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Abstract
Consider an ill-posed problem transformed if necessary so that the errors in
the data are independent identically normally distributed with mean zero and
variance 1. We survey regularization and parameter selection from a linear
algebra and statistics viewpoint and compare the statistical distributions of
regularized estimates of the solution and the residual. We discuss methods
for choosing a regularization parameter in order to assure that the residual
for the model is statistically plausible. Ideally, as proposed by Rust (1998
Tech. Rep. NISTIR 6131, 2000 Comput. Sci. Stat. 32 333–47 ), the results
of candidate parameter choices should be evaluated by plotting the resulting
residual along with its periodogram and its cumulative periodogram, but
sometimes an automated choice is needed. We evaluate a method for choosing
the regularization parameter that makes the residuals as close as possible to
white noise, using a diagnostic test based on the periodogram. We compare
this method with standard techniques such as the discrepancy principle, the
L-curve and generalized cross validation, showing that it performs better on
two new test problems as well as a variety of standard problems.

1. Introduction

Systems of first kind integral equations,

yi ≡ y(ti) =
∫ b

a

K(ti, ξ)x(ξ) dξ + εi, i = 1, 2, . . . , m, (1.1)

are routinely used to model instrument distortions in measuring an unknown function x(ξ).
The Ki(ξ) ≡ K(ti, ξ) are known (previously measured or calculated) response functions of

0266-5611/08/034005+30$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/24/3/034005
mailto:bert.rust@nist.gov
mailto:oleary@cs.umd.edu
http://stacks.iop.org/ IP/24/034005


Inverse Problems 24 (2008) 034005 B W Rust and D P O’Leary

the instrument, the yi are measurements made on a discrete mesh t1, t2, . . . , tm, and the εi are
random, zero-mean measuring errors. Discretizing gives a linear regression model

y = Kx∗ + ε, (1.2)

where y is the m-vector of measurements, K is a known m × n matrix, with m � n, and
x∗ is an unknown n-vector whose components are either discrete values of x(ξ) on some
mesh ξ1, ξ2, . . . , ξn, or are the unknown coefficients in a truncated expansion for x(ξ). An
example of such a discretization is given in appendix A. The vector ε is an m-vector of random
measuring errors satisfying

E(ε) = 0, E(εεT ) = S2, (1.3)

where E is the expectation operator, 0 is the zero vector and S2 is the positive definite variance
matrix3 for ε. When the measurement errors are statistically uncorrelated, the variance matrix
is diagonal:

S2 = diag
(
s2

1 , s
2
2 , . . . , s2

m

)
, (1.4)

where s1, s2, . . . , sm are the standard deviations of the errors. When the errors are correlated,
the model can be transformed to have a diagonal variance matrix by premultiplying (1.2) by
the inverse of the lower triangular Cholesky factor of S2.

Estimates of S are often readily available along with the data values y, since good
experimenters routinely provide estimates of the error as ±1-sigma error bars on the plotted
points. The variances can be estimated as the squares of the half-lengths of the bars}. An
analyst who fails to use this information implicitly assumes that S2 = s2Im, where Im is
the mth-order identity matrix and s is an unknown scalar that can be, but usually is not,
estimated from the sum of squared residuals for the least squares solution. Using all available
information on the variances can greatly improve estimates of x.

In the following it will be assumed that S is a known matrix and that the errors are
samples from a multivariate normal distribution, i.e., that ε ∼ N(0, S2). In section 2, these
assumptions will be used to rescale the problem so that the scaled errors η = S−1ε ∼ N(0, Im)

and to derive a statistical diagnostic for estimates of the solution vector. In section 3 we
use this scaling on a variant of the well-known Phillips problem [23]; the ordinary least
squares estimate is calculated and found to be unsatisfactory. In section 4 we discuss
the families of solutions formed from Tikhonov estimation and from the truncated singular
value decomposition (TSVD), among which an acceptable estimate of the solution can often be
found, and derive their statistical properties. Section 5 discusses rules for choosing among the
estimates. In section 6 we illustrate these ideas on a test problem. The new diagnostics can be
used to specify high-quality Tikhonov and TSVD estimates, but in both cases, the L-curve and
minimum generalized cross validation (GCV) criteria give unacceptable results. In section 7
we discuss how the parameter choice method can be automated, and we present results on
a variety of standard test problems in section 8. In section 9 the methods are successfully
applied to real-world measurements of the energy spectrum of neutrons produced by a certain
nuclear reaction. Finally, section 10 gives a brief discussion of algorithmic considerations and
of how the new method can be extended when the knowledge of the measurement errors is not
as complete as might be desired.

In some important ill-posed problems, extra information is available about the solution; for
example, we might know that x(ξ) is non-negative or monotonic. Including such constraints
can be important in achieving a good solution using techniques such as penalized maximum
likelihood, Bayesian methods, maximum entropy, etc (see for example [2, 4, 19, 24, 29]), but

3 This matrix is often called the covariance matrix.
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we do not consider such constraints here. Neither do we consider the important question of
robustness of our methods when our assumptions on the distribution of the error are violated.

This paper is meant to be expository, providing an overview of methods for choosing
regularization parameters. At the same time, it contains some original contributions. We
compare the statistical distributions of regularized estimates of the solution and the residual
for discretized ill-posed problems; we highlight a particularly promising and underutilized
set of statistical techniques that we have found useful in judging the quality of a solution;
we propose a way to automate the evaluation when necessary, and we present two new test
problems4 useful for evaluating numerical methods. Some of this material is taken from [26].

2. Properties of the model’s residual

Our linear regression model can be written as

y = Kx∗ + ε, ε ∼ N(0, S2), (2.5)

as stated in (1.2), but it is advantageous to scale it with the matrix S−1. Let

b ≡ S−1y, A ≡ S−1K, η ≡ S−1ε. (2.6)

Note that by a standard theorem of multivariate statistics [1, theorem 2.4.4], η ∼
N(S−10, S−1S2[S−1]T ), so the scaled model can be written as

b = Ax∗ + η, η ∼ N(0, Im). (2.7)

As a consequence, another standard theorem [17, p 140] gives ‖η‖2 ∼ χ2(m), where χ2(m) is
the Chi-squared distribution with m degrees of freedom. The advantage of our scaling is that
we now can see how a reasonable residual to the model should behave. Let x̃ be an estimate
of x∗ and let

r̃ = b − Ax̃ (2.8)

be the corresponding residual vector. Since the regression model can also be written as

η = b − Ax∗, (2.9)

it is clear that x̃ is acceptable only if r̃ is a plausible sample from the distribution from which
η is drawn. Since

E{‖η‖2} = m, Var{‖η‖2} = 2m, (2.10)

these two quantities provide rough bounds for the ‖r̃‖2 that might be expected from a reasonable
estimate of x∗: an estimate that gives

m −
√

2m � ‖b − Ax̃‖2 � m +
√

2m (2.11)

would be reasonable, but any x̃ with ‖r̃‖2 outside the interval [m − 2
√

2m,m + 2
√

2m] would
be suspect. These indicators can be sharpened and quantified by using percentiles of the
cumulative distribution function for χ2(m).

We will see in section 5 how to use this information in choosing among a family of
possible regularized estimates for x∗.

4 The data for the Burrus problem in section 9 and a MATLAB program for the Phillips variant defined in the appendix
are available at www.cs.umd.edu/users/oleary/bwr.
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Figure 1. The modified Phillips problem. Left: the kernel K(t, ξ) for various values of ξ , from
(A.2) in the Appendix. Right: the true solution x(ξ) from (A.3) and the function y(t) from (A.1).

3. Linear regression

By transforming the matrix model from K to A, we equalize the contributions of errors in the
data, but we have not mitigated the sensitivity of the model to these errors. If the problem were
not ill posed, we would assume that rank(A) = n and seek the minimum variance, unbiased
estimator by solving

r2
min = min

x∈Rn
{(b − Ax)T (b − Ax)}. (3.12)

The linear regression estimate

x̂ = (AT A)−1AT b (3.13)

is the best linear unbiased estimate of x∗ [1]. To compute its variance, we use the fact that for
any matrix C with m columns, if b ∼ N(Ax∗, Im), then [1, theorem 2.4.1]

Cb ∼ N(CAx∗, CCT ), (3.14)

so the variance of x̂ is (AT A)−1. A similar computation shows that the distribution of the
corresponding residual has mean 0 and variance

Im − A(AT A)−1AT . (3.15)

It is well known [28, chapter 1; 32, chapter 6; 35, chapter 2] that for ill-posed problems, the
elements of x̂ are pathologically sensitive to small variations in the elements of b, so despite
the desirable statistical properties of the estimator x̂, the measuring errors generally make it
totally unphysical and wildly oscillating.

We illustrate this on a useful test problem that shares many characteristics of real
instrument correction problems. This problem can be obtained by discretizing a variant
of the Phillips equation [23] and adding random errors to the discrete yi . The problem and a
discretization with m = 300 and n = 241 are described in detail in appendix A. The functions
y(t) and x(ξ) are plotted on the right-hand side in figure 1, and on the left-hand side we see the
functions K(t, ξj ) for the discrete values ξj = −3.0,−1.5, 0, 1.5, 3.0. All of the 241 K(t, ξk)

have the same shape and subtend unit area. The 300 standard deviations si for equation (A.24)
in the Appendix range in value from 3.49 × 10−11 to 7.78 × 10−6, so the errors in the yi are
much smaller than the thickness of the curve in the plot of y(t). But these small errors produce
large oscillations in the least squares estimate of the solution vector. This is shown in the
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Figure 2. Least squares estimate (top) and diagnostics for the modified Phillips problem. On the
left are the residual and its histogram. On the right are the residual periodogram and the cumulative
periodogram, discussed in section 5.2.

top plot of figure 2 where the barely discernible dashed curve is the true solution x∗, and the
solid curve oscillating wildly about it is the least squares estimate x̂. The magnitudes of these
oscillations are roughly 107 times greater than the largest random errors in the yi . Such large
amplifications of the measuring errors are typical for ill-posed problems.

Even without having information about the true solution, the norm of the residual tells
us that the computed solution is not useful: for the modified Phillips problem, the linear
regression estimate gives

r2
min = min

x∈Rn
‖b − Ax‖2 = ‖b − Ax̂‖2 = 43.01. (3.16)

5
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By (2.10), E{‖b−Ax∗‖2} = 300, with standard deviation
√

600 = 24.49, so r2
min is more than

10 standard deviations smaller than the expected value.
To improve our estimate, we need a family of regularized solution estimates that are not

so sensitive to errors, and some means for choosing among those estimates.

4. Regularized solution estimates

Insight into the failure of the least squares method is obtained by use of the singular value
decomposition (SVD) of A:

A = UΣVT =U
[
Σ1

O

]
VT , Σ1 = diag(σ1, σ2, . . . , σn). (4.17)

Here σ1 � σ2 � · · · � σn � 0, and

UT U = Im = UUT , VT V = In = VVT . (4.18)

If the m × m matrix U is partitioned

U = [U1, U2], (4.19)

with U1 being an m × n submatrix, then it can be shown by substituting into (3.13) [8,
section 5.5.3] that the least squares solution satisfies

VT x̂ = Σ−1
1 UT

1 b, (4.20)

and that

r2
min = ‖b − Ax̂‖2 = ∥∥UT

2 b
∥∥2

. (4.21)

These last two equations can also be written as

(VT x̂)i = (UT b)i

σi

, i = 1, 2, . . . , n, (4.22)

and

r2
min = ‖b − Ax̂‖2 =

m∑
i=n+1

(UT b)2
i . (4.23)

Using the SVD of A, we can compute A = U1Σ1VT and

A(AT A)−1AT = U1UT
1 . (4.24)

This analysis leads to two families of regularized solutions: truncated SVD (TSVD) and
Tikhonov regularization.

4.1. The truncated SVD family of regularized solutions

For the modified Phillips problem, the value of r2
min defined by (3.16) is too small by ten

standard deviations, which suggest that some of the (UT b)i values in the sequence (4.22)
more properly belong to the sum in (4.23). This reasoning leads to the idea of truncating
the decomposition. This is accomplished by choosing a value p < n and replacing Σ1 by a
truncated matrix

Σtr = diag(σ1, . . . , σp, 0, . . . , 0) (4.25)

whose pseudo-inverse is

Σ†
tr = diag

(
1

σ1
, . . . ,

1

σp

, 0, . . . , 0

)
. (4.26)

6
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Figure 3. Singular values (squares) and first n elements of |UT b| (circles) for the modified Phillips
problem.

Then (4.22) and (4.23) are replaced by

(
VT x̃

)
i
=
⎧⎨
⎩

1

σi

(UT b)i, i = 1, 2, . . . , p,

0, i = p + 1, . . . , n.

(4.27)

From this, we can compute

‖b − Ax̃‖2 =
m∑

i=p+1

(UT b)2
i . (4.28)

The above approach was first suggested by Golub and Kahan [6] who noted its similarity to the
theoretical treatment given by Smithies [27, chapter 8] for the singular functions and singular
values of first kind integral equations. One of the first to use it was Richard Hanson [14] who
suggested that the threshold should be the smallest integer p such that

m∑
i=p+1

(UT b)2
i < m. (4.29)

In view of (2.10), this seems a very sensible choice. Another choice [7] is to seek a clear gap
in the distribution of the σi and to zero all those on the low side. Unfortunately, most ill-posed
problems have no gap.

As an example, we see no gap in the plot of the singular values for the modified Phillips
problem, marked with squares in figure 3, which also shows the elements of |UT b| plotted as
connected circles. The largest and smallest singular values are

σ1(A) = 2.882 × 105, σ241(A) = 2.622 × 10−2. (4.30)

with ratio (condition number) cond(A) = 1.099 × 107. The relative accuracy is εmach =
2.22 × 10−16, so there is no reason to assume that the numerical rank of A is less than n. Yet
the problem obviously needs some truncation to prevent the estimate from capturing variance
that properly belongs to the residuals.

We note that the TSVD solution estimate (4.27) can also be obtained by zeroing
components of UT b corresponding to small singular values rather than zeroing the singular
values of A, as noted by Golub and Kahan [6].

7
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4.2. The Tikhonov family of regularized solutions

An alternative to setting small singular values to zero is to instead increase them so that they
lead to a smaller contribution to the solution estimate; see (4.22). Although this strategy is
generally attributed to Tikhonov [30], it was also pioneered by Phillips [23] and Twomey [31].
A statistical variant, called ridge regression, was also independently developed by Hoerl and
Kennard [15, 16]. In the Tikhonov method, we add a small increment to each singular value.
For the large singular values this has little effect, but for the small ones it can greatly diminish
the noise contributed by the components of U1

T b corresponding to those values.
The Tikhonov regularization estimate is given by

x̃λ = (AT A + λ2In)
−1AT b, (4.31)

where λ is a parameter chosen to balance the competing demands of fidelity to the
measurements and insensitivity to measurement errors. This interpretation of λ comes from
the fact that the vector x̃λ is the solution to the minimization problem

min
x

‖b − Ax‖2 + λ2‖x‖2. (4.32)

Using the SVD, it can be computed as

(VT x̃)i = σi

σ 2
i + λ2

(UT b)i, i = 1, 2, . . . , n, (4.33)

which can be compared to the TSVD value (4.27). The corresponding residual norm-squared
is

r̃2
min = ‖b − Ax̃‖2 =

n∑
i=1

(
λ2

σ 2
i + λ2

)2

(UT b)2
i +

m∑
i=n+1

(UT b)2
i , (4.34)

which compares to the TSVD value (4.28).

4.3. The statistical distributions of our estimators

In this section we use the SVD of the matrix A to derive formulas for the means and variances
of the estimators obtained from least squares and from our regularized algorithms. We will
repeatedly make use of several useful properties of the SVD. First, since the columns of U and
V form orthonormal bases, we have the properties UT U = Im and VT V = In. Second, since
Σ is an m × n matrix that is nonzero only on the main diagonal, we will call its top n × n

block Σ1 and denote the n × m pseudo-inverse of Σ by

Σ† = [Σ†
1 0

]
, (4.35)

where the pseudo-inverse of a square diagonal matrix is formed by replacing the nonzero
diagonal entries by their inverses. To make expressions simpler we will assume that A and
therefore Σ1 are full rank so that Σ†

1 = Σ−1
1 and Σ†Σ = In. We will also make use of the

partitioning of U in equation (4.19), and the fact that diagonal matrices commute. We have
three kinds of solution estimates for problem (1.2): the least squares estimate, the TSVD
estimate and the Tikhonov estimate. Referring to equations (4.22), (4.27) and (4.33), we see
that all of these estimates have a similar form. In fact, for all of them,

VT x = FΣ†UT b, (4.36)

8
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where F is an n × n diagonal matrix specific to each method. The entries of F are called filter
factors [11]. For the ordinary least squares estimate, F is the identity matrix. For Tikhonov
regularization, the j th diagonal element of F is

fj = σ 2
j

σ 2
j + λ2

. (4.37)

For TSVD, the first p diagonal entries of F are 1 and the others are zero.
So in each case we can write the solution estimate as

x = VFΣ†UT b≡ Cb. (4.38)

From this we see that under the assumption that b ∼ N(Ax∗, Im), x has a normal distribution.
We can compute the mean and variance of the distribution by using (3.14). We see, by setting
C = VFΣ†UT and b∗ = Ax∗, that the mean of x is

Cb∗ = VFΣ†UT Ax∗ (4.39)

= VFΣ†UT UΣVT x∗ (4.40)

= VFVT x∗ (4.41)

= x∗ − V(In − F)VT x∗, (4.42)

and the variance of x is

CCT = VFΣ†UT U(Σ†)T FVT (4.43)

= VF2
(
Σ2

1

)−1
VT . (4.44)

We see from these expressions that x is a biased estimator if F �= In, i.e., if we use a Tikhonov
estimate with λ �= 0 or a TSVD estimate with p < n. We also see that the variance of the
estimator decreases as the filter factors decrease. Therefore the variance decreases as the
Tikhonov parameter λ increases and as the TSVD parameter p decreases.

We can make a similar computation for the residual. Let F̆ denote the m × m matrix that
is zero except for the matrix F in its upper left block. In terms of F and the SVD of A, the
residual can be expressed as

r = b − Ax (4.45)

= b − (UΣVT )VFΣ†UT b (4.46)

= U(Im − F̆)UT b (4.47)

= U2UT
2 b + U1(In − F)UT

1 b. (4.48)

Note that U2UT
2 b is the residual for least squares. Since r = Cb, where we redefine

C = U(Im − F̆)UT , we see that r is normally distributed with mean

CAx∗ = U(Im − F̆)UT UΣVT x∗ (4.49)

= U(Im − F̆)ΣVT x∗ (4.50)

= Ax∗ − U1FΣ1VT x∗ (4.51)

= U1Σ1VT x∗ − U1FΣ1VT x∗ (4.52)

= U1(In − F)Σ1VT x∗. (4.53)

9
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Table 1. Estimators, means, and variances for the methods in terms of the filter factor matrix F
and the SVD of A. Each of the estimators is normally distributed.

Estimator Mean Variance

x = VF�†UT b x∗ − V(In − F)VT x∗ V(F�−1
1 )2VT

r = U2UT
2 b + U1(In − F)UT

1 b U1(In − F)�1VT x∗ U2UT
2 + U1(In − F)2UT

1

Table 2. Estimators, means, variances, and filter factors for the three methods. Each of the
estimators is normally distributed. The n × n matrix F is diagonal with entries specified by the
filter factors fj , j = 1, . . . , n. The matrix �tr is an n × n diagonal matrix containing the first p
singular values and Utr , which is m × p, contains the first p columns of U.

Least squares Tikhonov TSVD
Filter factors fj = 1 fj = σ 2

j /(σ 2
j + λ2) fj = 1 (j � p) or 0 (j > p)

x-estimator x̂ = (AT A)−1AT b xλ = (AT A + λ2In)
−1AT b x̃ = (AT A)−1AT UtrUT

trb
Cx (AT A)−1AT (AT A + λ2In)

−1AT (AT A)−1AT UtrUT
tr

Mean x∗ (AT A + λ2In)
−1AT Ax∗ (AT A)−1AT UtrUT

trAx∗

Variance (AT A)−1 (AT A + λ2In)
−2AT A (AT A)−1AT UtrUT

trA(AT A)−1

= V�−2
1 VT = VF2�−2

1 VT = V(�
†
tr )

2VT

r-estimator (Im − A(AT A)−1AT )b (Im − A(AT A + λ2In)
−1AT )b (Im − A(AT A)−1AT UtrUT

tr )b
Cr (Im − A(AT A)−1AT ) (Im − A(AT A + λ2In)

−1AT (Im − A(AT A)−1AT UtrUT
tr )

= Im − U1UT
1 = Im − UtrUT

tr

Mean 0 (Im − A(AT A + λ2In)
−1AT )Ax∗ (Im − A(AT A)−1AT UtrUT

tr )Ax∗

Variance Im − A(AT A)−1AT (Im − A(AT A + λ2In)
−1AT )2 (Im − A(AT A)−1AT UtrUT

tr )

= Im − U1UT
1 = Im − U1F2UT

1 = Im − UtrUT
tr

Therefore the estimator of η = b − Ax∗ is biased if F �= In. Similarly, the variance is

CCT = U(Im − F̆)2UT (4.54)

= U2UT
2 + U1(In − F)2UT

1 . (4.55)

Therefore, in return for a much lower variance for the estimator of x∗ obtained by using
regularization, we settle for biased estimators of x∗ and η and a somewhat higher variance for
the η estimator.

We summarize these results in table 1, and in table 2 we write all of the expressions in
terms of the data A and b, although the expressions in table 1 are both more revealing and
more computationally tractable.

5. Choosing a regularization parameter

From (4.28) and (4.34), it can be seen that the residual norm is a monotonically decreasing
function of the regularization parameter p for the TSVD method and a monotonically increasing
function of the regularization parameter λ for Tikhonov’s method. Similarly, the norm
of the estimated solution is a monotonically increasing function of p and a monotonically
decreasing function of λ. We discuss in this section various alternative methods for choosing
the regularization parameter.

10
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5.1. Well-known methods

There are three common methods for choosing the regularization parameter.
The most basic choice of regularization parameter is via Morozov’s discrepancy principle

[22]. This method chooses the regularization parameter so that the norm of the residual is
approximately equal to its expected value, given in (2.10).

An alternate strategy for Tikhonov regularization is to choose λ to minimize the
generalized cross-validation (GCV) function

G(λ) =
m∑

k=1

[
bk − (Ax̃(k)

λ

)
k

]2
, (5.56)

where x̃(k)
λ is the estimate when the kth measurement bk is omitted. The basic idea, first

introduced by Wahba [34], is to choose λ to make Ax̃λ the best overall predictor for missing
data values. The formulation for TSVD is similar, but in this case G(p) is a discrete function
rather than a continuous one.

A third strategy, often used when the error cannot be assumed to be normally distributed,
is based on the L-curve first introduced by Hanson and Lawson [19] and further developed by
Hansen [9] and [11, chapter 4]. In current use, the L-curve for Tikhonov regularization is a plot
of log ‖x̃λ‖ versus log ‖b − Ax̃λ‖ for a range of positive values of λ. The graph on the left of
figure 5 is an L-curve plot for the modified Phillips problem. The λ chosen corresponds to the
point in the corner where the curvature of the curve is maximized. A method for calculating
this point has been described by Hansen and O’Leary [13], and Hansen [10] provides MATLAB

software for doing the calculations. The L-curve for TSVD is defined in a similar way, but
consists of discrete points for various values of p; curvature can be defined as the curvature of
a smoothing cubic spline.

5.2. Diagnostics based on statistical properties of the residual and its periodogram

Rust [25] (see also [26]) suggested several diagnostics for judging the acceptability of a
regularized solution x̃ with residual r̃ using properties of the true residual η = r∗.

Diagnostic 1. The residual norm-squared should be within two standard deviations of the
expected value of ‖η‖2, which is m; in other words, ‖r̃‖2 ∈ [m − 2

√
2m,m + 2

√
2m]. This is

a way to quantify the Morozov discrepancy principle.

Diagnostic 2. The elements of η are drawn from a N(0, 1) distribution, and a graph of the
elements of r̃ should look like samples from this distribution. (In fact, a histogram of the
entries of r̃ should look like a bell curve.)

Diagnostic 3. We consider the elements of both η and r̃ as time series, with the index i
(i = 1, . . . , m) taken to be the time variable. Since η ∼ N(0, Im), the ηi form a white noise
series. Therefore the residuals r̃ for an acceptable estimate should constitute a realization of
such a series.

A formal test of diagnostics 2 and 3, used by Rust [25], is based on a plot of the
periodogram [5, chapter 7], which is an estimate of the power spectrum on the frequency
interval 0 � f � 1

2T
, where T is the sample spacing for the time variable. Here, the time

variable is the element number i, so T = 1. The periodogram is formed by zero-padding the
time series to a convenient length N (e.g., a power of 2), taking the discrete Fourier transform
of this zero-padded series, and taking the squares of the absolute values of the first half of
the coefficients. This gives us the periodogram z of values corresponding to the frequencies
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k/NT , k = 0, . . . , N/2. The cumulative periodogram c is the vector of partial sums of the
periodogram, normalized by the sum of all of the elements; i.e.,

ck =
∑k

j=0 zj∑N/2
j=0 zj

, (5.57)

where z and c are vectors with (N + 1) components. The variance in a white noise record
is distributed uniformly on the interval 0 � f � 1

2T
.5 Of course, no real noise record could

have such an even distribution of variance, but on average over many samples, the distribution
would approach that uniformity, and in the limit the periodogram would be flat. This means
that a plot of the elements of c versus their frequencies fk = k/NT would be a straight line
passing through the origin with slope 2/NT . Since the Fourier transform of the residuals is
obtained by a linear transformation with an orthogonal matrix, the real and imaginary parts
of the transform would remain independently, normally distributed. This implies that the
periodogram ordinates would be multiples of independent χ2(2) samples and hence that the
ck would be distributed like an ordered sample of size N/2 from a uniform (0,1) distribution.
A test of the hypothesis that the residuals are white noise can be obtained by constructing the
two lines parallel to the one above, passing through the points (f, c) = (0,±δ), where δ is the
5% point for the Kolomogorov–Smirnov statistics for a sample of size m/2. These two lines
define a 95% confidence band for white noise. More details on this procedure can be found in
Fuller [5, pp 363–6].

Therefore, the ideal cumulative periodogram is a straight line between 0 and 1 as the
frequency varies between 0 and 0.5, so we expect its length to be close to 1.118 (taking
T = 1). Quantitative measures for diagnostics 2 and 3 can be based on the length of the
cumulative periodogram (estimated as the length of the piecewise linear interpolant to the
cumulative periodogram) and on the number of samples outside the 95% confidence band.
These measures, along with the residual norm-squared for diagnostic 1, comprise our numerical
diagnostics, which we use in conjunction with the plots of the residual vector, its periodogram
and its cumulative periodogram.

As an example, we apply these diagnostics to the linear regression estimate x̂ (see
(3.13)) for the modified Phillips problem discussed in section 3. Using these diagnostics,
we see that this estimate of the solution is not reasonable. We have already observed that
‖r̂‖2 = 43.01, which is outside the ±2σ confidence interval [251.02, 348.98], so diagnostic
1 is violated. The components of the residual r̂ are plotted against i in the middle left in
figure 2, with their histogram displayed in the bottom left. They do not look like samples from
a N(0, 1) distribution, so diagnostic 2 is violated. By considering plots of the periodogram
and cumulative periodogram on the right in the figure, we see that diagnostic 3 is violated.
The middle-right graph in figure 2 is a plot of a periodogram estimate at 4097 equally spaced
frequency points on the interval [0, 0.5]. For white noise, the variance would be distributed
uniformly, but there is much more power on [0, 0.25] than on [0.25, 0.5] so the residuals are
probably not white noise. The cumulative periodogram is the solid curve at the bottom right
of figure 2. The title gives the length of this curve, which can be compared with the value
1.11803 expected for pure white noise. The dashed lines enclose a 95% confidence band for
white noise. We expect that the ordinates for a white noise series should lie outside this band
for at most 5% of the frequencies. Since 2803 of the 4096 lie outside the band, it is clear that
the least squares residuals are not white noise. Thus, the linear regression estimate fails all
three diagnostics and is not an acceptable solution. For comparison, the true solution x∗ with
residual η passes all three diagnostics, as illustrated in figure 4.
5 This interval defines the Nyquist band, and the power spectrum for white noise is constant at all frequencies in this
band, since the autocorrelation function for white noise is zero for all lags except lag 0.
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Figure 4. True solution (top) and diagnostics for the modified Phillips problem. On the left
are the residual and its histogram. On the right are the residual periodogram and the cumulative
periodogram.

In [25], Rust suggested choosing a parameter that passed all three of the diagnostics given
above. Later Hansen, Kilmer and Kjeldsen [12] proposed choosing the parameter by either of
two methods.

• Choosing the most regularized solution estimate for which the cumulative periodogram
lies within the 95% confidence interval.

• Minimizing the sum of the absolute values of the difference between components of c
and the straight line passing through the origin with slope 2/NT .

The first method tends to undersmooth, since we would expect 5% of the samples to lie
outside the confidence interval. For similar reasons, the second method is also too stringent.
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Figure 5. L-curve (left) and GCV function (right) for Tikhonov estimates to the solution to the
modified Phillips problem. For the L-Curve, the parameter λ (not indicated in the plot) increases
from the left to right along the curve, and the ‘corner’ occurs at λ ≈ 1.612. In contrast, the
minimizer for the GCV function is λ ≈ 13.268.

Their definition of cumulative periodogram is also somewhat different; they omit the first
component of the vector c and omit zero-padding. Since the first component captures the bias
in the estimate, we think it is important to include it. Zero-padding is a standard practice used
to give a finer frequency mesh for the periodogram so we prefer to use it. Mead [20, 21] has
also recently used distribution properties of the residual to choose regularization parameters.

6. Comparison of parameter choices for the modified Phillips problem

In this section we illustrate the parameter choice methods for Tikhonov regularization and for
TSVD using the modified Phillips problem.

6.1. Results for Tikhonov regularization

Consider solving the modified Phillips problem using Tikhonov regularization. For this
problem, the ‘optimal’ value from the L-curve in figure 5 is λ = 1.612. The corresponding
estimate and diagnostic plots are given in figure 6, and the numerical diagnostics are given in the
first row of table 3. The sum of squared residuals 177.3 is about 5 standard deviations smaller
than the expected value 300, and the jaggedness of the plotted solution estimate indicates that
a larger λ is needed to provide more smoothing to damp out the higher frequencies so apparent
also in the periodogram of the residuals.

The graph on the right-hand side of figure 5 is a plot of the GCV function G(λ) versus λ for
the modified Phillips problem. The minimum occurs at λ = 13.268, and the corresponding
estimate and residual diagnostics are plotted in figure 7. The numerical diagnostics are
tabulated in row 2 of table 3. The fourth column gives the square of the residual norm, which
can be compared with m = 300. The fifth notes the percentage of cumulative periodogram
components within the 95% confidence interval. The sixth column records the length of the
graph of the cumulative periodogram, while the next column gives the root mean square error

|	x|rms ≡
√√√√1

n

n∑
j=1

(x̃j − x∗
j )2, (6.58)

where x̃ is the computed estimate. (The root-mean-square error is not, of course, computable
in practice, since x∗ would be unknown.) Although the estimate is superior to the one for the
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Figure 6. Tikhonov estimate and diagnostics for maximum curvature of the L-curve.

L-curve, it nevertheless does not give acceptable residual diagnostics. The sum of squared
residuals is about 3.5 standard deviations smaller than the expected value 300, and 37.7% of
the residual cumulative periodogram ordinates lie outside the 95% band for white noise.

Although neither the L-curve λ nor the minimal GCV λ gives an acceptable estimate, it is
nevertheless possible to find a good Tikhonov estimate. Rows 3–11 of table 3 give numerical
diagnostics for a range of λs chosen by trial and error to give residuals which have either an
acceptable frequency distribution or a sum of squared residuals which differs by less than one
standard deviation from the expected value, i.e., to be in the interval [275.5, 324.5]. Though
all of the values in 19.2 � λ � 27.0 give acceptable residual frequency distributions, most
of them give unacceptably small values for the sum of squared residuals. Only the interval
26.0 � λ � 27.0 gives estimates with residuals that satisfy all three diagnostics. The estimate
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Table 3. Estimate diagnostics for Tikhonov regularization applied to the modified Phillips Problem

Method λ
∑

(b − Ax̃)2
i % (ck ∈ B95) Length{c} |	x|rms Figure

1 L-curve 1.61 177.3 48.4 1.1982 0.121 31 6
2 GCV 13.27 214.1 62.3 1.2004 0.012 71 7
3 Trial λ 19.20 233.1 95.3 1.1991 0.009 48
4 Trial λ 20.00 236.8 99.1 1.1992 0.009 25
5 Trial λ 22.00 247.5 100.0 1.1998 0.008 80
6 Trial λ 24.00 260.7 100.0 1.2014 0.008 53
7 Trial λ 26.00 276.9 100.0 1.2040 0.008 41

8 Trial λ 27.00 286.3 96.9 1.2057 0.008 39 8

9 Trial λ 28.00 296.6 87.5 1.2076 0.008 41
10 Trial λ 29.00 307.9 83.9 1.2098 0.008 44
11 Trial λ 30.00 320.2 76.8 1.2123 0.008 50

for λ = 27.0, shown in figure 8, is chosen as the ‘optimal’ Tikhonov estimate. It is interesting
that even though only 3.1% of the cumulative periodogram ordinates lie outside the 95% white
noise band, the cumulative periodogram curve is longer than many of those corresponding
to unacceptable estimates. The cause is the low-frequency ‘bulge’ in the distribution which
arises from the Tikhonov damping of the middle and high frequencies. Too much damping
causes this bulge to burst out of the 95% band and renders the estimate unacceptable.

6.2. Results for TSVD

There are only n possible TSVD estimates, corresponding to the n possible choices for the
parameter p in (4.25), (although interpolation can be used to make the solution a continuous
piecewise linear function of the parameter p). We show the discrete L-curve for the modified
Phillips problem on the left in figure 9 and the discrete GCV function on the right. The corner
of the discrete L-curve occurs at p = 98 and the minimum of the GCV function occurs at
p = 65. The numerical diagnostics for these two estimates are given in rows 1 and 3 of
table 4. Neither the L-curve nor the GCV estimate gives acceptable residuals. The sum of
squared residuals for the L-curve estimate is about 4 standard deviations below the expected
value m = 300, and for the minimum GCV estimate, about 2.8 standard deviations too small.
Only the estimates for p = 55 and p = 54 give residuals with both a sum of squares in
the 1-sigma interval [275.5, 324.5] and an acceptable frequency distribution, with at least
95% of the coefficients within the confidence limits. The p = 54 estimate was chosen as
optimal, though it is only marginally better than the p = 55 estimate. The estimated solution
is very much like that obtained by Tikhonov regularization and displayed in figure 8. Note
that although the GCV residual is far from appearing to be white noise, for this problem GCV
gives the smallest value of |	x|rms. (We will see evidence in section 8 that this is not typical.)
We note than none of the methods found the value p = 67 that minimizes the error in x.

7. Automating the residual periodogram diagnostics

We have seen that the plots of the residual vector, its periodogram, and its cumulative
periodogram, in conjunction with the three diagnostics in section 5.2, lead to good choices
of a regularization parameter, and we advise their use whenever possible. However, in some
circumstances (e.g., real-time applications), it is not feasible to choose the parameter manually,
so it is also important to have automatic procedures. There are several ways in which the
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Figure 7. Tikhonov estimate and diagnostics for minimum value of the GCV function.

periodogram can be used: for example, in accord with diagnostics 2 and 3, we can choose the
parameter according to any of the following rules, or any combination of them.

• Minimize the length of the cumulative periodogram.
• Minimize the number of points of the cumulative periodogram that lie outside the 95%

confidence limits.
• Choose the smallest amount of regularization that places 95% of the points of the

cumulative periodogram inside the confidence limits.
• Minimize the distance between the cumulative periodogram and the line through the

origin with slope 2/NT , using either the 1-, 2-, or ∞-norm to measure distance.
• Choose a value for which the maximum magnitude element in the periodogram is not

significantly bigger than expected.
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Figure 8. Tikhonov estimate with regularization parameter chosen to optimize the residual
diagnostics.

It is also a good idea to restrict our choice to one which puts the norm of the residual within 2
standard deviations of its expected value m (diagnostic 1).

In the following section, we experiment with the last of the options for using the
periodogram, by computing the ratio of the largest value to the average value. The distribution
of this quantity has been studied by Fisher (see, for example, [5, p 363]), and we chose the
least amount of regularization for which the probability of a sample from this distribution
being larger than our ratio was at least 5%.

8. Results on some standard test problems

We tested several parameter choice methods on some standard test problems taken from the
MATLAB regularization tools [10]: Baart, Foxgood, Heat, Ilaplace, Wing, Phillips, Shaw and

18



Inverse Problems 24 (2008) 034005 B W Rust and D P O’Leary

Figure 9. L-curve (left) and GCV function (right) for TSVD estimates for the modified Phillips
problem.

Table 4. Diagnostics for TSVD estimates to the solution of the modified Phillips problem.

Method p
∑

(b − Ax̃)2
i %(ck ∈ B95) Length{c} |	x|rms

1 L-curve 98 201.8 53.5 1.1995 0.035 22
2 Trial p 80 211.7 52.5 1.1964 0.017 51
3 GCV 65 230.8 64.1 1.2032 0.008 71
4 Opt. x 67 229.3 63.2 1.2026 0.008 15
5 Trial p 62 241.5 83.6 1.2013 0.009 43
6 Trial p 61 241.5 82.9 1.2013 0.009 32
7 Trial p 60 244.2 79.5 1.2020 0.008 73
8 Trial p 59 250.6 84.7 1.2020 0.009 61
9 Trial p 58 250.8 82.3 1.2023 0.009 52

10 Trial p 57 259.9 100.0 1.2020 0.010 68
11 Trial p 56 259.9 100.0 1.2021 0.010 68
12 Trial p 55 281.3 100.0 1.2055 0.012 24

13 Trial p 54 281.6 100.0 1.2056 0.012 22

14 Trial p 53 350.9 100.0 1.2091 0.014 02
15 Trial p 52 358.5 100.0 1.2095 0.014 00

Spikes. We generated 100 white noise samples for each of the eight problems with standard
deviation equal to 0.001 times the norm of the right-hand side, and used m = n = 256.6

Table 5 shows the results. We tabulate the number of problems for which the relative error in
the regularized solution xλ was less than 20%; i.e.,

‖xλ − x∗‖
‖x∗‖ < .2, (8.59)

There were no acceptable solutions from either the Tikhonov or the TSVD family for the
problems Wing and Spikes (which both have discontinuous solutions), so we omit those
problems from the table. The last column shows that in all the problems we consider, there is
a Tikhonov parameter that produces a solution with low relative error and similarly for TSVD.
The other table entries show how often each method finds such a parameter. The discrepancy

6 Note that the original version of Ilaplace generated a matrix with undefined entries, but this was corrected in an
updated version.
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Table 5. Number of solutions with relative error less than 20%.

Problem Method PFT Discr. GCV L-Curve HKK Optimal

Bart Tikhonov 96 59 67 75 98 100
TSVD 93 58 70 37 97 100

Foxgood Tikhonov 98 58 81 76 99 100
TSVD 96 58 79 35 99 100

Heat Tikhonov 91 84 86 4 99 100
TSVD 67 62 86 21 35 100

Ilaplace Tikhonov 95 68 81 88 99 100
TSVD 96 68 81 78 99 100

Phillips Tikhonov 100 91 100 87 100 100
TSVD 99 89 96 37 97 100

Shaw Tikhonov 99 59 80 79 99 100
TSVD 96 60 88 69 98 100

Overall Tikhonov 579 419 495 409 594 600
(97%) (70%) (83%) (68%) (99%) (100%)

TSVD 547 395 500 277 525 600
(91%) (66%) (83%) (46%) (88%) (100%)

principle (Discr.), which chooses the parameter for which the residual norm is closest to its
expected value, is a rather reliable method, producing a solution with low relative error for
Tikhonov on 70% of the examples and for TSVD on 66% of the examples. The GCV works
even better, with an acceptable solution in 83% of the examples, despite the fact that the GCV
function is notorious for being flat, making it difficult to find a minimizer. The L-curve is
slightly less reliable than the discrepancy principle, but still works well in about 68% of the
problems for Tikhonov and 46% for TSVD. Often it fails due to a bad estimate of the location
of the corner, since it is easily fooled by roughness in the curve. The periodogram with Fisher
test (PFT) is quite reliable, finding an acceptable solution for 97% of the problems when
using the Tikhonov method and 91% when using TSVD. This is comparable to the results
for the method of Hansen, Kilmer and Kjeldsen (HKK), but their method has the statistical
flaws of ignoring the first component of the periodogram and of demanding that 100% of
the cumulative periodogram values lie within a 95% confidence interval. Based on these and
other tests, we conclude that many variants of parameter choice methods based on residual
periodograms are quite effective.

9. A real-world example

In the previous section we demonstrated the effectiveness of using the Fisher test on the
periodogram in order to automatically determine a regularization parameter. In this section
we demonstrate how a spectroscopy problem can be solved using manual application of the
diagnostics.

Measurements of nuclear radiation spectra are an important source of ill-posed problems.
Consider the energy spectrum of neutrons produced by the reaction T (d, n)4He, i.e. tritium
nuclei bombarded with deuterons to produce helium nuclei and the neutrons being measured.
If the bombarding particles are monoenergetic then so are the neutrons produced. Although the
neutrons are monoenergetic, the measuring instrument both smears and distorts the expected
spectrum. The instrument in question, an NE-213 spectrometer, has been described by
Verbinski et al [33] and Burrus and Verbinski [3]. Its response functions are plotted in
figure 10, where incident energy corresponds to the variable ξ and pulse height to the variable
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Figure 10. Instrument response functions for the Burrus neutron spectrum problem. The quantity
log10[1 + Ki(E)] is plotted in order to more clearly show the structure for higher energies.

ti in (1.1). For each neutron, the detector increments a counter in one of m = 113 pulse-height
bins designed to cover and subdivide the energy range of all possible incident neutrons. The
integral equations modeling the process are

ci =
∫ Eup

0
Ki(E)N(E) dE + εi, i = 1, 2, . . . , 113, (9.60)

where ci is the number of pulses counted in the ith bin, N(E) is the unknown number of
neutrons at energy E and the Ki(E) are the instrument response functions for the detector7.
For a given E, the quantity Ki(E) dE is the probability that a neutron with energy in the
range E ± 1

2 dE would increment the count in the ith pulse-height bin. Ideally, higher energy
neutrons would be counted in higher bins, but figure 10 shows that this does not always happen.
Ideally, the Ki(E) should be a series of narrow peaks distributed along a diagonal line running
from the upper left to the lower right of the energy, pulse-height domain. The figure does
exhibit a ridge along that direction, but it attenuates to a barely discernible ripple for higher
energies. Even worse, the long energy tails for the lower pulse-height bins make it more likely
that a higher energy neutron will produce an increment in a lower rather than a higher bin.

Figure 11 shows a measured spectrum with count rates rather than counts plotted against
pulse height. Counts are accumulated for a time sufficient to allow good estimates for the
uncertainties and then are divided by the elapsed time to get rates. This division replaces the
ci with count rates yi and the number N(E) of neutrons with a neutron flux x(E). As a result,
(9.60) becomes

yi =
∫ Eup

0
Ki(E)x(E) dE + εi, i = 1, 2, . . . , 113, (9.61)

where the εi are noise rates derived from dividing estimates of the measurement errors εi by
time. These errors are modeled as samples from a Poisson distribution, with parameter equal

7 The data for this problem are posted at www.cs.umd.edu/users/oleary/bwr.
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Figure 11. Measured pulse-height spectrum for the Burrus neutron spectrum problem. The two
curves are ± 1-sigma bounds for the measurements.

Figure 12. Singular values and first n elements of |UT b| for the Burrus neutron spectrum problem.
The vertical line marks the first deleted singular value (σ41) for the optimal TSVD estimate.

Table 6. Estimate diagnostics for the Burrus neutron spectrum problem.

Method Parameter
∑

(b − Ax̃)2
i %(ck ∈ B95) Length{c} Figure

1 Least squares λ = 0 38.0 37.4 1.255
2 Tikhonov regularization, L-curve λ = 61.45 50.0 51.4 1.250
3 Tikhonov regularization, GCV λ = 100.1 57.6 55.4 1.222
4 Tikhonov regularization, optimal trial λ λ = 233.0 113.4 100.0 1.174 13

5 TSVD, L-curve p = 61 50.0 50.8 1.253
6 TSVD, GCV p = 49 61.1 51.7 1.256
7 TSVD, optimal trial λ p = 40 115.2 98.8 1.224 14

to the true number of counts. Running the experiment sufficiently long makes the counts large
enough (e.g., at least 50) to approximate the Poisson distribution by a normal distribution with
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Figure 13. Optimal Tikhonov solution estimate and diagnostic plots for the Burrus neutron
spectrum problem.

mean and variance equal to this number [5]. Therefore the ith component of y has a Poisson
distribution with parameter (Kx)i , and we approximate this distribution by N((Kx)i, (Kx)i).
Since Kx is unknown, we approximate the parameters by yi .

Assuming statistical independence and dividing the estimated standard deviations by the
time of accumulation gives a diagonal variance matrix S2 for the errors.

Equations (9.61) were discretized using simple rectangular quadrature with an n = 77
point energy mesh, 0.2MeV = E1 < E2 < · · · < E77 = 18.91 MeV, to give the linear
regression model (1.2). Scaling with S−1 gave the normalized model (2.7). The two curves
plotted in figure 11 indicate good statistics for the measurements, but there is no sign of the
peak expected for monoenergetic neutrons. The sharp rise in the lower pulse-height bins
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Figure 14. Optimal TSVD solution estimate and diagnostic plots for the Burrus neutron spectrum
problem.

contains most of the counts that should have gone into that missing peak. The least squares
estimate is overwhelmed by the amplified noise and gave r2

min = ‖b − Ax̂‖2 = 38.05, which
is almost 5 standard deviations smaller than the expected value 113. The singular values and
first n elements of |UT b| are shown in figure 12. The condition number is 2.3503 × 105, so
the matrix is clearly not rank-deficient. The distribution of the |UT b|i exhibits a dichotomy at
i = 47 where it first drops below the 1-sigma level for the error.

Table 6 gives diagnostics for several estimates of the energy spectrum. The quantities
tabulated are the same as in the previous tables except that here |	x|rms is not known. The
first row corresponds to the least squares estimate.

Rows 2–4 of table 6 give diagnostics for three Tikhonov estimates. The L-curve method
is used in row 2. The sum of squared residuals is about 4.2 standard deviations smaller than
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the expected value, and an excess of higher frequencies rendered the frequency distribution
of the residuals unacceptable. In row 3, the smoothing constant is chosen to minimize the
GCV function. The sum of squared residuals is about 3.7 standard deviations smaller than
the expected value, and the frequency distribution of the residuals is unacceptable. For the
estimate in row 4, the smoothing constant is chosen by trial and error to give a sum of squared
residuals close to the expected value 113. The estimated solution and diagnostic plots are
given in figure 13.

Rows 5–7 of table 6 give diagnostics for three estimates obtained from the TSVD
method. For rows 5 and 6, the truncation parameters are chosen by the L-curve and minimum
GCV methods, respectively. The estimate and diagnostics are very similar to those for the
corresponding Tikhonov estimates (rows 1 and 2): the estimated solution is reasonable but the
residual is unacceptable. Row 7 gives the diagnostics for the optimal TSVD truncation. The
solution estimate and diagnostic plots are given in figure 14.

10. Discussion and conclusions

For ill-posed problems with errors dominated by the measurement uncertainties in y, the
instability in the solution estimate is attributable to components of the measurements which
are overwhelmed by those uncertainties. In general, these components do not correspond
exactly to specific elements of y. When possible, we advocate scaling the problem by S−1 to
transform it to one in which the errors all have unit variance. Regularization methods can then
be used to reduce the influence of the error. Ideally, the results of candidate parameter choices
should be evaluated by plotting the resulting residual along with its periodogram and its
cumulative periodogram and examining the numerical diagnostics. Sometimes an automated
choice is needed, and in such cases we advise using diagnostics based on the norm of the
residual and the periodogram of the residual to choose or validate the choice of a regularization
parameter.

To apply either the manual or the automatic methods for parameter choice, one need only
be able to compute the Fourier coefficients of the (zero-padded) residual for various values
of the regularization parameter. Thus all of these numerical diagnostics are inexpensive to
compute, so they can be used for two- and three-dimensional problems, even if regularization
methods other than the SVD-based ones discussed here are used. They can be used, for
example, in conjunction with iterative regularization methods [18] or even with nonlinear
models.

Of course, there is no guarantee that the estimate resulting from our parameter choice
method will be close to the true solution, since (quite likely) the assumption that the errors η

are N(0, Im) may only be an approximation. Even if the assumption is good, noise may be
large enough to overwhelm important components of the signal. To recover such components
it is necessary to repeat the measurements multiple times or with more accuracy.
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Appendix A. A variant of the Phillips problem

A useful test problem which shares many of the characteristics of real instrument correction
problems is obtained by discretizing a variant of the well-known [23] Phillips equation. This
modified Phillips problem can be written as

y(t) =
∫ 3

−3
K(t, ξ)x(ξ) dξ, −6 � t � 6, (A.1)

with the kernel given by

K(t, ξ) =
⎧⎨
⎩

1

6

{
1 + cos

[π
3

(ξ − t)
]}

, |ξ − t | � 3, |t | � 6,

0, otherwise,
(A.2)

and the exact solution by

x(ξ) = β(ξ) +
3∑

k=1

ck(ξ), (A.3)

where

β(ξ) =
⎧⎨
⎩α0

[
1 + cos

(π

3
ξ
)]

, |ξ | � 3,

0, |ξ | > 3,

(A.4)

and

ck(ξ) =
{

αk{1 + cos[2π(ξ − ψk)]}, |ξ − ψk| � 1
2 ,

0, otherwise,
(A.5)

with amplitude constants αk and centering constants ψk chosen to be

α0 = 0.1, α1 = 0.5, α2 = 0.5, α3 = 1.0,

ψ1 = −1.5, ψ2 = 0.5, ψ3 = 1.5.
(A.6)

The kernel differs from the Phillips original only in the inclusion of the normalizing factor 1
6

which is added to assure that for any ξ ,∫ 3+ξ

−3+ξ

K(t, ξ) dt = 1. (A.7)

For a measuring instrument this condition assures that conservation laws are not violated.
Plots of K(t, ξ) for 5 representative values of ξ are given on the left in figure 1.

The exact solution to the original Phillips problem appears in a scaled down form
as the β(ξ) term in the solution to the new problem. The scaling constant α0 is chosen
to reduce the original Phillips solution to the role of a background function on which to
superimpose the three discrete peaks represented by the ck(ξ) terms. The three points ξ = ψk

are the centers of these peaks and the constants 2αk are their heights above the background.
The new solution function is plotted as a dashed line on the right in figure 1.
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These changes in the Phillips problem are designed to make it more challenging and more
reminiscent of real-world instrument correction problems. Unfortunately, they also make the
representation of the function y(t) more complicated. Substituting (A.3) into (A.1) gives

y(t) =
∫ 3

−3
K(t, ξ)β(ξ) dξ +

3∑
k=1

∫ 3

−3
K(t, ξ)ck(ξ) dξ, −6 � t � 6, (A.8)

but care must be exercised in evaluating these integrals because K(t, ξ) = 0 on half of the
rectangular domain {(t, ξ)|−6 � t � 6,−3 � ξ � 3} and each of the ck(ξ) is zero everywhere
except on the interval ψk − 1

2 � ξ � ψk + 1
2 . The last equation can also be written as

y(t) = B(t) +
3∑

k=1

Ck(t), (A.9)

where

B(t) ≡
∫ 3

−3
K(t, ξ)β(ξ) dξ, (A.10)

and

Ck(t) ≡
∫ ψk+ 1

2

ψk− 1
2

K(t, ξ)ck(ξ) dξ, k = 1, 2, 3. (A.11)

Evaluating the integral for B(t) gives

B(t) = 1

6
α0

{
(6 − |t |)

[
1 +

1

2
cos
(π

3
t
)]

+
9

2π
sin
(π

3
|t |
)}

, −6 � t � 6, (A.12)

and the integrals for Ck(t) can be written as

Ck(t) = 1
6αkLk(t), k = 1, 2, 3, (A.13)

where

L1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −6 � t � −5,

t + 5 + 1
2π

sin[π(2t + 9)] + 3
π

sin
[

π
3 (t + 2)

]
+ 3

10π

{
sin[π(2t + 8)] − sin

[
π
3 (t − 1)

]}
+ 3

14π

{
sin[π(2t + 10)] + sin

[
π
3 (t + 5)

]}
, −5 � t � −4,

1 + 3
π

{− sin
[

π
3 (1 + t)

]
+ sin

[
π
3 (2 + t)

]}
+ 3

10π

{
sin
[

π
3 (4 + t)

]
+ sin

[
π
3 (1 − t)

]}
+ 3

14π

{
sin
[

π
3 (2 − t)

]
+ sin

[
π
3 (5 + t)

]}
, −4 � t � 1,

2 − t + 1
2π

sin[π(3 − 2t)] − 3
π

sin
[

π
3 (t + 1)

]
+ 3

10π

{
sin
[

π
3 (t + 4)

]
+ sin [π(2 − 2t)]

}
+ 3

14π

{
sin
[

π
3 (2 − t)

]
+ sin [π(4 − 2t)]

}
, 1 � t � 2,

0, 2 � t � 6,

(A.14)
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L2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −6 � t � −3,

t + 3 + 1
2π

sin[π(2t + 5)] + 3
π

sin
[

π
3 t
]

+ 3
10π

{
sin[π(2t + 4)] − sin

[
π
3 (t − 3)

]}
+ 3

14π

{
sin[π(2t + 6)] + sin

[
π
3 (t + 3)

]}
, −3 � t � −2,

1 + 3
π

{
sin
[

π
3 (1 − t)

]
+ sin

[
π
3 t
]}

+ 3
10π

{
sin
[

π
3 (2 + t)

]
+ sin

[
π
3 (3 − t)

]}
+ 3

14π

{
sin
[

π
3 (4 − t)

]
+ sin

[
π
3 (3 + t)

]}
, −2 � t � 3,

4 − t + 1
2π

sin[π(7 − 2t)] + 3
π

sin
[

π
3 (1 − t)

]
+ 3

10π

{
sin
[

π
3 (t + 2)

]− sin [π(2t − 6)]
}

+ 3
14π

{
sin
[

π
3 (4 − t)

]− sin [π(2t − 8)]
}
, 3 � t � 4,

0, 4 � t � 6,

(A.15)

and

L3(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −6 � t � −2,

t + 2 + 1
2π

sin[π(2t + 3)] + 3
π

sin
[

π
3 (t − 1)

]
+ 3

10π

{
sin[π(2t + 2)] − sin

[
π
3 (t − 4)

]}
+ 3

14π

{
sin[π(2t + 4)] + sin

[
π
3 (t + 2)

]}
, −2 � t � −1,

1 + 3
π

{
sin
[

π
3 (2 − t)

]− sin
[

π
3 (1 − t)

]}
+ 3

10π

{
sin
[

π
3 (1 + t)

]− sin
[

π
3 (t − 4)

]}
+ 3

14π

{
sin
[

π
3 (5 − t)

]
+ sin

[
π
3 (2 + t)

]}
, −1 � t � 4,

5 − t − 1
2π

sin[π(2t − 9)] + 3
π

sin
[

π
3 (2 − t)

]
+ 3

10π

{
sin
[

π
3 (t + 1)

]− sin [π(2t − 8)]
}

+ 3
14π

{− sin
[

π
3 (t − 5)

]− sin [π(2t − 10)]
}
, 4 � t � 5,

0, 5 � t � 6,

(A.16)

The function y(t) is plotted as the solid curve on the right in figure 1. All of the details of
the three peaks are so smeared together by the convolution with the kernel function that there
is no hint of any structure in the underlying x(ξ).

The modified Phillips problem is discretized by choosing m = 300 equally spaced mesh
points on the interval −5.9625 � t � 5.9625 to give

y(ti) =
∫ 3

−3
K(ti, ξ)x(ξ) dξ, i = 1, 2, . . . , 300, (A.17)

and by replacing each of the integrals by an n = 241 point trapezoidal quadrature sum, i.e.,∫ 3

−3
K(ti, ξ)x(ξ) dξ ≈

241∑
j=1

ωjK(ti, ξj )x(ξj ), i = 1, . . . , 300, (A.18)

where the ξj are 241 equally spaced mesh points on the interval −3.0 � ξ � 3.0, and

(ω1, ω2, ω3, . . . , ω240, ω241) = 1

2

6

n − 1
× (1, 2, 2, . . . , 2, 1). (A.19)

Defining the n-vector x∗ and the m-vector y∗ by

x∗
j = x(ξj ), j = 1, 2, . . . , 241,

y∗
i = y(ti), i = 1, 2, . . . , 300,

(A.20)
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and the m × n matrix K by

Ki,j = ωjK(ti, ξj ), i = 1, 2, . . . , 300,

j = 1, 2, . . . , 241,
(A.21)

gives

y∗ = Kx∗ + δ, (A.22)

where δ is an m-vector of quadrature errors. A crucial assumption in replacing the integrals
with quadrature sums is that the value of n is chosen large enough so that the δi are small
relative to the random measuring errors εi . To assure that this assumption is satisfied for the
test problem, the elements of the vector y∗ were computed from the matrix-vector product

y∗ = Kx∗ (A.23)

rather than from (A.9)–(A.16). More precisely, the matrix elements Ki,j were computed from
(A.2), (A.19), (A.21), the vector elements x∗

j were computed from (A.3)–(A.6), and the vector
y∗ is then computed from (A.23). The ‘measured’ vector y was then obtained by adding
random perturbations to the elements of this y∗. Each perturbation was chosen independently
from a normal distribution with mean zero and standard deviation si = (10−5)

√
y∗

i , so the
variance matrix is

S2 = diag
(
s2

1 , s
2
2 , . . . , s2

300

)
, si = (10−5)

√
y∗

i . (A.24)
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