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Abstract. Nonlinear time delay differential equations are well known to have arisen in models in physiology,
biology and population dynamics. They have also arisen in models of metal cutting processes. Machine tool
chatter, from a process called regenerative chatter, has been identified as self-sustained oscillations for nonlinear
delay differential equations. The actual chatter occurs when the machine tool shifts from a stable fixed point to
a limit cycle and has been identified as a realized Hopf bifurcation. This paper demonstrates first that a class
of nonlinear delay differential equations used to model regenerative chatter satisfies the Hopf conditions. It then
gives a precise characterization of the critical eigenvalues on the stability boundary and continues with a complete
development of the Hopf parameter, the period of the bifurcating solution and associated Floquet exponents.
Several cases are simulated in order to show the Hopf bifurcation occurring at the stability boundary. A discussion
of a method of integrating delay differential equations is also given.

Keywords: Center manifolds, delay differential equations, exponential polynomials, Hopf bifurcation, limit cycle,
machine tool chatter, normal form, semigroup of operators, subcritical bifurcation.

1. Introduction

Modeling physical systems with time delays has often arisen in physiology [1], biology [2],
population dynamics [3]. Not as well known though is the fact that it has also arisen in model-
ing machine tool chatter. Chatter can be recognized by a characteristic noise, distinctive marks
on the workpiece and by undulated or dissected chips [4]. It is a self-excited oscillation of the
cutter relative to the workpiece during machining. Tlusty [4] identified two mechanisms of
chatter. The first mechanism he pointed out was mode coupling in which there is simultaneous
relative vibration between tool and workpiece in at least two directions in the plane of the or-
thogonal cut. The second mechanism is regenerative chatter that occurs when the tool removes
the chip from a surface which was produced by the tool in the preceding pass. Thus, if there
is relative vibration between tool and workpiece, waviness is generated on the cut surface.
The tool in the next pass (next revolution in turning, next tooth in milling) encounters a wavy
surface and removes a chip with periodically variable thickness. The cutting force varies peri-
odically and produces vibration. Recent studies, though, have shown that other mechanisms
can lead to cutting instabilities. Davies and Balachandran [5] have studied instabilities in
milling due to impact dynamics. Davies et al. [6] have presented experimental evidence that
regenerative effects may not totally explain the loss of stability of periodic motion for certain
partial immersion operations. Zhao et al. [7] have simulated different instabilities that arise
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during partial immersion milling operations. For further analysis of the instabilities in milling,
see [8-10].

In this paper, however, we will use the methods of Hassard et al. [11] to study the bi-
furcations exhibited by a simple model of regenerative chatter in turning operations originally
presented in [12]. The cutting forces in turning operations are usually modeled as proportional
to chip area, which is taken as the product of the chip width and the instantaneous chip
thickness. Tlusty [4] identified the chip width as a significant parameter in the generation
of chatter, since, for a sufficiently small chip width, cutting is stable without chatter, but, past
a certain chip width, chatter occurs and its amplitude increases as the chip width increases.
The chip thickness can be modeled as the difference between the current tool position and that
at the previous tool pass, which introduces a delay term into the model.

In order to generate self-sustained oscillations the forces involve nonlinear functions of the
instantaneous chip thickness. The nonlinearities arising in modeling turning machine chatter
have been studied by many authors (e.g. [13-20]).

The self-sustained oscillations characteristic of machine tool chatter have been identified
by a number of these authors as arising from Hopf bifurcations [16, 18]. The nature of the Hopf
bifurcation for the regenerative chatter model will be studied here by identifying the direction
of bifurcation, the structure of the periodic solution that bifurcates and its stability character-
istic. Several methods for analyzing the nature of Hopf bifurcations have been described in
the literature. Integral averaging has been used by Chow and Mallet-Paret [21], the Fredholm
alternative has been used by Iooss and Joseph [23], the Implicit Function Theorem by Hale
and Lunel [24], multi-scale expansion by Nayfeh et al. [16], and center manifold projection by
Hassard et al. [11] and Stepan and Kalmar-Nagy [18]. Although many authors have calculated
the critical coefficient that identifies whether a Hopf bifurcation at some critical value is super
or subcritical by the Poincare–Lyapunov constant, as for example given by Guckenheimer and
Holmes [25], no one, to this author's knowledge, has completely demonstrated the validity of
all conditions leading to Hopf bifurcation in the machine tool chatter case as well as developed
the full construction of the bifurcation coefficient, the final periodic solution and the analysis
of its stability. The results obtained for the model considered in this paper have also been
obtained by Kalmar-Nagy and co-workers [12, 18, 26, 27].

The objectives of this paper, then, are twofold. First, to demonstrate the validity of all the
conditions leading to a Hopf bifurcation for a class of nonlinear delay differential equations
that includes a machine tool chatter model and, second, to compute the bifurcation coefficient,
the period and the associated Floquet exponent of the resulting projected limit cycles on a
center manifold. The author intends to present in as complete a fashion as possible the essence
of Hassard et al.'s [11] arguments leading to the computation of these quantities, since it is
these coefficients that determine the nature of the bifurcation and its stability. Other authors
[18, 28] have developed the bifurcation coefficient for special cases. Liao et al. [29] have
recently computed the three parameters in the case of a van der Pol oscillator with distributed
delay. Although they develop the bifurcation parameter, they only apply the final formulas of
Hassard et al.'s [11] algorithm to compute the period and Floquet exponent without developing
them.

The model of regenerative chatter considered here falls into a class of second-order delay
differential equation of the form

d2x	 dx
ds2 (s) + d7.5 (s) + x = p(Ax + E (Ax2 + Ax 3 )), (1)



(3)

(4)
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where p > 0, 0 < < 1, E > 0 and

Ax = x(s — a) — x(s),

P = ± Pc,	 (2)

and pc represents a critical value of the parameter p at which bifurcation occurs. Equation (1)
can also be written in vector form, with z (s) = x(s), z2(s) = xi(s),

dZ
(s) = L(p)Z(s) R(p)Z(s — a) + f (Z(s), Z(s — a), p,),

ds

where

Z(s) = (zi(s)
z2(s) ) '

LL(µ)= ( —1 — (0	
1

,u, + pc) 	)

R(p) = ( 0 0)
pc 0

f (z(s), z(s — a), 11) =

0

((IL + pc )E (z i (s — a) — z 1 (s)) 2 + (p, pc )E (z[(s — a) — zi(s))3)

Although this class of equations has been studied by Campbell et al. [28] where they
computed the Hopf bifurcation parameter, they did not compute the period of the bifurcating
solution or the Floquet exponent. The current paper is more comprehensive in that it covers
more analytical ground, although the essentials are given in [11]. Since that book is quite
extensive to read in its entirety, this paper distills the methods involved into a more compact
form. It will not only show the application of the methods to Equation (3) but also introduce
the background theory involved since this theory is intimately connected with the procedures
for computing the bifurcation parameter, the period and Floquet exponent and the final form
of the periodic solution.

The paper will be divided as follows. Section 2 contains the statement of the main Hopf
bifurcation theorem that will be established in this paper. Section 3 includes the demonstration
that (3) satisfies the conditions of the theorem. In Section 4, Equation (3) will be converted
into an equivalent operator equation that will be projected onto a center manifold. A Floquet
stability analysis will then be performed on the normal form of this projected equation. Finally
the bifurcated periodic solution for (3) will be recovered. In Section 5 the main results will be
applied to the analysis of machine tool chatter for the model of Stepan and Kalmar-Nagy [18].
A computational algorithm used to integrate the time delay differential equations in this paper
will be given in the Appendix. In order to get an overview of the paper a reader can initially
skip individual proofs of lemmas and concentrate on reading the introductory paragraphs of
sections, definitions, and statements of lemmas. This should provide sufficient background in
order to understand the results in the application Section 5.



106 D. E. Gilsinn

2. The Fundamental Theorem

The following statement of the Hopf bifurcation result for the delay differential equation (3)
is due to Hassard et al. [11] and Kazarinoff et al. [30]. Another statement and proof based
on the implicit function theorem is given in [24]. A more general statement of the theorem is
possible but will not be given here.

THEOREM 2.1. Let

(s) = L(t)Z(s) R(p)Z(s — a) f (Z(s), Z(s — a), is), 	 (5)

where f contains nonlinear terms and L, R, f depend analytically on pt. Z, f E R2. Fur-
thermore, suppose there exists a family of pairs of complex, simple, conjugate eigenvalues
X(p,), 4u,) such that

git) = a (A)	 (0(14
	

(6)

where a, co are real and

a(0) = 0,

w(0) > 0,

a'(0) 0 0,	 (7)

and all other eigenvalues have negative real parts.
Then, (5) has a family of periodic solutions Z(s, s), parameterized by s, such that

1. There is an so > 0 and an analytic function

Pc (6) = A2 2  + 38 3 + • • •
	

(8)

for 0 < s < 80, where

Z (s , 8) = 3) (s, it(s)),	 (9)

and .1' (s, ,u(s)) is a periodic solution of (5).
2. The period 7 (s) of Z(s, s) is an analytic function of s and takes the form

(8 ) =2 - (1 + r2 E 2 
+ • • .),
	 (10)

where co, is the frequency at the critical parameter pc.
3. The two Floquet exponents associated with the projection of Z(s, s) on a center manifold

are 0 and

13 (8 ) = )82 82 + )83 83 + • 

for 0 < 8 < 80.
4. Z(s, s) is orbitally asymptotically stable with asymptotic phase if ,8(s) < 0 and unstable

if 13(0 > 0.
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When /12 > 0 the bifurcating periodic solutions are said to be supercritical and when a2 < 0
they are said to be subcritical.

The proof of this theorem will not be given in its most general form. For this the reader
is referred to [11]. However it will be developed in sufficient detail needed for the particu-
lar delay differential equation being studied. It is hoped that applying the methods directly
to (3) will demonstrate the essential arguments used by Hassard et al. [11]. The necessary
constructions will be given in a sequence of lemmas.

3. Linear Stability Analysis

In this section we will develop the stability properties for the linear part of (1), which can be
written as

d2x	 dx

ds2 
(s)	 —(s) x(s) = p (x(s — a) — x(s)) ,

ds

where again 0 < < 1, p > 0, p pc+ pc and pc represents a critical value of the parameter
p at which bifurcation occurs. In vector form this equation can be written as

dZ
ds (s) = L(A)Z(s) R(A)Z(s — a).	 (13)

We will show that: (1) the characteristic equation of (13) is given by

X2 ± + (1 p) — p e-x° = 0 (14)

and (2) it has a family of pairs of complex, simple, conjugate eigenvalues A(A), .5L(c) that
satisfy the conditions

(kt) = a(µ) + w (A), 	 (15)

where a, w are real and

a(0) = 0,

w(0) > 0,

a t (0) A 0,	 (16)

and finally (3) that all other eigenvalues have negative real parts.
In the next sections the hypotheses of the Hopf bifurcation theorem will be shown to be

satisfied. The proof of the main result will then start in Section 4.

3.1. THE CHARACTERISTIC EQUATION

Following Hale [42], introduce the following trial solution

Z(s) = C e)'s
	

(17)

into the linear system

(s) = L(A)Z(s) R(p,)Z(s — a)
	

(18)

(12)
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and set the determinant of the resulting system to zero, where C E R2 , L(p), and R(p) are
given by (4). This yields the transcendental characteristic equation

X(X) = A 2 +	 + (1 + p) — p CA' = 0.	 (19)

This form of equation, sometimes called an exponential polynomial, has been studied by
Avellar and Hale [31], Bellman and Cooke [32], Hale and Lunel [24], Kuang [3], Pinney [33],
Stepan [34]. The solutions are called the eigenvalues of Equation (18). In general there are
an infinite number of eigenvalues. For a discussion of the general expansion of solutions of
Equation (18) in terms of the eigenvalues, see [32] or [33]. Before developing the families
of conjugate eigenvalues, however, we wish to characterize certain critical eigenvalues of
Equation (19) of the form X = iw.

3.2. CHARACTERIZING CRITICAL EIGENVALUES

We will find in the next result that eigenvalues for Equation (19) of the form A. = iw exist only
for special combinations of p and a. We introduce the following definition.

DEFINITION 3.1. A triple (co, a, p), where w, a, p are real, will be called a critical eigen
triple of (19) if X = ico, a, p simultaneously satisfy Equation (19).

The next lemma characterizes the critical eigen triples for linear delay equations of the form
(19) but can be modified as needed for linear delay systems with different coefficients.

LEMMA 3.1. Critical eigen triples of Equation (19) satisfy the following properties:

1. (w, a, p) is a critical eigen triple of Equation (19) if and only if (—co, o-, p) is also.
2. For w > 1 there is a uniquely defined sequence a,. = crr(w), r = 0, 1, 2, ... , and a

uniquely defined p = p(w) such that (w, p), r = 0, 1, 2, ... , are critical eigen
triples.

3. If (co, a, p) is a critical eigen triple, with w > 1, then p > 4(1+0. That is, no critical
eigen triple for (19) exists for p < 4(1 +

4. For p = 2(1 + 0 there is a unique co > 1 and a unique sequence ar , r = 0, 1, 2, . • • ,
such that (w, o-r , p) is a critical eigen triple for Equation (19)for r = 0, 1, 2, ....

5. For p > 2“1 + 0 there exist two w's, co > 1, designated co+ , co_ and uniquely associ-
ated sequences a,t = ar (co+), ar- = o-r (co_), r 0, 1, 2, ... such that (w+ , ar+ , p),
(w_, aY , p) are critical eigen triples for Equation (19)for r = 0, 1, 2, ....

6. There do not exist critical eigen triples for 0 < w < 1.

Before proving Lemma 3.1, examine Figure 1. This figure, called a stability chart, graphically
shows the meanings of parts (2) through (5) of the lemma. The lobe boundaries represent the
potential eigen triples of Equation (19). First of all, each lobe is parameterized by the same
set of w's, w > 1. For the sake of discussion here, call the right most lobe, lobe 0, the next on
the left lobe 1, etc. Part (2) then states that for a given w there is associated a unique value on
the vertical axis, called p(w), but an infinite number of ar (w)'s, one for each lobe, depicted
graphically on the horizontal axis as 1/wr , for rotation rate. The minimum value on each lobe
occurs at p = 2l (1 + 0 with an associated unique w + 2 (see Equations (60) and
(61) below). Finally, for each lobe there are two w's associated with each p, denoted by co_
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Stability Chart
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Figure 1. Stability chart with sample critical eigen triples identified.

and co+ , where w_ is the parameter associated with the left side of the lobe and w+ with the
right side of the lobe. At the minimum co_ = w+ . Figure 1 shows that the lobes cross each
other. In this paper, however, only single point Hopf crossings will be considered. The study
of solutions at multiple crossings requires a separate study.

Proof of Lemma 3.1. The proof of (1) follows easily by taking the conjugate of Equation
(19) and noting that the polynomial coefficients are real.

To prove (2) one can use an argument modeled after Altintas and Budak [35] (also attrib-
uted to Tlusty in 1965) to develop necessary conditions for er r and p. Subsequently they will
be shown to be sufficient. Set

1

(13° = X 2 + 20L +

Then Equation (19) becomes

1 + p(1 — e-xa)(1)(X) = 0.

Set X = iw and write

'13 (i co) = G (w) + H (co),

where
1 — (02

G(w) = 	 	 (23)
(1 — co2 )2 + (2V.o)2•

(20)

(21)

(22)



(29)

(30)
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H (w) = 	
(DT + (24w)2

G(w)	 1 — cos wa

From the definition of G, H and the fact that w > 1, Equation (27) falls into the third quadrant
so that one can introduce the phase angle for Equation (22), using Equations (23) and (24), as

= tan— ( 
G))

) = —7r + tan-1 C24'w 1)	 (28)
H (w)

Clearly, —7 < 1fr < 7. Using half-angle formulas

sin wa

1 — cos wa '

cos (a-1-21)
=

sin ( aff) '
(cocr

,= — cot —
2

wa
= tan (-

2 —2
+ 
	

± mr) ,

for n = 0, 1, 2, .... Therefore
71"	 wa

— + 	  n7r, ,
2	 2

where wa > 0 must be satisfied for all n. In order to satisfy this and the condition that
< < 7, select the negative sign and

n = 2 + r	 (31)

for r = 0, 1, 2, .... Therefore, from Equation (30), the necessary sequence, a,., is given by

a r = 	
w

 (32)
2(* + r7r) + 37r

where * is given by Equation (28). Finally, substituting Equation (27) into Equation (25) one
has the necessary condition for p as

1
p = 	 	 (33)

2G (w)'

where p > 0 since w > 1. Therefore Equations (32) and (33) are the necessary conditions
for (w, a,., p), r = 0, 1, 2, ... , to be critical eigen triples for Equation (19). Note that this

Substitute Equation (22) into Equation (21) and separate real and imaginary parts to get

1 + p[(1 — cos wa)G (w) — (sin coo-) H (co)] = 0,

p[G (co) sin wa + H (co) (1 — cos (Da)] = 0.

From Equation (26)

I-1(w)	 sin wo-
= 	 •

(24)

(25)

(26)

(27)

tan *



Hopf Bifurcation Parameters for Delay Differential Equations 111

also implies uniqueness. Equations (32) and (33) show how p = p(co) and liar are uniquely
relate in Figure 1.

In order to show that Equations (32) and (33) are sufficient conditions take co > 1 and
define G(co), H (co) by Equations (23) and (24). Define

11(w) )	4a)fr = tan	 =	 7 + tan-1 (34)

(35)

G (co) /

and choose

w2
	 1(

ar =	 •2(1fr. + r7r) ± 37

By substituting Equations (34) into (35) solve for

0	
1	 2wwar — (2r + 1)7r

= tan-	 = (36)
( 

(02 _ 1	 2
)

Then, since w > 1 and 0 <	 < 1, one

24'w
sin 0 =

has 0 < 9 < 7/2. Then set

(37)
1/((02 	 1)2 + (2(0)2

— 1
COO = (38)

V((02 	 1)2 + (24w)2

From Equation (36) compute

sin 0 = sin
— (2r + 1)7r

War (39)
tar

2
= (-1) r+1 cos (

2

COO = cos
— (2r + 1)1	 war

= (-1)r sin (-
2	.

(40)[
war

2

Then, by half angle

sin2	 = cos

formulas,

2	 war 1 + COS War
(41)(	 ) —

2 
=

2

cos = sin
war )	 1 — cos war

2 (42)(— =
2	 2

Combining Equations (41), (42) with Equations (37) and (38) yields

1 + cos war
2(4(02

(43)((02	 1)2 + (2,(0)2

2(w2 — 1)2
1 — cos war = (44)((02 	 1)2 + (2(0)2'

By taking the product of Equation (43) and Equation (44) one gets

sine war = 1
4(4co)2 (0)2	 1)2

— cos2 war = (45)R(02	 1)2 + (40212



sin war = (0)2 1)2	 + (4(0)2 •	 (46)

In order to select the sign, start with 0 < 0 < ,r/2. Then, from Equation (36), (2r + 1)7 <
war <2(r + 1)7 which implies that sin war < 0. Therefore
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which implies that

2(2w)(co2 — 1)

sin war =
(0)2 1)2 + (2v0)2 •

 —

Define G(w), H(w) and p by Equations (23), (24), and (33) respectively. Then, using Equa-
tions (44) and (47), one gets

1+ A(1— cos war)G(w) — (sin wo-r )H(w)1= 0,	 (48)

P[G(w) sin coo-, + H (w)(l — cos war )] = 0.	 (49)

This is equivalent to (w, ar , p) being a critical eigen triple for Equation (19).
To prove (3), let (w, a, p) be a critical eigen triple with w > 1. Write Equation (19) as

(—w2 + 1 p — p cos wa)+i(4w + p sin wa) = 0.	 (50)

Define

R(w,	 p) = —w2 -F 1 + p — p cos wa,	 (51)

.2(w,	 p)=4co+ p sin wa.	 (52)

Since (w, a, p) is a critical eigen triple, R(w,	 p) = 1(w, a, p) = 0. Then

4 w
sin wa = 	 	 (53)

P

1
cos wa = —(—w` + 1 + p).	 (54)

p

The squares of Equations (53) and (54) sum to one so that

(04 +	 _ 1 _ 14(.02 ± (1 ± 2p) = O.	 (55)

Solving for w2 in Equation (55) gives

(02 
(1 

p 42) ± "sff),	 (56)

where the discriminant D is defined as

D = (p — 22)2 — 4e.	 (57)

For p > 2 2 , D is increasing and D = 0 for

p = 2“4' ± 1).	 (58)

2(2w)(w2 — 1)
(47)
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Since p > 0 and 0 < < 1 one must select the + sign. Furthermore, since co is real, D > 0.
Therefore

p > 2“4' + 1).	 (59)

In order to prove (4) note that the minimum of D > 0 occurs at

pm = 24(4 + 1), (60)

where the subscript m designates the value of p at the minimum of D. From Equation (56)
and D = 0 the frequency at the minimum is

com = + (61)

Equations (60) and (61) represent the minimum value of p and the associated unique co at
each lobe in Figure 1. From the uniqueness of a r , in the proof of (2), we have the sequence ar
given by

2(i/f„, + r7r) + 37r
= 	 	 (62)

com

where r = 0, 1, 2, ... and the superscript m denotes evaluation of o-r = crr (co) at w = com.
Furthermore

= - + tan -1 (  4wm	 (63)
— 1 )

In order to show that (com ,	 , pm ) is a sequence of critical eigen triples use Equations (46)
and (44) from part (2).

2(4co„,)(com2 — 1)
sin corna7 = 	 	 (64)

(col — 1) 2 + (40)„,)2'

2(a)„,2 — 1)2

(CO2,' - 1) 2 + (24'w,n)2.

Then, using Equations (60) and (61), it is fairly direct to show that R(com ,	 , pm ) =
.11(com , a , pm ) = 0, which proves (4).

To prove (5) use Equation (56) to define co+ , co_ by

(02+ = (1 + p 42) + Vp 2 ziep + (40 _ zIV),	 (66)

w2 = (1 + p — 2e) — p 2 — 44' 2 p + (40 —	 (67)

Equations (66) and (67) give the values of co+ and co_ for a given p in Figure 1. They are
the same values for that p for each lobe. As an aside, note that it is not hard to show that
d(co2±)/dp > 0 and d(w 2 )/dp < 0. Therefore, (142 and thus co+ is increasing with p and cot

is decreasing and thus co_ is also. Similar results have been obtained by Campbell et al. [28].
Again, as in the proof of part (4), define o-r+ , ar- by

r
	 2(1k+ + r7r) + 37r	

(68)
CO+

2(1k_ + r7r) + 37r
r	 co_

1 — cos como-,7 (65)

(69)
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where

• =	 +tan-1 ( 	 	(70)
— 1)

4co_
• =	 + tan-1 	 	 (71)(02	 •

Again

2(24'co+)(co2+ — 1)
sin co+o-r+ = 	 	 (72)

(w+ — 1 )2 + (2,04)2

2(co2• — 1)2
1 —cos CO±CI r+ = 	 	 (73)

(04 — 1 ) 2 + (404)2

2(4co_)(co2 — 1)
sin co_crr- = 	 	 (74)(0)2 _ 1) 2 + (2 - (0_ )2 '

2(w2 — 1)2
1 — COS 60_	 = 	 	 (75)(0)4 — 1)2 + (24.a02

and it is not hard, but tedious, to show, as in [4], R(w+, ar+ , p) = l(w+, ar+ , p) =

=1 (60-,	 19) = O.
Finally, to prove (6), let 0 < w < 1. Clearly (0, a, p) is not a critical eigen triple since

R(0, a, p) = 1. To show that (1, a, p) is not a critical eigen triple first compute

R(1, a, p)= p(1— cos y ),	 (76)

(77)

a, p) =

(78)

and therefore

cost a = 1 —.	 (79)
P2

Since p 4(1 +	 1 — (4 2 /p2) > 0, so that

cos a = f 1 

	

	 	 (80)p2

In the negative case, 1 — cos a = 1 +	 - 4 2 /p2 > 0. In the positive case, 1 — cos a =

1 —	 — 4V/p2	 (44.2/192)/ (1 Vi — 42/15.2) 0. Therefore R(1,	 p) 0. Finally,
for 0 < w < 1, R(w, a, p) can be written as

R(w,	 p) = (1 — co2) p(1 — cos coo-),	 (81)

which is strictly positive since (1 — w 2) > 0 and (1 — cos cocr) > 0.	 q

An immediate consequence of this lemma is the following corollary.

1(1, a, p) = 4 + p sin a.

Now IR (1, a, p) = 0 if and only if a = 21c7, k = 0, ±1, ±2, .... But then 1(1,
4 A 0. Conversely, if 1(1, a, p) = 0 then

2
sin cr	 —

p
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COROLLARY 3.1. Given a fixed r = 0, 1, , if (coo, ar , p) is a critical eigen triple,

wo > 0, then there cannot be another critical eigen triple (co t , o-r , p), w l > 0, co l 0 coo.
Furthermore, since (—coo, Ur , p) is also a critical eigen triple, there can be no critical eigen
triple (cot , ar, p), co2 < 0, W2	—(0o.

Proof This follows from parts (1), (2) and (6) of Lemma 3.1. 	 q

This result does not preclude two or more separate lobes from crossing. It only refers to a
fixed lobe.

3.3. FAMILIES OF EIGENVALUES

LEMMA 3.2. There is a family of simple, conjugate eigenvalues 4ce), 5.(µ), of Equa-
tion (19), such that

git) = a(µ)	 (it),	 (82)

where a, wo are real and

a(0) = 0,

coo(0) > 0,

a'(0) > 0.	 (83)

Proof Given an eigenvalue of Equation (19) it is clear that the conjugate is also a solution
from Lemma 3.1, part (1). To show the existence of the family of eigenvalues we appeal to the
Implicit Function Theorem [36]. Since we are interested in eigenvalues in the neighborhood
of the critical point (a, pc ) let

wo = w ± (0c	 (84)

and set

P = + Pc,

X = a + i(co + coc ),	 (85)

where coe is the frequency at pc . Insert Equation (85) into Equation (19) and separate the real
and imaginary parts as

X(X) = X(01 , co , It) = R (ot , w, It )	 i I (a, (0, P, ),	 (86)

where

R(a, co, s) = a2	 (a) + 002 + 201	 1 +	 + Pc) — (kt	Pc)e-"a' cos ac(co + we),

1(a, co, s) = 2a(w	 coc )	 24'(w + wc) +	 + pc)e-"c sin o-c(0) we). (87)

The Jacobian at (0,0,0) is given by

J(0, 0, 0) =
Rot (0 , 0, 0)	 fR a,(0 , 0, 0)
la (0, 0, 0)	 .11,„ (0, 0, 0)

= 4 2 + 4(1) , + 13c1- 2	46	 46(1 + pc ) > 0, (88)
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where we have used Equations (53) and (54). The subscripts of a, w of J2 and I indicate
partial derivatives with respect to those parameters. Therefore according to the Implicit Func-
tion Theorem there are analytic functions a(µ), w (A) such that x (a(A), w(A), = 0 where
a(0) = 0, w (0) = 0 and coo (0) = w (0) + we = we > 0.

To test whether a'(0) > 0 take the implicit derivative with respect to tt of

X (a (P), (11), it) =	 (te) + (0)(A) + (0c)] 2 + 24" [a (it) + i (a) (p,) + wc)]

+ 1 +	 + pc)[1 — e-(ce(A)+J(w(p)H-comac]

= 0	 (89)

al (0) =
pc[2 — awe + all + pc)1 2 + Pcl2coc(1 a012

[2 — a4 + 6(1 + pc)]140)cl — — coN2c0c(1 + a)l 
(0) —

Pc[2 — a + all ± Pc/l 2 + Pc[2(0c(1 + a01 2	•

The numerator of a'(0), divided by pc , can be expanded to give

2“1 + 4) + a(1 — 4) 2 + 4acoW + o- pc ° — (DD.

The only term in Equation (91) that can potentially cause Equation (91) to become negative is
the last one. However, pc and we are related by Equation (33) which implies that

( 1 — w2 ) 2 + (4002 
Pc = 2(4 — 1)	 •

If we substitute Equation (92) into Equation (91) one gets

2,(1 + 4)+ a-2 (1 — 4) 2 + 2o-wW,	 (93)

which is clearly positive so that a'(0) > 0.
To show that X = i we is a simple root it is sufficient to show that x' (iwc) � 0, which means

that the first-order term of the Taylor series is non-zero. But, this is clear from Equation (19).
Using Equations (53) and (54) one has

• (iwc) = — 
owe  a(1 + pc)] + i[2(1 (94)

Therefore I x' (i (0c) > 0, since we > 1. Then, by continuity, IX/PL(10 I > 0 for p, near 0, so
that x' WA)) � 0 for near 0.	 q

3.4. THE DISTRIBUTION OF NON-CRITICAL EIGENVALUES

Finally, one can show

LEMMA 3.3. Given a single critical eigenvalue of (19) on the imaginary axis, along with its
conjugate, then all other eigenvalues have negative real parts.

to get, with some algebra,

[24' — a4 + all + pc )][1 —	 + [2w,(1 + cr0][4coc]

(90)

(91)

(92)



	Itan-I 1(wc ± 8)	 tan -I ( 1(A)  )) ,

	

,R(co, + s)	 ,R(A)	 )
(97)
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Although the general location of zeros for exponential polynomials is a non-trivial problem
(see, e.g., [3, 24, 32, 34]), in the current case it will be possible to use the argument principle
to demonstrate the result for Equation (19). Since Equation X(X) is an analytic function the
argument principle may be stated in the following form [37]. Following Stepan [34], let F be
a simple closed contour with x (X) � 0 on F. Then

271 i
X'0') 	 —

1
Ar+ arg D(X) =

X (X )	 27r
(95)

r+
where r+ means to integrate counterclockwise about F, Ar+ indicates the change in argument
over r+ and Ar is the number of zeros within F. The object in the current case is to show
dV = O.

Let ±icoc be the conjugate roots on the imaginary axis so that (±coc , o c , pc) are critical
eigen triples on the imaginary axis. Construct an indented Bromwich contour r, where F =
F 1 + • • • + r7 , with

[X : X = ico, A > W > Wm + el,

	

: =	 + eia , —7; 9 --7;} ,

	{X : X =	 coc — s > > 0},

	

[X: =	 o > >	 + 8),

r, = lx : x —hoc + set —2 0
'0 7

	

= Ix : =	 — E > W > —A),

F7 =	 : = A ei° —7r > 0 > —71-
2 	 2

and the orientation is counterclockwise.
Since there can be only a finite number of zeros of Equation (19) to the right of the ima-

ginary axis [38], A and E can be selected so that there are no zeros on F2, F5 , and r7 . That
there are no eigenvalues on F i , F3, F4 and I', follows from Lemma 3.1 and Corollary 3.1.

One can now finally compute the change of argument as one transverses r. On r 1 , using
Equations (51) and (52),

1	 1
Arl arg X O W) = —27r27r

where ac , pc are understood. Divide the numerator and denomenator of 1(A) I R(A) by A2
and take the limit as A oo. This implies that tan -I (1(A)I R(A)) 0 for large A in the
second term on the right of Equation (97). For the first term on the right of Equation (97)
apply the Taylor series to the numerator and denominator for small 8 > 0 and take the limit
as E	 0. Then, in the limit, as A	 oo and E	 0, Equation (97) becomes

1	 1	 (  24' + pc o-c cos wcac A r+ arg x(ico) = —
27 

tan 	 (98)
27	 — aoc + pcac sin cocac

On r3 , .1(0) = 0, R(0) = 1. Apply the Taylor series to 1(co, — s)/ ,R(coc — s) and get, for
small s > 0,

1	 1
—A r+ arg x(ico) = --Ar+ arg x(ico).	 (99)
27 3	 27

r, =

=

r,

r4 =

(96)
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By similar arguments

1
—

1
A r+ arg x (-ito) = - 	 A r+ arg x (-iw).	 (100)

27	 4	 27r	 6

On r2 use the integral form of Equation (95) to compute the change in argument. Since
X = iw, is a simple root of x (X) it is a simple pole of x i (X)/x (X). The residue at ico, is one
so that the Laurent series is

X i (A) 1
= 	 .	 + g(X),

X (X )	X - twc

where g (X) is analytic and bounded in the neighborhood of iwc . Then

1 f X' (X) 	 1 f  dX	 1
+ 	f g (X) dX.

27ri j X(X)	 27ri 
J

X - hoc 27i
r+ r +	 r+2	 2	 2

27	 2	 2

A similar argument applies to q, so that

1	 1
—Ar+ arg x (x) = - - (104)
27r	 5	 2

.

Finally, on 17 , A = A exp(iO), from 6 = -7/2 to 7r/2, and A large, so that

X(X)	 A 2 (cos 20 + i sin 20) (105)

Then

1 	 sin 20 7r/2	 1 7r/2

= —(20)
-7/2	 27r

= 1.
-n/2

(106)Ark 	 tan-1ar
27r	 g X PO = —

27	 (cos 20 )

Therefore, adding Equations (99), (100), (103), (104), and (106) yields

1
—
27

Ar arg x (X) = 0. (107)

This implies that all roots, except X = ±i w, have negative real parts.
Thus all conditions for the Hopf bifurcation are satisfied for the current problem.

4. Proof of Hopf Bifurcation Theorem

The previous section assures us that the conditions of Theorem 2.1 are satisfied for the class
of delay differential equation (3). The results of Theorem 2.1 for this class of equations will
be established in this section. It will be done by first converting the delay differential equation
into an operator equation, since this becomes a natural formulation of delay differential equa-
tions as well as partial differential equations of evolutionary type. Then a geometry will be
introduced on the underlying function space by way of a bilinear form that acts like an inner

(101)

(102)

A simple calculation shows that the first integral on the right is -1/2 and the second tends to
zero as e	 0. Therefore

1	 1
—Ar+ arg x (X) = - -

	

.	 (103)
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product. The bilinear form is then used to diagonalize the operator equation into two parts, a
system of two equations related to the two eigen triples and a third whose eigenvalues have
negative real parts. The sytem is then decoupled by projecting the two equations associated
with the critical eigen triples onto the center manifold. The projected equations are reduced
to normal form. The normal form is shown to have periodic solutions on the center manifold
which are transformed to periodic solutions for Equation (3).

4.1. CONVERTING DELAY DIFFERENTIAL EQUATIONS (DDEs) INTO OPERATOR

EQUATIONS

The form of Equation (3) for the DDE emphasizes the trajectory nature of the solution in the
real space R2 as a function of the dimensionless time s. However, in order to make use of
the results from Ordinary Differential Equations (ODEs) as models for results in DDEs, it is
necessary to introduce a new form of equation for (3).

In ODEs the solution of

Z'= AZ,	 (108)

Z E R", A and n x n matrix, can be represented as a parametric operator of the form

T (s)0 = Z,(0) = eAs0,	 (109)

acting on a vector 0 E R". The operator Equation (109) is a prototype of a Strongly Continu-
ous Semigroup.

DEFINITION 4.1. A Strongly Continuous Semigroup satisfies

T (s) is bounded and linear for s > 0,

T(0)0 = 0 or T(0) = I,

lim T(s)0 — T (s0 )011 --> 0.	 (110)
S SO

II . 11 is an appropriate norm, and for any 0 E R", the matrix A, in Equation (108), is a prototype
of an operator called an Infinitesimal Generator [39].

DEFINITION 4.2. An Infinitesimal Generator of the semigroup Equation (110) is defined
by

AO = lim — [T (s)0 — .
s->0+ S

In general 0 is not limited to R". These properties relate to systems called evolutionary of
which the DDE (3) is an example.

At this point consider the linear portion of Equation (3) given by

Z'(s) = L(A)Z(s) + R(a)Z(s — a).	 (112)

The plan is to transform Equation (112) into an equation analogous to Equation (108). In
contrast to the fact that the solution of Equation (108) depends on a single vector in Rn , the
solution of Equation (112) depends on an entire set of values s E [—a, 0], which implies that
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Zs(q)

T(s)q
Z(s)

—a 0 s-a s+0

Co

Figure 2. The solution operator maps functions in Co to functions in Co.

the initial space is a function space. Let C 2 be the two-dimensional space of complex numbers
and define the infinite-dimensional space Co = C([—a, 0], C2 ) of continuous functions from
[—a, 0] to C 2 . Take the norm of Co as II q = max,e<olq(0)1. With this norm Co forms a
function space, called a Banach space. Driver [38], Hale [42] and Hale and Lunel [24] have
shown the existence and uniqueness of solutions of Equations (3) and (112) over this space.

Define a family of solution operators of (112) parameterized by s as

(T(s)q) (6) = (Zs (q)) (0) = Z(s 0; q)	 (113)

for 0 E [—a, 0]. This is a mapping of a function in Co to another function in Co. Figure 2
shows how this mapping relates to the trajectory representation. It is this mapping in Co that
allows us to develop analogous results to those in ODEs.

Some of the lemmas below relating to semigroups require proofs from operator theory and
will not be given, but the reader is urged to consult the references for the details.

LEMMA 4.1. The mapping in Equation (113) satisfies the semigroup properties of Equa-
tion (110).

Proof See Yosida [41]. The original observation that Equation (113) satisfies Equa-

	

tion (110) was made by Krasovskii [40].	 q

LEMMA 4.2. The infinitesimal generator, A, defined by Equation (111) for Equation (113),
is given by

Idq
—(0),	 —a < 0 < 0,

(A(A)q) 0 = d0
L(u)q(0) + R(A)q(—a), 6 = 0,

where the parameter is included in the definition of A.

Proof Define an operator on Co by

L (q ;	 = L(A)q(0) R(la)q(—a).	 (115)

(114)

e
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For s > 0 such that —a < s 6 < 0, 0 E [—a, 0],

(T(s)q) (0) = (Zs (q)) (0) = Z(s 0; q) = q(s 0). 	 (116)

For any s	 > 0 integrate Equation (112) so that

(T (s)q) (0) — q(0) = Z(s + 0; q) — Z(0; q)

s 4-0

= f oe (Zt (q); p,) dt

s ++8

= f et (T (t)q;	 dt
	

(117)

0

since (Zs (q)) (0) = Z(s) and (Zs (q)) (—a) = Z(s — a).
Now, for —a < 6 < 0, take s > 0 such that —a < s 0 < 0, then, from Equations (111)

and (116)

1
(A(,u,)q) (0) = lim —[(T(s)q)(6) — q(0)]

s-->o+ s

1
= lira —[q(s + 0) — q(0)]

s-+0+ S

= —(0).
dq

dO
	 (118)

For the case 0 = 0 use Equation (117) and the mean value theorem of integration to show

1
(A(,t)q) (0) = lim —[(T(s)q)(0) — q(0)1

5—Ao+ S

= lim —
1 

faC (T (t)q; pc) dt
53. 0+ S

0

= £(q; i.t) = L(u)q(0) 1?(,u)q(—a),	 (119)

which proves the lemma. 	 q

LEMMA 4.3. T (s)q satisfies

d
T(s)q = AT (s)q ,

ds

where

d
- T(s)q = urn —

1 
(T (s h) — T (s)) q.

ds	 h—>0 h

(120)

(121)

Proof The proof is given in [41]. 	 q
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LEMMA 4.4.	 The eigenvalues for (114) are given by the .A solutions of

det W — L(g) — CA° R (A)) = 0. (122)

Proof For the proof, see [42].

In the case of the linear DDE (112) Equation (122) reduces to

X 2 + 20c + (1 + it ± PC) — (Ite ± PC) e—A6 = 0. (123)

Reformulate the nonlinear DDE (3) in operator form by setting, for q E Co,

0

f (q; 11) = ( (p, + pc) (E(q(s — o-) — q(s))2 ± E(q(s — o-) — q(s))3)) (124)

and then defining a nonlinear operator on Co by

(F(q; pt)) (0) =
< 0 < 01 °'	

—a	 ,
(125)

f (q; ,u),	 0 = 0.

For A = 0 write f (q) = f (q; 0), F(q) = F(q; 0).

LEMMA 4.5. The operator form for the DDE (3) is given by

d
—
ds

Z s (q) = A (A) Z s (q) + F (Z s (q); It). (126)

Proof. This is clear from

d
d
—(Zs(q))	

id (Zs(q))) (6)'	
—a < 0 < 0,

ds L(g)Z(s) + RZ(s — a), 0 = 0,

+ 
{0,	 —a < 0 < 0,

f (zs(q ); p,), 6 = 0,
	 (127)

where

(
--d (Zs (q))) (0) = —Z(s ± 0; q) = —

d 
z(s + 0; q) = (

d0 (Zs(q))) (e)	 (128)
ds	 ds	 dO

LI

4.2. INTRODUCING GEOMETRY BY WAY OF A FORMAL ADJOINT

In ODEs the formal adjoint equation to Equation (108) is

171 = —A*Y,	 (129)

where Y E Rn and A* = 
-AT

. Equations (108) and (129) are related by the Lagrange identity

Y T
 
OZ ± 0*Y 

T 
Z = —

d (—
I
TT 

Z)
ds

(130)
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where OZ = Z' — AZ, 0*Y = Y' + A*Y. If Z and Y are solutions of Equations (108)

and (129), respectively, then it is easy to show that (d/ds) (17T Z) = 0 which implies Y T Z is
constant and is the natural inner product of R". This property is used to show the well known
direct decompositions of Rn

Rn = R(A — Ai) ED Ai (A,* —

R" = R(A* — AI) ED dV. —	 (131)

where represents the range space and Jsr the null space.
In contrast to R", the space Co does not have a natural inner product associated with its

norm, which can be one difference between a Banach Space and a Hilbert space, although a
Hilbert space is a Banach space. The reverse is not true in general. However, following Hale
[43], one can introduce a substitute device that acts like an inner product in Co and produces
a decomposition of Co similar to Equation (131).

We make an observation here about notation. The superscript asterisk used here is inten-
ded to reference entities, such as operators, eigenvalues, and eigenvectors, associated with
adjoints. It is not intended to refer strictly to a conjugate transpose of that entity and follows
the notation of Kazarinoff et al. [30].

LEMMA 4.6 (Lagrange Identity). If

OZ(s) = (s) — L(p)Z(s) — R(A)Z(s — a),

e*U (s) = (s) + L(A) T U (s) + R(A) T U (s + a),

then

U
T

(s)0Z(s) + O*U T (s)Z(s) — (U, Z)(s),
ds

where

(U, Z)(s) = U T (s)Z(s) + f UT (t + o-)R(,u)Z(t)dt.	 (134)

S-

Proof Integrate by parts the left side of Equation (133). 	 q

This lemma is stated in [43] for more general functional differential equations. Equation (134)
is also given in [44]. It seems clear that deriving the natural inner product for R" from the
Lagrange identity (130) motivates the derivation of Equation (134). Again, if Z and U satisfy
OZ(s) = 0 and 0*U (s) = 0 then, from Equation (134), (d/ds)(U, Z)(s) = 0, which implies
(U, Z)(s) is constant and one can set s = 0 in Equation (134) and define the form

0

(U, Z) = U T (0)Z (0) + f U T (t + cr) R(,u,)Z (t) dt . 	 (135)

(132)

(133)
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LEMMA 4.7. (U, Z) is a bilinear form that satisfies

(U, aZ1 + /3 Z2) = a(U, Z1) +,8 ( U , Z2),

(aUi +,8U2 , Z) = (U1 , Z)	 (U2, Z),

(UM, Z) = M T (U, Z),

(U, ZM) = (U, Z)M,	 (136)

where a,p are complex constants and M a matrix.
Proof. Straightforward using Equation (135). 	 q

One can now construct formal adjoint operators associated with Equations (113) and (114).
Let CI; = C([°, a], C 2 ) be the space of continuous functions from [0, o-] to C2 with =

maxo<e<cf i g* (6) ) I for q* E C.

LEMMA 4.8. Define

(T* (s)q*) (0) = (Us (q*)) (0) = U(s 9; q*)
	

(137)

for 0 E [0,	 s < 0, then Equation (137) defines a strongly continuous semigroup with
infinitesimal generator

(A (12)q*) 0 =dq** 

— —
dq*

(0) = L CO T tr (0) R CO T q* (o-), 6 = 0.

--
d0

(0),

dO

Proof See Hale [43]. Note that, although the formal infinitesimal generator for Equa-
tion (137) is defined as

A'q* = lim —
1 

[T*(s)q* —
s
	 (139)

Hale [43], for convenience, takes A* = —A"; in Equation (138) as the formal adjoint to
Equation (114). q

LEMMA 4.9. The family of operators (137) satisfies

cTs T (s)q

, 
= —

A* T* (s)q*
	

(140)

Proof. The proof is given in [41].

One can now state some properties of Equations (114), (138), and (135) that will be useful.

LEMMA 4.10. For q E Co, q* E

1. We have

0 < 0 <o-,

(138)

( q* , A ( a) q ) = (A* (pt)q* , q). 	 (141)
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2. If q* is an eigenvector of A* (A) associated with A*, i.e. A*(i,t)q* = x*q*, and q an
eigenvector of A(A) associated with the eigenvalue A and A 0 A*, then (q*, q) = 0.

3. If p E R(A(u) — Al) and q* E dV (A * (u) — Al) then (q*, /3) = 0.
4. If q E ,Ar(A(g) — A./), y E R(A*(u) — Al) then (y, q) = 0.
5. A is an eigenvalue of A(A) if and only if A is an eigenvalue of A* (W.
6. The dimensions of the eigenspaces of A(A) and A* (u) are finite and equal.
7. If qi",	 , q:'; is a basis for the eigenspace of A* (u) and q i ,	 , qd is a basis for the

eigenspace of Mg), construct the matrices Q* = (q1`, 	 , q .:1 ) and Q = (q i ,	 , qd).
Define the bilinear form between Q* and Q by

(t7, q i )	 (q11', qd)

(Q* , Q) =	 • •  	 •
	 (142)

(sei , q i) • • • (q71 , qd)

This matrix is non-singular and can be chosen so that (Q*, Q) = I.
Proof Integration by parts proves Equation (141). The proofs of the other properties can

be found in [43]. Note that if (142) is not the identity then a change of coordinates can be
performed by setting K = (Q*, Q) -1 and Q' = QK. Then (Q*, Q') = (Q*, QK) =
(Q*, Q)K = I.	 q

Properties (3) and (4) above indicate the orthogonality of the range and null spaces relative to
the bilinear form (135).

4.3. EIGENVECTORS AND EIGENVALUES OF THE DDE

In order to simplify calculations one can set ,u = 0, since this value will be the only one needed
to compute r2, P2 in Theorem 2.1, although the results can be shown to be satisfied for
,u A 0 [11]. Therefore, for the sake of notation, let A = A(0), A* = A*(0), L = L(0),
R = R(0), co = w(0).

The basis eigenvectors for A and A* associated with the eigenvectors = ico,X = —iw
will be computed in this section.

LEMMA 4.11. The two eigenvectors for A, associated with the eigenvalues A =	 =
—iw, are given by

q(0) = eiwe 	 . 1	 ,
10)

((9) = e-iwe ( 1 	 (143)
—HO

Proof From Equation (114), if —a < 0 < 0 then dq/d0 = iwq implies q(0) = exp(iwO)C
where C = (c 1 , c2 ) . For 0 = 0, Equation (114) implies (L R exp(—iwa)) C = iwC or
(L — iwI R exp(—icoo-)) C = 0. Since iw is an eigenvalue, Equations (122) and (123)
imply that there is a non-zero solution C. Setting c 1 = 1 it is easy to compute c2 = iw.	 q

Define the matrix

Q = (q , .7)

	
(144)



(146)

(147)

(148)

(149)
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for q, 4- from (143). The next lemma shows how to construct the eigenvectors q*,4* for A*
so that

Q*	 (q**)
	

(145)

satisfies (Q*, Q) = I.

LEMMA 4.12. The eigenvectors for A* associated with the eigenvalues —ico,ico are given
by

q* (0) = e iwe D,

nO) = e—iw9 D,

where D =	 d2)T and

—	 sin coo- + ico)d2,co

d2 =
(o-pc co cos coo- — pc sin coo-) 2 	 (2co 2 — o-peco sin coo-) 2 •

Proof From Equation (138), for 0 < 9 < a,

*
— (1B

and compute

q * (0) = exp(ico0)D,

where D = (di , d2 ) T . At 9 = 0 one has from Equation (138) that (L T + R T ei" + icol) D =
0. The determinant of the matrix on the left is the characteristic equation so that there is a
non-zero D. From Equations (143), (144), (145), and (146) one seeks to solve for D so that

(Q*, Q) = ( (-q* ' q) (-q** )= ( 1	 (150)(q*, q) (q	 0 1 /

One needs only to satisfy (q*, q) = 1 and (q*,	 = 0. From Equations (135), (143), and
(146) compute di and d2 to satisfy

1 = a l + [app cos coo- + i (co — o- p c sin coo-)]d2,

0 = d l + [ 1--3--c- sin coo- — ico] 7/ 2	(151)

from which the result follows.	 q

LEMMA 4.13. The matrices B, B* given by

(ico 0
B —

0 —ico '

B* = (—iw
0 ico

satisfy AQ = QB, A* Q* = Q*B* where Q, Q* are given by (144) and (145).

(o-pcco2 cos coo- — pc co sin coo-) + i(2co3 — a pc co2 sin coo-)

(152)
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Proof The proof is based on the calculation A* Q* = A* (q* ,4*) = (A*q* , AT) =
(—icoq* , icoW*). Similarly for A Q. Note that B = B * T .	 q

This result says that on eigenspaces the infinitesimal generators can be represented by matrices.

4.4. DIAGONALIZING THE NONLINEAR DDE

The nonlinear operator equation (126) will be decomposed in this section into a two-dimen-
sional system with eigenvalues ico and —ico and another operator equation with eigenvalues
having negative real parts. The procedure is based on the work of Hale [43] and depends on
the following result.

LEMMA 4.14. Let 4) E Co and Q, Q* given by_ Equations (144) and (145) so that (Q*, Q) =
I. Then there is a vector b E C2 and a function4 E Co such that

0= Qb+0	 (153)

and (Q*	 = O.
Proof Let b = (Q*, 0) and define 0 = — Qb. Then (Q*, 0) = (Q*, — Qb)

(Q* 0) - (Q*, Q)b = O.	 q

One can apply this representation to decompose the nonlinear system (126) with it = 0.
Let Zs E Co be the unique family of solutions of Equation (126), where the initial function
notation has been dropped for simplicity. Define

17 (s) = (Q * Zs) = (47 :
:	,
	 (154)

where Y(s) E C2 for s > 0, and set Y(s)	 (Y1 (S ) 2(S))T •

LEMMA 4.15. If one defines

Ws = Z, — QY (s), (155)

where Q is given by Equation (144) and Y (s) is given by Equation (154), then (Q*, Ws ) = 0,
where Q* is given by Equation (145).

Proof For the proof, see Lemma 4.14. 	 q

LEMMA 4.16.

—
d

(Q* , Zs) =
ds	

dZ\s
ds I

Proof Differentiate Equation (135) and use Z s (0) = Z(s), Zs (t) Z(s t).	 q

One can now decompose Equation (126) as

(156)
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LEMMA 4.17.

ds Yt (S ) = i wyt+ 4*T (0) f (Zs),

d _
ds- Y (s) = —hoY i (s) + q* T (0) f (Zs),

(AWs )(0) — 2ReW T (0) f (Zs )q(0)},	 —a < 0 < 0,
ds- Ws (0) =

	

	 (157)
(A Ws )(0) — 2Refr T (0)f (Zs )q(0)} f (Zs), 0 = O.

Proof Use Equations (126), (136), Lemma 4.3 and Equation (156) to write

y (s) = I	 dZ s\

ds	 ds

= (Q* , AZ s ) (Q*, F (Zs))

= (A* Q* , Zs )	 (Q*, F (Zs))

= BY (s) (Q*, F (Zs)).

Using Equations (125) and (135) compute (q*, F (Zs )) = 4.*T (0)(F (Z s)) (0) = 7q * T (0)f (Zs)-
Similarly (q*, F (Zs)) = q*T (0) f (Zs). Then

(Q*, F (zs)) = ((q
*
' 

F (Zs)))	 ( W*7. (0) f (Zs))
(W* , F (Zs )) )	 q*T (0) f (Zs) ) 	

(159)

which yields the first two equations in Equation (157) if y2 (s) = y1 (s). But this is clear from
Y2(s) = (q*, Zs ) = (q*, Zs) y 1 (s) since Zs is real by definition. One can now construct
the third equation. From (155), with 0 = 0,

W(s) = W5 (0) = Z s (0) — Q(0)T(s) = Z(s) — Q(0)Y(s). 	 (160)

From Equations (114) and (126)

dZs
ds

	 = —(0) = (A Zs )(0) + (F (Z MO) = LZ(s) RZ(s —	 f (Zs). (161)
ds

Differentiate Equation (160) and combine it with Equations (158) and (161) to give

- W(s) = LZ(s) RZ(s —	 f (Zs ) — Q(0)BY(s) — Q(0)(Q* , F (Zs )).	 (162)
ds

Now apply the infinitesimal generator (114) to

Zs = Ws QY (s)	 (163)

to get

(AZ s )(0) = (AWs)(6) + (A Q)(0)Y (s) = (AWs )(0) QBY (s).	 (164)

If 0 = 0 in Equation (164) then

LZ(s) RZ(s — a) = LW (s) RW (s — + Q(0)BY(s). 	 (165)

(158)
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Substitute (165) into (162) to get

—
d

W(s) = LW (s) RW (s — a) + f (Zs) — Q(0)(Q * F (Zs))•ds
	 (166)

From (163)

Z, = qy i (s) H-D22 (s) = qyi (s) iFy i (s) + Ws . (167)

One can now determine the operator equation for Ws by starting with Equation (167) in the
form

Ws = Zs — gyi(s) --4571(s)-	 (168)

Use the fact that ico, —ico are eigenvalues of A associated with the eigenvectors q, q to write

dW,	 dZs	 dyi
ds	 ds — q 

ds 
(s) — q -

ds (s)

= AZ, ± F(Z5) — q	 (s) — q c  71(s)
ds	 ds

= A{W, qyi (s)	 y i (s)) F(ZS)

- q fi coy (s)	 71'1' (0)f (Zs )) —4 {—iwY i (s) q *T (0) f (Z„))

= AW, — 2Re{q* T (0) f (Z5 )q} F(Z5 ).	 (169)

Use Equation (125) to complete the lemma. 	 q

In order to simplify the notation write Equation (157) in the form

(s ) = iwyi(s)
ds

(s) = —icoY i (s) + Fi(Y,
ds

dWs = AW, F2 (Y , Ws),
ds

where

Fi (Y, W5) = q* T (0)f (Zs),

—2Ref r * T (0)f (Zs )q(0)},	 —a < 0 < 0,
F2(Y, Ws) =

—2Re{4* 7' (0) f (Z s )q (0)} f (Z ,) , 6 = 0.

(170)

(171)

Note that Equation (170) is a coupled system. In the next section the center manifold will be
used as a tool to partially decouple it.
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(176)

(177)
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4.5. REDUCTION TO NORMAL FORM ON THE CENTER MANIFOLD

In Section 4.4 the operator equation (126) was decomposed into system (170). In this section
the argument of Kazarinoff et al. [30] will be used to look for a center manifold [46] w(y, y)
that approximately solves

Dy w(y, y)ficoy+ Fi (y, w(y, y))} + Dyw(y, Y){—icoy ± F i (y , w(y, y))}

= Aw(y, Y) + FAY, w(Y , Y)), (172)

where LI represents the derivative with respect to the subscripted variable. The subscript 1
of y has been dropped for simplicity. The projected equation on the center manifold will be
shown to satisfy

dy

ds 
= icoy -I- Fi(Y, w(Y , y)),

ay 
= — iwY + F i(Y, w(Y, v)).	 (173)

ds

Then Equation (173) will be reduced to a normal form by a transformation of variables, y —>
v, so that the new system will take the form

= icov, + c2i v27,

	

= —ictifi + c2iT2v,	 (174)

where the other higher-order terms have been dropped.

4.5.1. Center Manifold Projection
The main result of this section is the following lemma:

LEMMA 4.18. Let an approximate center manifold, satisfying Equation (172), be given as a
quadratic form in y and y with coefficients as functions of 9

	

y2 	
Y

2
WO', Y)(0) = W20(6 )2

 
+ W 11(9 )Y5-1 + W02(6) 2 •

Then the projected equation (173) on the center manifold takes the form

dy	 .

ds 	 IwY ±g(Y, 3),

ay
ds 	 —iwy +k(Y , 7),

where the g(y, y) is given by

y2 	 y2
+ Y

2
Yg(y, y) = g20-2 + g i 1 yY + go2T -r g21 2 •

dv

ds

dv

Ts
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The coefficients g ib are given by

g2o = 2Ey2d2Pc,

gil = 2EyTd2Pc,

g02 = 2E72d2Pc,

{g2i = 2pc E [ g2oY	 802 + g2o(e-2"th7 — 1) 
ico	 3ico	 d20

+2E [8>>Y kil7
ho

ly 
+ 3Ey 271 d2,ico 

where

y = e -ICOCI	 1,

A = —4w2 4i co + pc (1 — e2i ) .	 (179)

Proof If one assumes a center manifold of the form (175) then, from Equations (157),
(167), (170), and (173), on the center manifold

dy iwy —.T "

cTs. =	 q	 f (w(y, -37)±gY± 47).	 (180)

Define

g(y, y) =r(o)f(w(y, 3)-)+qy-F-qi)),	 (181)

whereq* T (0) = (d i , d2) and

i

o
Pc ( E [ w (y , TM —a) + Yqi( —a) + )1(a)

f ( w (y , .T)+ .7Y+ 	 =	
—w (y , Y) I (0) — MI (0) — Wi(0)] 2 	.	 (182)

+E[w(y , Ti)1(—(7 ) + Yqi(—a)+Wi(a)

—w (y , )01(0) — yq i (0) — W1(0)13)

From (175)

y2	
Y

2
w(y , Y)(0) = w20(0) 2 + to (0)Y.57- + wo2(0)-

2
y 2	

Y
2

w(y , Y)( —a ) = W 20( —a )2 + wii( —a)YY+ W02( —a ) 	 (183)

where Wii(0)=	 (0), qi (6)) T .
Note here that in order to compute i.t2 , t2 , P2 one need only determine g(y, y) in the form

(177). To find the coefficients (178) begin by expanding the nonlinear terms of Equation (182)
up to cubic order, keeping only the cubic term y 2y. To help simplify the notation let

(178)

y = C" — 1.	 (184)



(187)

(188)
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Then, using Equations (143), (183), and (184),

E[w(Y , 37)1(–a)+ MI ( —a) + .W i (a) — w(y , M(0) — Yqi(0) — )1(0)12

= Ey2 y 2 + 2Eyyyy + Ey2y2 + Ellu40 (—a) — w10(0)1y

+ Zwl i ( —a) — wli(0)1YIY237,

E[w(y, Y)1(—a ) + yq i (—a) + ) 1 (a) — w(y, y) i (o)— yq i (0) — )4i(0)13

= 3Ey2Ty2y.	 (185)

From Equations (177) and (181) through (185) one can compute the coefficients for Equa-
tion (178), except at this point one only has

g21 = 2Pc {E [4(–a) – 4(0)1 y + 2E [wh(—a) — tol l (0)] y + 3E y 2y) d2. (186)

In order to complete the computation of $ 21 one needs to compute the center manifold coeffi-
cients w 20 , w11. To do this substitute g20, gii, got from Equations (178), (185), and (186) into
(182) to get

2	
Y, g02	 Y

2
 g21Y2Y	 0

	

f (w(y , i) + qy + .Th =Ig2°Y  + gllY  +	
+ 	

1(
	2d2	d2	 2d2	 d2	 1 ) •

From the definition of F2 in Equations (171), (177), and (181) write F2 as

y

	

F2(y, T)(9) = — { g2oq (e ) + km	

2

409)1 T

—{giig(0) +kip7(0)}yY
y2

—180209 ) + ,20W)}-2

for —a < 9 < 0 and for 0 = 0

F2 (y, Y)(0) = — I g2oq (0) +7g024(0) — 
_gc2102(?)}y22

gii ( 01 )1 yy
—I g li g (0)	 + gr ii -4. (0) – d2

oi	 72 .2- 1 g02q 0) + g2OW) - -

	

2	
(189)

Note that to compute the coefficients of the center manifold one needs only to work to the
second order. _

Since g02/d2 = g20/ c12 write the coefficients of F2 (Y , 7) as

—a < 0 < 0,

I

— (gzoq (0 ) + ko24(0)) ,

Flo (9) =
— (g2oq(0) + go2q(0) — .=.—	 )) , 0 = 0,-	 g20 ( o

d2	1
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— (g ll q(0) + „q(e)) ,	 —o- <0 < 0,

Fh(0) =	 gii 
— (glig(0)+-kil4(0)—	 -

)), 0 = 0,
2

4(0) = F 220 (0).	 (190)

One can now set up equation Equation (172) to approximate the center manifold. On this
manifold one must have

W(s) = w(y(s), y(s)).	 (191)

By taking derivatives, the equation for the manifold becomes

wy (y, y) )/(s)	 wy(y, y)yl (s) = Aw(y(s), y(s))	 F2 (y(s), 57(s)),	 (192)

where w(y, )7) is given by Equation (175). The partial derivatives are given by

wy(Y, -57) = W20,Y + WHY

Wy(y, Y) = W HY W02Y•	 (193)

Using Equations (176) and (193) expand the terms of Equation (192) to second order as

wy(Y 5-1 )(6)y/ (s) = iww20 (0)y2 (s) how11(0)Y(s)Y(s),

wy(y, Y)(0)5(s) = —icown(0)y(s)Y(s) — hOW02(0)3)-2(S),

Aw(y, y)(0) (Aw2o)(0) 
y2
— (Awn)(0)yy (Aw02)(9)—
2	 2

F2 (y, Y) (0) = Fle(0)C	 myy
+ 	 60(0)-C,	 (194)

Substitute Equation (194) into Equation (192) and equate coefficients to get

2iww20 (0) — Aw20 = F10(0),

—Awn= n(0),

— 2iWW02(e) Aw02 = 62 (0).	 (195)

Since F02 = F 220 and w02 = —W20, one only needs to solve for w20 and w11.
Using Equation (195) it will be shown that w 20 , w il take the form

W20(9) = Clq(0) c2q(0
) m e2iwO

W 11(6 ) = c3q(0) c44-(0) N,	 (196)

where ci , i = 1,	 , 4 are constants and M, N are vectors.
To compute c3 , c4 , N, use the second equation in (195), the definition of A in Equa-

tions (114) and (190). Then for —a < 0 < 0

dw11 
(0) = g li g (0 ) +7gli(0)•	 (197)

dO
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Integrate Equation (197) and use Equation (143) to get

S	 —
W11	

i
(9) = =--q(0) — 	q((9) + N.

1 CO	 1 0)

Clearly

C3

C4

Sii
iw

S11

iw
(199)

To determine N use Equation (114) for 6 = 0 and the fact that q (0), q(0) are eigenvectors of
A with eigenvalues iw, —iw at 6 = 0 along with (190) to show that

(L R)N =	 ,	 (200)

which can be solved for

N	 ( 1
(201)

d 2

To solve for c 1 , c2, M, use the definition of A in Equations (114) for —o < 0 < 0, (190),
(195) to get

dw20
= 2icow20 (0) g2oq(9) go2q(0).

This non-homogeneous system has the solution

,102 (0) m 2i NO
w20(9) =	 (0)	 e	 •

io)

Again, clearly

g2,0
c, = —7

a) 
,

Sot
C2 = — co .

3i

To solve for M use the definition of Equations (114) for 6 = 0, (190) and the fact that q(0),
( 0 ) are eigenvectors of A with eigenvalues iw, —iw at 0 = 0 to show that

(2iwl — L — Re-2i")M = g2° (
d2	1

which can be solved for M as

M	 ( 1

d2 A 2i(t)

where

(198)

d6
(202)

(203)

(204)

A = —4(02 + 4i4'w + pc (1 — e2i").	 (207)



(212)

(213)
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One can now return to Equation (186) and use Equations (198) through (201) and (203)
through (207) to construct g21 in Equation (178), which concludes the construction of Equa-
tion (177) and thus the projected equation (176) on the center manifold. 	 q

4.5.2. Normal Form on the Center Manifold
Normal form theory, following the argument of Wiggins [45] (see also [47]), will be used to
reduce Equation (176) to the simpler form (174) on the center manifold.

LEMMA 4.19. System (176) can be reduced by a near identity transformation to (174) where

12
1 2 	 Ig021	 g21

C21 -=	 gl1g20 -2 1g111	 (208)
2w	 3	 2

Proof Write Equation (176) as

dy

ds- =.""	 g2(Y ' .7)+g3(-Y,

dy
— —iwY± 7g2(Y' Y1) + k3(y,	

(209)
ds 

where g2 and g3 are the second and third-order terms in g respectively. If one introduces the
near identity transformation

y = u h2(u,

y = I ±Tt2 (u, Ft),	 (210)

Equation (209) is reduced to

du
iwu	 {0C 2 (h2 )	 g2 (u, it)) + 0(3)	 (211)

ds

along with its conjugate, where 0(3) represents third-order terms and

ah	 ah
£202) = hoh2— (iu)

	

	 u Jo) 	 17),
au

Let

S2 = span{u 2 ,	 i712}

	be the space of quadratic polynomials in u,	 £2 is a linear map from S2	 52. One can
examine what £2 does to the basis elements. A simple calculation shows that

£2(u2) = —hou2,

0C2(ui,i)
	

i couil ,

£2 (u2) = 3iwI 2,	 (214)

so that £2 is invertible and one can solve for h 2 so that

£2(h2) + g2(u,	 = 0,	 (215)



(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)
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which means that the quadratic terms can be eliminated. Repeat the argument for

du
— = tom + g3 (u, u).
ds

Again take a near identity transformation

u = v + h3(v,

and reduce (216) to

dv— 
t
.
wv + {L3(h3) + g3 (v, if)} ,

ds

where

ah3	 ah3 
x 3 (17 3). icoh 3 — (ico—v iu) 	 T)J.

av	 a-g

Let

v 2D-9 v172 , r)3}
S3 = span{v3,

be the space of cubic polynomials in v, 17. Apply £3 to the basis set to get

£ 3 (v 3 ) = —2iwv3,

£ 3 (v2T) = 0,

£3(vT2).2ioniT2,

£3 (r) 3 ) = 4h0T)3,

which means that terms of the form v 2T) cannot be eliminated. Thus the normal form, up to
cubic terms, is given by Equation (174). This motivates why, in the construction of g(y, y) in
Equation (177), only cubic terms of the form y 2 .T7 are maintained.

Now that the normal form is known one can compute c 21 by applying

y = v + h(v, T))

to

dy
—
ds 

= icoy + g(y, y),

where g is given by Equation (177), and reduce Equation (223) directly. In order to eliminate
quadratic terms take

V 2	 -v 2

h(v, h= -20	 h 11 a h02-
2

•

The derivatives are

Dvh = h2ov + T

DFh =	 + hogi.
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Now, insert the near identity transformation (222) into Equation (223), use the normal form
(174), and the definition of g(y, -5,-) in Equation (177) to write

iwv + c21 v 2T + Dv h(iw + c2i v 211) + DTh(—iwv + Z'21F2 V),

g20 
= ico(v + h) +

	

	 (v + h) 2 + g i (v + h)(17 +T)
2

go2 (r) T) 2 ± $21  (v	 2(F h).
2	 2

Next, insert Equation (224), expand and equate all powers of v, IT, drop all cubic terms, other
than v2r), and all higher-order terms in order to compute the coefficients of h that eliminate
quadratic terms as

$20
h20 =

iw

gii
h 11 =

i co

h02 =	
goo	

(227')(227)
3i 

and finally compute

	

, 	 , g lih2o	 $02/7/02	 $21
(228)C21 = g2ohi 1 -i- g linil -I-	 ±	 + —

2	 2	 2 '

which yields Equation (208) when Equation (227) is substituted. q

For a more general discussion of the normal form on the center manifold when it � 0,
see [11]. Up to this point one only needed ,a = 0. But, to compute the periodic solution,
reintroduce a 0 0.

4.6. THE PERIODIC SOLUTION ON THE CENTER MANIFOLD AND ITS STABILITY

As shown in [11] the general normal form for the cases 0 0 is given by

dv

ds 
= git)v + C21 (A)V 2 T),	 (229)

where A(0) = iw and c21 (0) is given by Equation (208). The periodic solutions of Equa-
tion (229) will first be computed, their stability determined, and then they will be transformed
to the periodic solutions of Equation (3). The argument is based on that of Hassard et al. [11].

LEMMA 4.20. Let e > 0 and an initial condition for a periodic solution of Equation (229)
be given as

v(0; s) = E.	 (230)

Then there exists a family of periodic solutions v(s; A(6)) of Equation (229) with

it (e ) = 1 t2 82 ± • • •

P(E) = P2E 2 + • • • ,

T (6) = T0 (1 + T-2 8 2 + • • .),	 (231)

(226)
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where T (e) is the period of v(s, (0), 73(s) is the non-zero characteristic exponent, and

Re {c21(0)}
It2 =

a' (0)

/32 = 2Re {c21 (0)} ,

1
T2 = — —(A201(0) Im{c2i (0)1),co 

To =
27r

(232)

Furthermore, v(s, ,u,(e)) can be transformed into a family of periodic solutions for Equa-
tion (3) given by

Z(s) = (s, p,(e)) = 2eRe{q(0) e iws } e2Re{M e2iws N},	 (233)

with e = (u/ ,u2 ) 1 /2 . For /22 > 0 the Hopf bifurcation is called supercritical and for A2 < 0 it
is called subcritical.

Proof. One can begin looking for a periodic solution for Equation (229) with initial condi-
tion (230) by changing variables

71 =
	 (234)

8

Then Equation (229) becomes

ds	
+ E2C2I (A)172
	

(235)

with ii(0, it) = 1. One first looks for the general form of solution for Equation (235). For
fixed p, assume an expansion

11(s,	 it) = 170(5 /1)	Enl(S P, ) + 8 2 112(s, it) ± • • • , 	 (236)

with

11o(0, it) = 1,

q i (0, p,) = 0,	 i = 1, 2, ....

Substitute Equation (236) into Equation (235) and use Equation (237) to show

rlo(s ,	 = eX(A)8 ,

,u) = 0,

chi2
—ds (s, it ) = A(A0112(s, it) ± C2101) e(2°1(1)+X(ii))s,

(237)

(238)

(237). Furthermore, for
there are two cases for

where X(A) = a (it) + i60(11). Note that 772 (0, p,) = 0 from Equation
IL = 0, a (0) = 0, 0)(0) = co and for ,u, * 0, a (u) 0 0. Therefore,

772(5, /4 in Equation (238)

C21(0)s eiws ,	 A = 0,

172(s , IL ) =	 c21(1,t) (e2a(os	 1) egos , itt � 0.
2a (µ)

(239)



(240)

(241)
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If one defines

s,

I
p = 0,

e(s, p) =	 e2a cos — 1
	  p,	 0,

2a (g)

and sets

112(s, ,u) = c21(A) e (s it) ex(A)s,

then, combining Equations (236), (238) and (241), the solution of Equation (235), to second
order in c, can be written

11(s, E, p,) = ex(A)s E 2 C21(A)e(s, ,u) ex(w)s.	 (242)

Now look for functions ,u(s) and T(e) in the form

itt (8 ) = A1 8	P, 2 82	 •

T (e) = To(1 + TIE + T2E 2 + • • *),	 (243)

where T (e) will be the period of the family of periodic solutions i (s, e, p(e)). In order not
to lose powers of e, write Equation (242) as

e—MA)s 11(S , E, p) = 1 + E2c21(11, ) e (s ,	 (244)

From the periodicity requirement and the initial condition for Equation (235) one must have

11(0, e, We )) =ri(T (8 ), 8 , WS )) = 1.
	 (245)

This implies, setting s = T (e) and p, = ,u(e) in Equation (244), that

e-x(Ii(s))T(s) = 1 + c21(1.48 )) e ( T (8), [t(E))• (246)

Expand both sides of Equation (246) in perturbation series. On the left, expand X(1.1,(E) by
Taylor series up to second order in e as

X (µ(8» =	 + X 18 X2s 2 + • • • ,	 (247)

where

= X(0) =

d).
Xi = —

de
(0)iti

12 2x

A2 =	 (0)A2	
d-2 (0).

(0).	 (248)

Then, from Equations (243, (247), and (248)

X (1,t (8) T (8 ) = ( T04) + (T0(,1 + AO T 1)) 8 (T0(A2 + Xi + Xot2))E2 + • • • .	 (249)
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For the sake of notation set

(TA) 0 = ToXo,

(TA)1 = To(A + Acri),

(TA)2 = TO (A2 +	 Xor2)•
	 (250)

Then, Equations (249) and (250) can be used to expand the left-hand side of Equation (246)
in Taylor series to second order in s as

I (n.)12
e-X(p,(E))T(e) = e-(Tx)0	 — (TA) 18 	(TX)21 8 2] •2	

To expand the right-hand side of Equation (246) to second order in E all that is needed is to
expand the coefficient of the second term to zero order, using Equation (240), as

c21(1(6))e(T(8),	 = C21(0)To + • .	 (252)

Now substitute Equations (251) and (252) into (246) and equate both sides to second order in
E to get

e-(TX)0 = 1,

( TA)1 = 0,

—(TA) 2 = C21 (0) To.

From Equations (248), (250), (253) this implies

27r
TO =—,

co
da	 dco

To R—p,	 it(0) + —
d

(0)) Pti iond= 0.
d 

Since (da/dp)(0) 0 0 Equation (254) implies
tions (248), (250), and (253)

=

(253)

(254)

0 and tl = 0. Then from Equa-

—To (//2 u,d (0) + i0Yr2) = C21(0) To• (255)

Equating the real and imaginary parts of Equation (255) one has Equation (243) up to the
second order in e with

µ1 =t1= 0,

Re{c21 (0)) 
112 =	 ccif: (0)

r2 =	 (p,2 (0) + Im{c21(0)})

	

(0	 dm,

	

2,r	 (256)To = —•

(251)



(260)

(261)
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This constructs the family of periodic solutions n(s, e, (8)) with period T(s) for Equa-
tion (235).

In order to determine the stability of this family of periodic solutions one must compute
the characteristic exponents of the variational equation of Equation (235) about the family
of periodic solutions 77 (s, , (8)). To do this introduce a perturbed solution n + Ili into
Equation (235). For fixed 1,1, the variational equation is given by

— = X(µ)*+ 82 021 (A) (211 11' 	 1121k)
ds

dik	
(257)

along with its conjugate. Since n is periodic with period T (s) the coefficients of Equation (257)
are periodic with the same period. Expand the solution as

(s ,	 IL) = "Cfro(s	 + E *1 (5 Pt) + 82 *2(S Pt) + • • • , 	 (258)

where the initial conditions are

1fr. (0 , 8 /-t) = X0 (0, it),

(0, p,) = 0, i = 1, 2, . . . . (259)

Substituting Equations (242) and (258) into Equation (257) and equating coefficients up to
second order in r gives

"Cfro
ds = X(A)*0,

r1 
= gi-t)*1,

ds

*2 = (/ )l2 c2104 eA(I4s [2 eX(Ws + eACosTioi.
ds

From the initial conditions (259) compute

*0(s ,	 =	 (0, tt) eX(A)s,

•tki (s, tt) = 0,

*2(s , 11) = c2i (Pt)e( s , A)[2k(0, it) + Ikon it)] eA(A)s,

where Equation (240) has been used with p, 0. Therefore, to second order in e, the general
form of the solution of the variational equation (257) is

Ifr(S , e , it)	 Ikon it) exCos + 82 C21 (Pt) [Ilko (0, /) + Ikon it)le (s , s ) ex(14s .	 (262)

Now, setting s = T (E) and p = ,u,(E), rewrite Equation (262) as

f (8 )	 Ws))

[egA(s))T(E)	 8 2 C21(µ (E))2e(T (6), ,u,(E)) ex(14E))T(E)]*(0, , p(E))

+ [6.2 c21(1,t(e))e( T (E), We)) eA(11(E))T(6) ] 1T(0,	 WO)
	

(263)



(271)

(272)
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along with its conjugate

IT ( 7' (0, , it(E))

= ls2F2i(lu (8)) e ( T (8), WO) e(A(8))T(E)]*(0, ,

+ leA(4(8))T(E) + 82 521 (tt (8))2e ( T (8), WO) e (A(8))T(E) ItF(0, 	 WO).
	 (264)

Set

all	 ex (' t (s )) T (8) + 8 2 C21 (it (8 )) 2e ( T (8), Ws)) e(A(8))T(s)

a 12 = 8 2
c21(1-48 )) e ( T (8), Ws)) ex(4"T(')

a21 = a12,

a22 =-
	 (265)

then write Equations (263) and (264) in matrix form

( 7' (8),	 (8))	 ( an a 12	 *(0, 8 14(8)) (266)
( 7' (8 ),	 4(8))	 azi a22)	 *(0, 8, 1.48)))

From Floquet theory the eigenvalues of the monodromy matrix with elements a id are of the
form 1 and e fi(E)T(8) . The sum of these eigenvalues is the trace of the monodromy matrix or

1 + e13(s)T(E) = all	 a22 = 2Refa11l.

Set

(E ) = )60 + P1 8 + /32 E2 ± • • • ,

27r
T (s) = —(1 + T28 2 + • • •).

In order to compute the coefficients of fi(s) use Equation (267) by first expanding all from
(265) to second order in E. From Equations (251) and (253) through (255)

e-x(A(E))T(8) = 1	
2n-
-co C21 OW,	 (269)

so that by the geometric series

ex(IL(E))T(E) = 1 — 	 C21 (0)8 2 .	 (270)
co

Expanding to order zero c21(ii, (E)) = c21(0) and from Equations (240) and (256), again
expanding to zero order, e(T (e), Ws)) = e(T (0), 0) = T (0) = 27/(o. Then, using
Equations (265) and (270), compute

(27r	 27	 27
E 2	 1 + 2 — C21 (0)8 2 = 1 + —C21 (0)s 2 .an = 1 —	 C21 (0)

Inserting Equation (271) into Equation (267) yields

1 -1- efi(E)T (E) = 2 62 
27 

(2Re{c2i

(267)

(268)

co
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or

co

Using Equation (268), expand the left-hand side of Equation (273) by Taylor series to second
order in 6 and get

27
e i3 (8 ) T (E ) = e(27` 1°4'0 (1 + -p iE

27
—032	 T2P0)	 (—

2
21 _2)

PI (274)
CO

Now, equating powers of E in Equations (273) and (274)

e (27r/w) '6° = 1,

27
= 0, (275)

which implies /30 = /3 1 = 0 since they are real. Finally one has

,82 = 2Re{c21 (0)}. (276)

From Floquet theory the sign of /32 determines the nature of stability.
At this point one can construct the family of periodic solutions for Equation (229). Begin

with Equation (242), the Taylor series for )n,(11,(8)), given by Equations (247) and (248), and
the fact that p i = 0, shows that

e)' (A('))s = eiws [1 +

	

	 (0)/,c 2s62] .
dm,

Substitute for p,2 from Equation (256) and use the fact that

dA/dp,(0) = da/dp(0)	 i dco/dp,(0)

to get

ex (/-(6 ))6 = eiws	 1 + iE 2 s( —Re (278)
Re {c21 (0)1 t (0)1)

c21(0)}
t.: (0)	

.

Using Equation (240), expand to the zeroth order in s

c21(11(8)) = C21(0) + • • • ,

e(s, A(8)) = s + • • - . (279)

Therefore from Equations (242) and

I/ (s, E, kt(E)) = eic" ( 1 + iE 2s

(278), up to second order in E,

Re 1c21 (0)1 t (0)
Im

ti (0)	

1)
(280){c21(0)}

One can also show that, to the second order in 6, one gets the right-hand side of Equation (280)
when one substitutes for -t-2 from Equation (256) in

e(27/T(e))is = eiwo -T2 E 2 )s = ei ' (1 — iNT2SE 2 ).	 (281)

efi(E)T(8) = 1 + 8227r
(2Re{c2i (0)})• (273)

(277)



144 D. E. Gilsinn

Then Equations (280) and (281) imply
Ti(s, 8, 0(8)) = e(27/T(s))is	 (282)

With the change of variable (234) one obtains the solution for Equation (229) as

v(s, 8, ,u(s)) = 8 e /2±0 = E e l ws	 (283)

Finally one can construct the bifurcating periodic solution of Equation (3). From the near
identity transformation (222), and Equations (224), and (227)

g20
y (s , 8) = v(s, s, ,u,(s)) + —v(s, 8, µ(E))2

2i co

— gll	
6i
g02

	

v(s, E, p,(8))1(s, s, µ(E)))) — —co v(s, 8, ,u,(8)) 2 .	 (284)
t CO

From Equations (283) and (284), to second order in 8,

elms	 gM 2 2i cos	 gll 2	 g02 2 —2i cosy(s, 8) = e	 8 e —	 s — —s e	 (285)
2i w	 ico	 6i w

One can now relate Z(s) and y(s) by the transformation (167), with 9 = 0, in the form

Z(s) = q(0)y(s) + t7(0)Y(s) + Ws(0),	 (286)

where Ws (0) = w(y(s), y(s)). From Equations (175) and (285), up to second order in E,

22
Ws(0) = —2 

W20(0) e2iws 8 2 W1 (0) — wo2 (0) e-2iws
2

= s 2Re{w20 (0) e2ups wii	 (287)

Now from Equations (285) through (287) write

Z(s, E) = 2Re {q(0)y(s)} + Ws (0)

	

e	 I]= 2sRefq (0) en + 28 2Re {q(0) [ 	 e2iws gll	 g02 —2icos

2i co	 ico	 6ico-

s2Ref wain eziws w (0)}	 (288)

for 0 < s < T (s). By using Equation (196) with 9 = 0, and using Equations (199),
(201), (204), (206), (207), and (167) one can write with some lengthy but straightforward
calculations

Z(s, s) = (s, it(s)) = 2sRe{q(0) e i 's } + s 2Re{Me2iws N}
	

(289)

since N is real. This is the specific form of Equation (9). Finally, note that since ,u ,u282 one
can take 8 = (plp,2) 1/2 which allows one to associate Z(s) with the parameter p = + pc.

1=1
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5. Application to Machine Tool Chatter

The machining tool model used only for illustration in this paper is taken from Kalmar-Nagy
et al. [12] and can be written as

	

2(onj (0,12 x = kfo	 (z. a

	

ma
	

fo)

	
(290)

where con = ,\/r/m is the natural frequency of the undamped free oscillating system and
= c/2nuon is the relative damping factor and k is the cutting force coefficient that is related

to the slope of the power-law curve used to define the right-hand side of Equation (290).
The parameters m, r, c and a are taken as m = 10 kg, r = 3.35 MN/m, c = 156 kg/s,
and a = 0.41 and were obtained from measurements of the machine-tool response function
[12]. a was obtained from a cutting force model due to Taylor [49]. These then imply that
co, = 578.79 1/s, 4' = 0.0135. fo is the nominal chip width and

f = fo + x(t) — x(t — r),	 (291)

where the delay r = 27r /O r is the time for one revolution of the turning center spindle (or r =
60/C2, if O r is in RPM). k will be taken as the bifurcation parameter. The displacement x(t)
is directed positively into the workpiece and the tool is assumed not to leave the workpiece.

The model is simplified by introducing a non-dimensional time s and displacement z by

S = coat,

z =

where the length scale is computed as

3 foA =
2 — a

a new bifurcation parameter p is set to

k
P = 2

rnWn

and the delay parameter becomes

a = war. (295)

The dimensionless model then becomes, after expanding the right-hand side of Equation (290)
to the third order,

2z 
+ 24 —

dz 
+ z = p(Az + E(Az 2 + Az 3 )),	 (296)

ds2	ds

where

Az = z(s — a) — z(s),

3(1 — a)
E= 	

2(2 — a)

(292)

(293)

(294)

(297)
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Since the Hopf bifurcation studied in this paper is local, the bifurcation parameter will be
written as

p= lU + pc,
 (298)

where pc is a critical value at which bifurcation occurs. Then Equation (296) can be put into
vector form (3) As shown in Equation (123) the characteristic equation for Equation (1) is
given by

24• A. + (1 + p) — pe-a = 0.	 (299)

By Lemma 3.1, for co > 1, there is a uniquely defined sequence ar = ar (co), r =
0, 1, 2, ... and a uniquely defined p = p(co) such that (co, ar , p), r = 0, 1, 2, ... , are
critical eigen triples for the characteristic Equation (299). These are given by Equations (32)
and (33), using Equations (23) and (28).

One can plot p against C2, = 1/6,, where Qr is the rotation rate of the turning center
spindle, for r = 0, 1, 2, .... Since p must be positive, select any set of values w > 1 such
that G(co) < 0. Next select r = 0, 1, 2, ... , N for some N. For each r compute the pairs

p) for each w. When these families of pairs are plotted they form a family of N lobes as
shown in Figure 3 for the case N 5, where the plots are based on the value of = 0.0135.
Each lobe is parameterized by the same vector of w's so that each point on a lobe boundary
represents an eigenvalue of Equation (19) for a given p and ar = 1/C2,. This plot is called a
stability chart and was introduced by Tobias and Fishwick [50]. The minimum of each lobe
is asymptotic to a line often called the stability limit. The significance of the stability chart in
the linear case is that the lobe boundaries divide the plane into regions of stable and unstable
response. In particular, the regions below the lobes are stable and those above are unstable.
In the nonlinear case the Hopf bifurcation at the lobe boundaries allow for the possibility of
unstable oscillations below the stability boundary. This would be the case in a subcritical Hopf
bifurcation. Since the parameter p is proportional to material removal, the regions between
lobes represent areas that can be exploited for material removal above the stability limit line.
This property is currently being exploited in high speed machining [6].

To simplify the calculations in the following sections only the bifurcation at the minimum
point of the lobes, pm , given by Equations (60), (61) will be examined. Any other point on a
lobe would involve more complicated expressions for any p greater than pm and obscure the
essential arguments. As was previously said a discussion of the bifurcation that occurs when
two or more lobes cross is beyond the scope of the current paper and will be considered at a
later time. From Equations (61) and (28)

*„, =	 ± tan-I (V1+2 ,

1	 com
C2„, = — =

	

	 	 (300)
2(1/iin + r7) ±

for r = 0, 1, 2, .... For the case of = 0.0135 one has that Vi r„, = —2.3495. When r =
0, S2m = 0.2144 (o-r = 4.6642), which is the dimensionless rotation rate at the minimum of
the first lobe to the right in Figure 3. This point is selected purely in order to illustrate the
calculations. The stability limit in Figure 3 is given by Equation (60) as

2( + 1) = 0.027365.	 (301)
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Stability Chart

0
o 0.05	 0:1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4

Figure 3. Locations of sample simulated solutions.

The frequency at this limit is given by Equation (61) as

com = \71 + 24- = 1.01341.

From Equation (90)

°a'(0)=	
1 

2(1 + 0 2 (1 + 4'am)'

N/1 +
w'(0)= 	

2(1 + 0 2 (1 +

From Equation (147) the value of d2 can be calculated as

—i\/1+ 2
d2— 	

2(1 + 4'ac )(1 +

where a = am , pc = pm , co = com in Equation (147).
One can now compute g2o, 1, got, and g21 from Equations (178) and (179). Then

from Equation (228) one computes c21 and finally, from Equation (232), one can compute

/22, 12, /32 as

it2 = —0.09244,

12 = 0.002330,

02 = 0.08466.	 (305)
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This implies that at the lobe boundary the DDE bifurcates into a family of unstable periodic
solutions in a subcritical manner. Using Equation (289), one can compute the form of the
bifurcating solutions for Equation (3) as

2s cos 1.01341s + s 2 ((-2.5968e — 6) cos 2.02682s-
- 0.014632 sin 2.02682s + 0.060113)

Z(s) =

	

	 (306)
26 sin 1.01341s + e 2 (-0.02966 cos 2.02682s+

+ (5.2632e — 6) sin 2.02682s)

As noted at the end of Section 4 one can take as an approximation

e = ()1/2
it

tt2

It is clear from Equation (305) that pt must be negative. Thus select

(_01/2
6 = 	 •0.3040395

The period of the solution can be computed as

27
T (8) = 	 (1 + t2E 2) = 6.2000421 (1 + 0.002330 82)

Wm

and the characteristic exponent is given by

13 = 0.08466 8 2 .	 (310)

The first of two sets of simulations was initialized at the points A through F in Fig-
ure 3 along the line S-2 = 0.2144 (selected for ease of calculation only). This line crosses
the minimum of the first lobe in Figure 3. The simulations numerically demonstrate that
there are three branches of periodic solutions emanating from the critical bifurcation point
pm = 0.027365. The three branches are shown in Figure 4. Two are unstable and one is
stable in the following sense. The amplitude of the unstable subcritical branch is computed
as two times Equation (308) (see Equation (306)). Solutions initialized below the subcritical
branch converge to the zero solution. Those initialized above the subcritical branch grow in
amplitude. The solutions initialized above zero for bifurcation parameter values greater than
the critical value grow in amplitude. Similar results would be obtained along lines crossing at
other critical points on the lobes.

The work of Kalmar-Nagy et al. [12] shows experimental evidence of a jump phenomena
at the stability boundary that leads to a hysteresis effect with multivaludeness in the amplitude
response curve. Simulations with the current model do not support this effect. The author
conjectures that one possibility is that this may be due to the lack of structural nonlinearities in
the model similar to those included in the model of Hanna and Tobias [15]. Another possibility
is contact loss between the tool and the surface. This question requires further study.

The Hopf bifurcation result is very local around the boundary and only for very small
initial amplitudes is it possible to track the unstable limit cycles along the branching amplitude
curve. This is shown in Figure 5 where initial simulation functions were selected as constants
with values along the approximate subcritical curve and the delay differential equation was
integrated forward over five delay intervals. Note that nearer the critical bifurcation point the
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solution amplitude remains near the initial value, whereas further along the curve the solution
amplitude drops away significantly from the subcritical curve.

Since the subcritical bifurcation curve in Figure 4 is an approximation to the true subcritical
curve given by twice (308), solutions initialized on the curve, in this case, tend to decay to
zero. This occurs at points A, B, and C in Figure 3. Some initial function values were selected
just above the approximate subcritical curve in Figure 5 and the oscillation amplitudes also
decayed, but when initial amplitudes were take significantly above the approximate curve the
oscillations became unstable as expected. This result only points out that from the computa-
tional point of view the true subcritical curve falls somewhat above the approximate curve in
Figure 5. However, on another choice of approximation curve the oscillations might grow in
amplitude rather than decay, which shows the difficulty of finding the exact subcritical curve.

The decay at point B, when initialized on the subcritical is similar to the result at point A,
but with a less rapid decay. However, when a solution is initialized above the curve at point
B, given by (Q, p) = (0.2144, 0.020365), the solution amplitude grows when initialized at
an amplitude of 0.8 (Figure 5). At point C, when the solution is initialized on the subcritical
bifurcation curve, the phase plot remains very close to a periodic orbit, indicating that the Hopf
results are very local in being able to predict the unstable periodic solution. The behavior at
points D, E, and F of Figure 3 are similar in that all of the solutions initialized above zero
experience growth and eventually explode numerically.

The second set of simulations, initialized at points G through M along the line Q = 0.15,
in Figure 3, shows the stability of solutions for parameters falling between lobes, in that the
solutions of the delay differential equation (296) all decay to zero. The gaps between lobes
are significant for machining. Since the parameter p is proportional to chip width, the larger
the p value for which the system is stable the more material can be removed without chatter,
where chatter can destroy the surface finish of the workpiece. These large gaps tend to appear
between the lobes in high-speed machining with spindle rotation rates of the order of 20,000
RPM or greater.

Appendix: An Integration Method for DDE

The current initial value problem takes the general form

= f (x, x„), t > 0,

JC(0) = x(),

X(t) = OW,	 < t < 0,	 (311)

where x E R2, (t) is the initial value function, which does not have to solve the equation
but is assumed to be piecewise continuous and x, (t) = x(t — r). It also is not necessary that

(o) = xo.
The general method used to integrate the differential equations is referred to as the 'method

of steps' [51]. In this method the integration process begins with an initial function defined
over an interval [—r,0], where r is the delay. Since the initial function is defined here the
system

5c(t) = f (x(t), (/)(t — r))	 (312)

can be integrated by a standard method, such as a Runge—Kutta—Fehlberg (RKF) method on
the interval [0,r] [52]. The discrete values generated are saved and used to interpolate the delay
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terms during the integration over [t, 2r]. The process then continues for as many intervals as
desired.

For simple Euler-type integrators the values of the solution can be stored at fixed step mesh
points. These can easily be looked up when evaluating the delay term. However, the Euler
methods are low precision algorithms. A high precision RKF, adaptive stepping algorithm,
requires not only that the delay term be evaluated between previous mesh points, but that it
must also be interpolated in case the value of the solution at a delay falls between mesh points.
This happens both because of step length changes and because of the algorithm itself.

The one step method used in this study is based on the following algorithm

xn+1

1./7+1

-in+1

where

= to +h,

=	 f (x(tn+i), x(tn+i)),

(t — r),	 0 < t <r,
Z(t) =xo,	 t = r,	 (314)

Pg (t — r; (JO; (5C )),	 t >	 ,

(313)

where Pq (t; (xi ); (ii )) denotes the Hermite interpolation polynomial [52], of odd degree q,
over the support points (t1 , , 3.0. The number of support points depends on the degree q. (13
will be defined below.

Introducing the interpolation changes the order of convergence of the RKF algorithm. It
can be shown that the order of convergence of the resulting algorithm is the minimum of p,
the order of the RKF algorithm, and q, the Hermite interpolation polynomial degree [53]. For
example, for a fourth-order RKF algorithm the Hermite interpolation polynomial should be
fourth degree or higher in order to maintain the proper global order of convergence.

For the fourth-order RKF algorithm the function (I) in Equation (313) is specified as

5

(I) (tn, xn; z((n ); h) = E yiki ,
j=i

where

k1 = f (xn, z(tn))

(	
f-1

kj = f xn + h E / 3 ii ki , z(t„ + a jh)

-1

for j = 2, ... , 6. The truncation error in xn± i is approximately

6

truncerr = h E ciki

.1=1

The coefficients yj , aj , co/ and /3., can be found in [52]. The interpolation polynomial for the
current program is taken as a degree nine. This was done in order to be sure that no significant
error accumulated while integrating over a large number of time delay intervals.

h '4) (tn , xn , z(tn ), h),

(315)

(316)

(317)
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The Hermite interpolation polynomials can be written in terms of Newton divided differ-
ence coefficients [52]. Since both the value of the polynomial and its derivative are specified at
n points this means that 2n conditions are imposed and one can look for an at most 2n — 1 de-
gree polynomial. For a five point interpolation this means an at most ninth-order polynomial.
To write the polynomial suppose that t falls within the mesh of points ti_2, ti_i, tj , ti+i, ti+2•

Let xk and zk be specified at k = j — 2, ... , j + 2. Then the unique polynomial of degree nine
interpolating these points is given by

P9 (t)	 x(ti _ 2 )	 (t — tj _2)x[tj _2, t J-2]

(t — t J _2 ) 2 x[t j _2 , _2 , t,_ 1 ] + • • •

(t	 t j —2) 2 • • • (t	 th-2)X[t j —2, ti-2, • • • , t j+2, 1)+2],
	 (318)

where x[t _2 , t i -2 ], • • • , x[t J -2, t _ 2 ,	 t j +2, 1)+2] are the divided difference coefficients.
The program developed for this study was based on the program RKF45 by Shampine and

Watts [54]. A listing of an early version of RKF45 is given in [55]. The adaptive stepwise
control of the program is based on selecting a step that ensures the truncation error for xn±i
satisfies

I truncerrI < ABSERR RELERR xn ,	 (319)

where ABSERR and RELERR are the desired absolute and relative error tolerances specified
by the program user. The version of RKF45 in [55] was modified for this study in order to
include the capability of saving state and derivative values at each of the time step mesh
points during the current interval of integration. These are then stored for later look up. For
each time step a fast search program finds the past interval in which the delay term falls. The
program then uses the high-order Hermite interpolation routine to compute the state value at
the delay time.
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