru 2 do

(vars:endcons(a[j,0,0],vars),
for n:2 step 2 thru 1 do

(vars:endcons(a[j,n,0],vars),
vars:endcons(c[j,n,0],vars)),

for m:2 step 2 thru 1 do
(vars:endcons(a[j,0,m],vars),
vars:endcons(b[j,0,m],vars)),

for n:2 step 2 thru 1 do
for m:2 step 2 thru 1 do

(vars:endcons(a[j,n,m],vars),
vars:endcons(b[j,n,m],vars),
vars:endcons(c[j,n,m],vars),
vars:endcons(d[j,n,m],vars)))$

/* Third set up the initial starting values for the Newton search. */
for j:1 thru 2 do

(a0U,0,01:0.0,
for n:2 step 2 thru 1 do

(a0U,n,01:0.0,
cO[j,n,0]:0.0),

for m:2 step 2 thru 1 do
(a0U,0,m1:0.0,
bO[j,0,m]:0.0),

for n:2 step 2 thru 1 do
for m:2 step 2 thru 1 do

(a0U,n,m]:0.0,
bO[j,n,m]:0.0,
cOU,n,m1:0.0,
dO[j,n,m]:0.0))$

a0[1,0,0]:3.53$
a0[2,0,0]:1.18$
init:[]$
for j:1 thru 2 do

(init: endcons(a0[j,0,0],init),
for n:2 step 2 thru 1 do

(init:endcons(aO[j,n,0],init),
init:endcons(cO[j,n,0],init)),

for m:2 step 2 thru 1 do
(initendcons(a0U,0,mbinit),
initendcons(bO[j,O,m],init)),
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for n:2 step 2 thru 1 do
for m:2 step 2 thru 1 do

(init: endcons(a0[j,n,m],init),
init: endcons(bO[j,n,m],init),
init: endcons(cO[j,n,m],init),
init: endcons(d0[j,n,m],init)))$

/* Finally call the Newton algorithm. */
/* Print out the variable evaluations at each cycle. */
verbose:true;
/* Use the symbolic Jacobian matrix at each iteration. */
newton_eval_jacobian:1;
/* Turn on the optimization option */
newton_optimize:true;
/* Call the Newton algorithm with an upper limit of 30 iterations. */
newton(eql st,vars,init,30);

7. Discussion of the Residual Error Trends

As e increases there is clearly a distinct linear trend in the error differences between the
numerically computed angular and radial components and the approximate angular and radial
components, with both computed on the torus. This is clear from Figures 3 and 6. These
trends arise from a linear term that is introduced in the numerical scheme. This term and a
superimposed periodic term can be found using a relatively simple analysis of the numerical
algorithm involved. A full analysis of Gear's [20] interpolation scheme used to solve the
differential equations will not be necessary to identify the terms. A simple Euler scheme
will suffice. Furthermore, an analysis of the single van der Pol oscillator will be all that is
necessary. The coupled oscillators only introduce complexity but the essential analysis would
be the same.

Let h be the same time step used in the numerical algorithm. Let 0„ = 0(tn ) and rn = r(tn).
Then, using a simple difference quotient, (39) can be written for the n-th step case as

9n+i = On + h + eh0(0n,rn),

rn± i = rn ehX(On,rn),	 (65)

and (48) can be written as

On+i =	 h + ehe(e f (On)),

fn-F i = f(On+1),	 (66)

where f is being used instead of rt in order not to confuse subscripts. The '' notation is used
to identify the approximate angular and radial results.

The following assumptions can be made. On — On and rn — fn are assumed to be small.
Figures 3 and 6 show that in absolute terms these errors are small for the simulation time
duration. One other assumption that can be made is that, in both cases, using Figures 2 and 5,
the radial values can be written as

r	 + p(9)
	

(67)
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Fig. 7. Spectral plots of the amplitudes of the phase and radial equations for the full system with linear trends
removed. Initial conditions as in Figure 5.

where p(0) is some bounded periodic function of 9 and f is the mean radius.
Using first order approximations, the angular and radial differences can be written as

en+1 en+1 P.-1 (On - On+1)(1 + chei(On,rn)) + che2(0„,rn)(rn - fn)
	

(68)

rn+1 - rn+l "=--; (rn - fn) + ehX(0„,rn) - f'( On)h - ehf'(On)0(On,fn)	 (69)

where ei = g, 02 =
Using (40) and (67) one can write

f	 3
X(0, r) =	

P1(8)'
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Fig. 8. Spectral plots of the amplitudes of the phase and radial equations for the approximate system with linear
trends removed. Initial conditions as in Figure 5.

8(0,r) = P2(0),

e l (e, r) = P3(0),

82(0 ,r) = P4(9),

	

t (0) = P5(0),
	 (70)

where P1 , . , P5 have zero averages. After introducing these into (68) and (69) one can
write

- On+i cze, (On - ön)(1 + ehP3(en)) + EhP4(en)(rn -	 (71)
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Table 9. Major frequency responses in Hertz after the integration
of the full system starting on the torus (e . = 0.5).

s = 0.5

Full system integration

Ang. freq. Theory 01	 02	 X1	 X2

2w2 - 2w i 0.132	 0.130	 0.130	 0.130	 0.130

- -	 0.185	 0.185	 0.185	 0.185

- -	 -	 -	 -	 0.26

2w i 	0.318	 0.315	 0.315	 0.315	 0.315

2w2 	0.450	 0.4475 0.445	 0.445	 0.445

- -	 0.5025 -	 0.5025 0.5025

- -	 -	 0.575	 -	 0.5775

4w i 	0.637	 0.6325 0.6325 0.6325 0.6325

2W2 + 2wi 0.768	 0.7625 0.7625 0.7625 0.7625

- -	 0.8175 -	 0.8175 -

- -	 -	 0.8925 -	 0.8925

6w i 	0.955	 0.9475 -	 0.9475 -

- -	 -	 1.023	 -	 1.023

- -	 1.0775 1.0775 1.0775 1.0775

- -	 -	 -	 1.135	 -

- -	 -	 1.2075 -	 1.2075

8w i 	1.273	 1.265	 -	 1.265	 -

- -	 -	 1.3375 -	 1.3375

6w2 	1.350	 1.395	 1.395	 1.395	 1.395

- -	 -	 1.525	 -	 1.525

lOw l 	1.59	 1.58	 -	 1.58	 -

- -	 -	 1.655	 -	 -

- -	 -	 1.785	 -	 -

and

3

rn+1 1.72 -1-1	 (rn fn) + Bh	 -	 + ehPi(en)

- P5(9n) h - hP5(On)P2(On)•
	 (72)

From the definition of P2 and P5 the product P5(9)P2(0) can be written

P5( 0 ) P2(0) = C6 + P6(0)
	

(73)

where P6 has zero average and C6 is a nonzero constant. Thus, although P2 and P5 have zero
averages, their product does not. From (72) and (73), rn+i - fn+1 can then be written as

rn+1 i'n+1 (rn	 ehe7 + hP7(9n),	 (74)
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Table 10. Major frequency responses in Hertz after the integration
of the approximate phase equations starting on the torus (E = 0.5).

E = 0.5

Phase equation integration on the approximate torus

Ang. freq. Theory 01 02 X1 X2

2402 - 2°,1 0.132 0.130 0.130 0.130 0.130

- - 0.185 0.185 0.185 0.185

- - - 0.26 - 0.26

2wi 0.318 0.315 0.315 0.315 0.315

2w2 0.450 0.4475 0.445 0.445 0.445

- - 0.500 0.500 0.500 0.500

- - - 0.5775 - 0.575

4w i 0.637 0.630 0.630 0.630 0.6325

- - - - - 0.7075

2w2 + 2wi 0.768 0.7625 0.7625 0.7625 0.7625

- - 0.8175 - 0.8175 -

- - - 0.8925 0.8925 0.8925

6co i 0.955 0.9475 - 0.9475 0.9475

- - - 1.023 - 1.023

- - 1.0775 1.0775 1.0775 1.0775

- - - 1.2075 1.2075 1.2075

8u.1 1 1.273 1.2625 - 1.2625 1.2625

- - - 1.3375 - 1.34

6w2 1.350 1.395 1.393 1.393 1.393

- - - 1.525 1.523 1.523

lOw i 1.59 1.577 - 1.577 -

- - - 1.655 - 1.655

- - - 1.71 1.7075

- - - 1.785 - 1.785

where P7 has zero average and is periodic. The recursive formula for the radial difference
then becomes

n-

rn -	 (ro - f-o) + (nh)(e.C7 ) + h (E P7(0i)) •
i=0

The second term is a linear term with slope eC7 . This explains the linear trend in Figure 3. The
third term is a superimposed increasing sum of periodic terms. This explains the superimposed
periodicities in Figure 3. The amplitude of the periodicities grow due to the addition at each
recursive stage. Note that the slope is a function of E so that for small values the linear slope
is not dominant and only begins to show for long simulation times but for larger E the slope
becomes dominant almost immediately.

Analyzing the angular error requires introducing (75) into (71). After multiplying through
by P4 (9,, ) the first two terms of (75) introduce superimposed periodic terms into (71). The

(75)
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Table I I . Major frequency responses in Hertz after the integration
of the full system starting on the torus (e = 1.0).

E = 1.0

Full system integration

Ang. freq. Theory 0 1 02 X1 X2

- - 0.055 0.055 - -
2w2 - 2w1 0.132 0.1275 0.1275 0.1275 0.1275

- - 0.1825 0.1825 0.1825 0.1825

2wi 0.318 0.310 0.310 0.310 0.310

2w2 0.450 0.4375 0.4375 0.4375 0.4375

4.‘, 1 0.637 0.6175 0.6175 0.6175 0.6175

- - 0.745 0.745 0.745 0.745

2co2 +2w i 0.768 0.800 - 0.800 0.800

- - 0.875 0.875 0.875 0.875

6wi 0.955 0.9275 - 0.9275 0.9275

- - - 1.0025 - 1.0025

- - 1.055 1.055 1.055 1.055

- - 1.11 1.13 1.11 -

- - 1.1825 1.1825 1.1825 1.1825

Eico l 1.273 1.2375 1.2375 1.2375 1.2375

6W2 1.350 - 1.310 - 1.310

- - 1.365 1.365 1.365 1.365

- - 1.4925 1.4925 1.4925 1.4925

lOwi 1.59 1.5475 - 1.6 -

- - 1.7275 - 1.7275 -

1.80 1.855 - 1.855 -

linear term comes from multiplying P4 (ön ) times P7 (On-i) in the last term. P4 has a sin(20n)
term and P7 has a sin(20,,_ ) term. But On = 0, 1 + 6 where 6 is small. Therefore

sin(20n ) sin(2e n-1) 7n+' 2 (1 - cos(4en-i))	 (76)

which introduces a nonzero constant. Therefore (71) can be rewritten as

en+1 - On+1 ti (On - On)(1 eliP3 (9n )) + ehCg + hP8(en),
	 (77)

where Pg(0) has a zero average. The recursive formula then becomes

n-1	 n-1
en - On, (0o - 60) 11(1 EhP3(Bi)) + (nh)(608 ) + h E P8(0i) + 0(h2 ).	 (78)

i.o	 i.0

Again there is a linear trend term and a superimposed periodic term with increasing amplitude.
When e is small these trends are not dominant but as c gets larger they become more prominent
as noted above. Figures 3 and 6 show the errors beginning at 0. This is because the initial
conditions were selected to be the same and the leading terms in (75) and (78) are not
present.
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Table 12. Major frequency responses in Hertz after the integration
of the approximate phase equations starting on the torus (e = 1.0).

E = 1 .0

Phase equation integration on the approximate torus

Ang. freq. Theory 01	 02	 X1	 X2

- -	 0.030	 0.030	 0.030	 0.030
- -	 0.105	 0.105	 0.105	 -
- -	 0.135	 0.135	 0.135	 0.135
- -	 0.165	 0.165	 0.165	 0.165
- -	 -	 0.270	 0.270	 0.270
- -	 0.300	 0.300	 0.300	 0.300
- -	 0.4375 0.435	 0.435	 0.435
- -	 -	 -	 -	 0.465
- -	 -	 0.570	 0.5725 0.5725
- -	 0.6025 0.6025 0.6025 0.6000
- -	 0.7375 0.7375 0.7375 0.7375
- -	 0.7675 0.7675 0.7675 0.7675

- -	 0.8425 -	 0.8425
- -	 -	 0.8725 -	 -
- -	 0.9025 0.9025 0.9025 0.9025
- -	 -	 1.0075 -	 1.0075
- -	 -	 -	 1.0375 1.0375
- -	 1.0675 -	 1.0675 -
- -	 -	 1.1725	 1.1725	 1.1725
- -	 -	 1.2025 1.2025 1.2025
- -	 -	 1.2775 -	 -
- -	 -	 1.3075 1.3075 1.3075
- -	 1.3375 1.3375 -	 1.3375
- -	 -	 -	 -	 1.4725
- -	 1.5025 -	 1.5025 -
- -	 -	 1.6075 -	 1.6075
- -	 -	 -	 -	 1.6375
- -	 1.805	 -	 1.805	 -
- -	 2.105	 -	 2.105	 -

8. Conclusions

This paper has shown that the nonlinear Galerkin variational method, using symbolic expan-
sions, is a viable way of solving the invariant torus equation (11) in the quasiperiodic and
periodic case. The symbolic capabilities provided by MACSYMA, through its Poisson series
subpackage, provide the necessary efficient representations to manipulate the resulting large
trigonometric series generated by the Galerkin technique. From the case studies given in this
paper, these tools can adequately handle the computation of parametric representations of
limit cycles and invariant tori for van der Pol oscillators. The only limitation is the computing
memory accessible to the operating system for the computer used.
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This case study of approximating the van der Pol limit cycle and coupled system torus
indicates several points about the nature of symbolic approximation. First, to obtain the same
maximum error value between the full and approximate system the number of terms required
for larger damping parameters grows rapidly. Second, both the full and approximate system
integration seem to generate the same frequencies as long as the errors between the systems are
not too large. For example, even though the integration of the full system and the approximate
system for the coupled oscillators with e = 1.0 do show similar surfaces the error trends for
this case are large. This is reflected in the inability of the approximate system integration to
return the same frequencies as the full system integration. Third, the error trends in all cases
have an interesting structure. As e gets larger the errors have distinct trends with superimposed
periodicities. These trends are traceable to the numerical approximations used to integrate the
differential equations.

Up to this point the current results have emphasized the quasiperiodic nature of the para-
metric representation of the tori and the trajectories on the tori. As long as a quasiperiodic
parametric representation is sought the Galerkin's method demonstrated in this paper shows
promise. Its primary limitation is computer memory. However, the more harmonics sought in
the tori representation the larger the number of variational equations that need to be solved
by Newton's method. As pointed out earlier the size of the algebraic equations solved can
become excessively large. Since one of the measures of chaos in a system is a broad-band
spectrum it seems clear that the nonlinear Galerkin's method discussed in this paper would
become prohibitively expensive in terms of computing resources if it were used to approx-
imate a torus whose Poincard section is structured as, for example, a homoclinic tangle. As
shown in Section 5 even a stable torus whose Poincare section is a distorted circle is difficult
to approximate parametrically.
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